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Introduction

Let b™[x, u] be R*valued measurable functions defined on R?x.<#(R%),
where #(R*) denotes the space of probability distributions on R?!. We
consider interacting diffusion processes on R? described by a system of
stochastic differential equations

(1) XPO=XPO+BWO+| b7IXP6), U @Ms,  i=1,2, -, n,

where U™ (t)=(1/n) 37, 0x{™ 18 the empirical distribution of (X™(¢), ---,
X™(¢)) and By(t), =1, 2, ---, », are mutually independent d-dimensional
Brownian motions. The initial value (X{"(0), - - ., X (0)) is always assumed
to be independent of the Brownian motions.

Assuming that the law of large numbers U™ (t)—u(t) and b™[X™(¢),
U™ ()] —b[X(¢), u(t)] hold as n— c and taking the limit formally in (1)
for =1, we get the McKean-Vlasov’'s SDE

(2) X(t))=X©0)+B)+ | bX(s), ws)lds ,

where u(t) is the probability distribution of X(t).

The propagation of chaos for the diffusion processes (X{™(t),- -, X™(t))
given by (1) states as follows: If the sequence of the initial distributions
in (1) is a symmetric u-chaotic family (see §2), then the sequence of the
distributions of (X{™(¢), - -+, X™(¢)) is also a symmetric u(¢)-chaotic family,
where w(t) is the probability distribution of X(¢) in (2) with a u-distributed
initial value X(0).

When the drift coefficient b[z, u]=b"[x, u], n=1, is of average (or
integral) form defined by

(8) ble, ul=| b, wucay) ,
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where b(z, ¥) is Lipschitz continuous, McKean proved the propagation of
chaos in 1967 [3] (see also [1], [9], [10], [11], [12], [13]).

In the investigation of interacting diffusion particles of two segregated
groups [8] we have encountered such a system of stochastic differential
equations as type (1) with drift coefficients not of average form. Our
aim in [8] was to prove the propagation of chaos for a system of two
segregated groups and we did this without proving directly the propagation
of chaos for SDE’s (1). However, if we can prove the propagation of
chaos for (1) with drift coefficients which are not of average form, then
the propagation of chaos for a system of two segregated groups follows
immediately from the lemmas on order statistics in [8]. The purpose of
this paper is to give a proof of the propagation of chaos for (1) under
certain conditions on b™[x, #] which is not of average form; these
conditions are satisfied in the case of [8] and consequently the present
result yields another proof of Theorem 3 in [8]. Oelschrager [9] discussed
the case where both diffusion and drift coefficients are not of average
form. However, his assumption on the coefficients is not satisfied in the
case of [8].

§1. Chaotic family of symmetric probability distributions.

Let S=R?, <#(S) be the space of all probability distributions on S,
and <#(S") the space of all symmetric probability distributions on the
n-fold product space S".

DEFINITION 1. Let uwe.<*S) and u,€.#S*. {u,;n=12, .-} is
called a symmetric u-chaotic family if, for arbitrary but fixed m and
any fu R fm € Cb(S)’

(4) lim(u,, LRL®: - Qfa®1Q- - QD =TI <u, £> ,

where C,(S) is the space of bounded continuous functions on S and {u, )
denotes the integral of f with respect to the measure u.

LEMMA 1. Let u,€ »S"*). {u,;n=1,2, ---} 18 a symmetric u-chaotic
SJamily if and only if

(5) wl {@y o005 |2 3 fw)—w, | >ef | -0,

as n— oo, for any €>0 and fe Cy(S).

ProoF. Let (X,,---, X,) be a u,-distributed random variable. Assume
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first that {u,} is a symmetric u-chaotic family. Then

B |25 50—, [ |=Lmn7x)— @, 1

Tn
+&;—1—E[<f<xl>— Cuy FONAXY)— <y £

which converges to zero as n— co. Therefore (5) follows from Chebischeff
inequality. Conversely, assume (5). Then

(s £+ @Fo®1R - QD =E| [1 £:(X)) |

=L S B[ (X)),

')1,! 4 i=1

where the summation runs over all permutations ¢ of (1,2, .-, n}. As
is in the proof of Lemma 4 in [8], this is equal to

—m! $ . iz’;“l E[,ﬁfk(Xik):l+o(1)

n! i1=1

= n" E[ﬁ 1

1
nm—1)---(m—m+1) Lizip i

> Fi(X) [+o)
which converges to Iy, <u, fi.) as n— . This completes the proof of

Lemma 1.

DEFINITION 2. Let Cp be the space of radial functions g’s of the
form

g@)=s(|z]) for vze S,

where f’s are of C~(R"), nonnegative, nondecreasing, constant in neigh-
bourhoods of the origin, and lim,.. f(#)=co.

It is clear that if ge C, and ¢>0, then
(6) P, .={ue F8); {u, 99 =c}

is a compact subset of <#(S) in the topology of the weak convergence
if P,,+0.

LEMMA 2. For a symmetric u-chaotic family {u,; n=1, 2, ««+} there
exists g,€ Cy such that

(7) sgp<um 9:R1RQ - - R1)> < o0,

n~1
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and (5) holds with the g, in place of f, 1.e.,
(8) wf{@ 2 |23 a@o—cu 00| >} | -0,

as n— o, for any &>0.
ProOF. Taking nondecreasing functions +, € C*(R*) such that

for 0r=<k,

0
«[r,,('r)—{l for k+1=57r,

set
g@)=v(|2]) , k=1,2, ---
Then, since

SUDCit,y LRIE: @D 6D | Lyagoitiade) >0 85 koo,
n S— n

n-—1
we can choose a subsequence k,<k,<--- such that

(9) Sup(’“’m gk3®1®° * '®1>§2_j ’ j=17 2’ *rt
n ~———

n—1

and then define
(10) go=52=1 Ir; -

We can and do choose g,, so that

11 Vg, and Ag, are bounded.

It is clear that g,c C; and satisfies (7) because of (9). To show (8) we
divide it into two parts

un[{(xu cee, T,) 5 ‘% é go(x) —<u, 9o | >s}]
i‘a ("l.' Ei'. gk,'(x{)—<u’ gkj))‘ >'§"}]

j=1

éu,.[{(wu REFE A I

2 —-Zg,,,(wf) Cu, g,,,>)‘>—§-}:|

= 09|

+u,,|:{(x1, e, X))

éi Uy {(xlr ceey B ‘ 1 Z gk;(x() <u9 gk5>

=

+"’ Z (<um gk,®1® ®1>+<ur gkj>) ’

g i=N
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where the second summation is bounded by (4/e) > 7y 277, uniformly in
n, and for a fixed N the first summation converges to zero as n— o by
(5) of Lemma 1, because {u,; n=1, 2, ---} is a symmetric u-chaotic family
and g,; € C(S). Therefore

>e}]

Ti—fn—u,,[{(xl, cee, X,) "f']';? g 9o() —<{u, 9o

n—od

<4 S 27 for VN .
€

J=N+1

Thus (8) holds. This completes the proof of Lemma 2.

§2. A tightness result.

In &#(S) let us define a metric which is equivalent to the weak con-
vergence by

(12) o, ) =312 (u—v, > ,

where {f;; k=1,2, ---} is a sequence in C%(S) such that (i) the linear
hull of {f}; k=1, 2, ---} is dense in C%(S) and (ii) |4, IVAI, 1AfI=1
for vk=1, where C%(S) denotes the space of C=-functions with compact
supports. ||-|| denotes the supremum norm.

Let b™[x, u] be S-valued measurable functions on Sx.<#(S) and A®,
u € 2(S), be defined by

(13) A,‘["f:—;—Af+b‘"’[-,u]-Vf for feC(S).

LEMMA 3. Let U™(t) be the empirical distribution of (X™(), ---,
X™(t)) which satisfies the SDE (1) with b™[-, u] which are bounded
uniformly in n and with an initial distribution u,, where {u,; n=1,2, --.}
18 a symmetric u-chaotic family. Then for T>0

(14) lim inf P[U™(t) e P, ., 0<t<T]=1,

where g, i1s given in (10).
ProoF. The property (14) is equivalent to
(15) P[max{U"™(t), g,y >c] — 0, as ¢— oo ,
0StsT

uniformly in n. An application of Ité’s formula yields
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n t
(16) U, 9= U, 99+ 3, | Vo Xt (8)-dB(o)

t
+{, U6, Al 005 ,

where Vg, and Ag, are bounded because of (11). Moreover, since
{u,; n=1,2, ---} is a symmetric u-chaotic family, we have

2 3, 0L XPO) — (s 00>

in probability by Lemma 2. Therefore (15) follows from (16). This
completes the proof of Lemma 3.

LEMMA 4. Under the same assumption and notation as im Lemma 3,
an E[o(U™(s), U™ (t))*]<const.|t—s|* Jor 0=<s=<t<T.

Proor. By Ito’s formula we have for any fe Cx(S)
n t 4
KU=@®)— U6, HI's8|= 3, | vAxr(@)-dBys)|

+8

t 4
[ comi, ag,prdr|

and hence
Elo(U=@), UISE| {3 271U ®)- U6, 11} ]

<3 2 BT~ U™), ) 1]
<const.|t—s]|*,

completing the proof.
Combining Lemma 3 with Lemma 4, we have

LEMMA 5. Let Q, be the probability measure on C(0, T], P(S))
induced by the process {U™(t); 0<t<T}. Then {Q,;n=1,2, ---} s tight.

§3. The propagation of chaos.

We prove the propagation of chaos for the diffusion processes of (1)
under the following three conditions.

CoNDITION B. b[z, ] and b™[x, ] are S-valued measurable functions
on Sx #(S) which are bounded uniformly in n.
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ConpITION C. If u, e <2(S) converges weakly to u € <#(S) which has
a strictly positive density (almost everywhere) with respect to the
Lebesgue measure of S, then {(u,, b"'[-, u,]f> converges to <u, b[:, u]f)
as n— o for any fe CyS).

CoNDITION U. The uniqueness holds for <#(S)-valued solution of the
initial value problem

d _ 00
as) =), fr=Cul®), Avnf>  for VfeC(S),

u(0)=u € Z#(S) ,
where A,f=1/2)Af+b[-, u]-Vf.

REMARKS. (i) The condition C is weaker than the continuity:
b"[x, u,] —b[x, u] as n— . (ii) The following Amann’s lemma gives
a sufficient condition for the condition U. Define a non-linear operator
G from C¥ into (CH* by

(19) G, fo=<u, b[-, u]-Vf)  for feCi,

where C§¥ (resp. (CY)*) is the dual Banach space of C,(S) (resp. of CiS)=
{feCy(8S); 0., f € C(S), i=1, :--, d}), where C,(S) denotes the space of con-
tinuous functions vanishing at infinity.

LEMMA 6 (Amann, H.). If G defined by (19) satisfies
(20) | G(w) —G() || ctys S const. || u—v||g for wu,veCy,

then the wuniqueness holds for the initial value problem (18) (see [8],
Appendix).

Examples which satisfy the conditions B, C and U will be discussed
in the next section.

THEOREM. Given a symmetric u-chaotic family {u,;n=1,2, -}, let
X7(@)=(X"(®), -+, X™(t)) be a solution of the SDE (1) with an initial
value (X{™(0), « -+, X™(0)) distributed according to w,. Under the condi-
tions B, C and U the following assertions hold.

(i) U™(t) converges in probability to some (non-random) limit u(t)
which is a solution of the equation (18).

(ii) For each m=mn the process (X{”(t), - -+, XP(t)) converges as n— oo
wn law to (Xi(t),+ -, Xa(t), where {X,(t); =1, 2,---, m} are mutually in-
dependent and each X(t), i=1, -+, m, i1s a copy of the solution X(t) of the
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McKean-Viasov’'s SDE
1) X(t)=X(O)+B(t)+§:b[X(s), w(s)lds ,

where X(0) is u-distributed and u(s) denotes the probability distribution
of X(s).

(iii) u(t) in the first assertion coincides with the one in (ii).

REMARK. The claim of the existence of a (unique) solution of (18)
(resp. (21)) is a part of the theorem.

PROOF OF THEOREM. We first state two lemmas.
LEMMA 7. Define Y™ (t) by

(22) Yee)=- 3, | vixee)-dB) ,

where f, € CR(S) are those used in the definition (12) of the distance p.
Then YP(t) converges in law to Y, (t)=0 as n— «, for each k=1.

PrOOF. For any £>0,
lim P[max[ YM(t)| >e€]

n—o00

<lim —E[l =3 |, VX (6)-dBys)| ]

n—rc0 e

|, 1VA(Xe(s)) s |

n—+0 S’n i=1

—lim-1_E S lVf,,(X‘"’(s))Izds]
n—00 e

=0 R

where we have used the symmetry of the solution, completing the proof
of Lemma 7.

Since the family {Q.;n=1,2, ---} of probability measures on
C([0, T], <#(S)) induced by the process {U™(f); 0<t<T} is tight by
Lemma 5, we can choose a subsequence {Q,,} which is weakly convergent
as k— co. For simplicity, fixing the subsequence, we denote it again by
Q,. The Skorokhod’s realization theorem of almost sure convergence
implies that on (&, 5?' P), where 2= [0, 1], F = the class of all Borel

subsets in [0, 1] and P= the Lebesgue measure on &, we can construct a
sequence of processes

(23) {O™@), T @) ; k=1,2, -},
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which is equivalent to {U™(¢), Y™; k=1, 2, ---} such that the processes
Um@) and Y™@), k=1, are convergent uniformly in 0=<t<T almost
surely as m—oo. Let U(t) and Y,(t) denote the limits of U™(t) and
Y',‘,"’(t), respectively. We write a for an element of 2, so that

U~)=0"¢, @, Yre)=¥re, a)
and the limits
T=0¢, a) , V.0 =%.¢ a) .

LEMMA 8. The limit U@, a), t>0, has a strictly positive denmsity
with respect to the Lebesgue measure on S for almost all a€]0, 1].

ProOOF.* For each i=1, 2, ---, d, putting ,
(24) bi(t, x, @) = the i-th component of b™[z, U™ (¢, a)] ,
we define a signed measure »; on [0, T]xSX%[0, 1] by
(25) vi(dtdada)=bi(t, x, a)dtda U™ (t, a, dax) ,
and also set

(26) n(dtdxda) =dtda U™ (¢, a, dx) ,
ydtdzde) =dtdaUt, o, dz) .

It is clear that, since b% is bounded,

(27) —CA, SV O,

with a positive constant ¢, and that A, converges weakly to \, because
U™ (t, a) converges weakly to U(t, ) for almost all ¢ [0, 1], where the
exceptional set does not depend on £€[0, T]. On the other hand, since
{vi; »n=1,2, ...} is tight, we can choose a subsequence v} which con-
verges to a limit »*. Then (27) implies

(28) —eASyiZen,
i.e., »* is absolutely continuous with respeet to A. Therefore

(29) vi(dtdxda)=">b(t, x, a)\(dtdzda)
=b'(t, z, a)dtdaU(t, a, dzx) ,

where b%(t, x, @) denotes the Radon-Nikodym derivative dy‘/dn which is

*) The idea behind is somewhat similar to that found in pp. 291-292 of [10].
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bounded by ¢. Therefore, writing the subsequence {n,} as {n} again, we
have, for any h € C([0, 1]),

(30) lim | ha)da | <TG, @), b, T(s, )] VS,>ds

d
=lim 3% (4, 1.oh- 22

n—eo {=1 I

d

i=

S:h(a)da S:( U, a), b(s, +, a)-Vf, ds ,

1

which implies
@) lim | <TG, a), b1, TG, @]-Vhi>ds
n—oo Jo
=S'<L7(s, ), bs, -, @)-VF>ds  for almost all ac[0,1].

Now, U™(t, a) satisfies
(32) <ﬁ(n)(t’ a)r fk> = <l’7(n) (0’ a)r fk> + I‘}I(c”)(t’ a)
¢
+{ <O, a), 4G, o f0ds

for almost all ¢ €[0, 1]. Because of (31) and lim,... ¥ (¢, a)=0 for almost
all a, we have, passing to the limit n— « in (32),

(33) T, @, fi>=<T0, ), £+ Vs, ), A6, fdds
with
(34 Als, fy=2Bf+b(, -, @)V,

for all k=1, 2, --- and for all «€[0, 1]— N, where the exceptional set N

depends neither on k£ nor on t€[0, T]. Since the linear hull of { Sir k=

1,2, ---} is dense in C%(S), (83) holds for all fe C%(S), and hence U(t, a)

is a <#(S)-valued weak solution of the following linear parabolic equation
ou _ 1

(35) —E—-E-Au+V~(b(t, <y amu) .

Since b(¢, x, ) is bounded, the initial-value problem (85) has a unique
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solution (Lemma 6). If one writes the solution in terms of the Cameron-
Martin-Maruyama density [2] with respect to the Brownian motion on S,
it is clear that the weak solution has a strictly positive density with
respect to the Lebesgue measure on S for vi>0. Therefore, U(f, &) has
a strictly positive density for vi>0 and Va€[0, 11— N. This completes
the proof of Lemma 8.

Let us complete the proof of the theorem. Since we have shown
that the limit U(¢, a), t>0, has a strictly positive density, we can con-
clude, applying the condition C, that

@6)  lim | (TG, @), 4L, TG, ) Vfdds

=S:<Z7(s, a), B[+, U(s, 0)]-V£>ds  for Yae[0, 1]1—N .

Therefore U(t, a) satisfies, for Va e [0, 1]—N,

(37) <ﬁ(t; a), fk> = <(7(0’ C(), flc> + S:< ﬁ(sv a)’ A?f(a,a)fk>d8 ’ kgl .

This holds for VfeCg(S), since tlle linear hull of {f; k=1,2, ---} is
dense in C%(S). This means that U(t, a) is a solution of (18). Therefore,
by the condition U,

(38) u(®)= U, a) for vae[0, 11— N,

where N is the exceptional set which does not depend on ¢€[0, T'], and
u(t) is the unique solution of the initial value problem (18). At the
same time (38) implies that U™(t) converges uniformly in te[0, T'] to
the unique solution wu(t) in probability. This completes the first assertion
(i) of the theorem.

To prove the second assertion (ii), consider an SDE
(39) X(t)=X(0)+ B(t) + S:b(s, X(s))ds

where b(s, ) =b[x, u(s)] and X(0) is u-distributed. Since b(s, ) is bounded
and measurable in (s, ), SDE (89) has a weak solution by the Cameron-
Martin-Maruyama formula and moreover it is a unique pathwise solution
by a theorem of Veretennikov [14]. Let v(f) be the probability distribu-

tion of the solution X(¢) of (39). As is shown in Appendix of [8], u(t)
and v(¢) satisfy

lt), £r=Cu, Pufy+| o), bl-, w(e)]- VPufds
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W®), £y=<u, Pufy+| <o), -, w(e)]- VP, f>ds

respectively, for fe C/(S), where P, denotes the d-dimensional Brownian
semigroup on Cy(S). Therefore

(40) )=o), £>=| ws)—v(e), o, w(e)]-VP._.f>ds .

Because

(41) IV(P,_.f)l|<const. —L—|f  for feC(S),
Vt—s

it follows from (40) that

(42) || w(t) —v(¢) |l gy < const. S:]]u(s)—v(S)Hc; 1/‘—-Ultl_ real

which implies |[u()—v(t)|l;s=0. Therefore the solution X(¢) of (39) is
actually a unique solution of the non-linear SDE (21). Combining the
assertion (i) of the theorem with what we have shown and Lemma 1,
one can conclude that the sequence of the probability distributions of
(X™(@), +++, X™(t)) is a symmetric wu(¢)-chaotic family and hence
(XP(t), + -+, X2(t)), m fixed, converges in law to (X,(¢), ---, X.(t)) as
n— o, where X,(tf)’s are independent copies of the unique solution of
the non-linear SDE (21). (iii) is clear from the above proof of (ii). This
completes the proof of the theorem.

§4. Examples.

EXAMPLE 1. Let b(x, y) be an S-valued bounded Borel measurable
function on Sx S.

CONDITION D. There exists an open subset D in SxS such that
b(x, ¥y) is continuous in D and the 2d-dimensional Lebesgue measure of
D° is zero.

Let b[x, ] be defined by (3) for u e =#(S). If b(x, y) satisfies the
condition D, then the condition C is fulfilled. In fact, let u € <2(S) have
a strictly positive density with respect to the Lebesgue measure on
S=R?, u, € Z#(S) converge weakly to » and f€ C,(S). Then, for sufficiently
large n, we have

|| @iz, u.tu(da)— | fpbl, uluda)
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=| || e, »iw.Qu.dsdy) —uRudsdy)

+1|F11116 [|%,Qu.(D*)
=e.
Let G be defined by (19). Then

<G, £5—<Gw), £ = |||V, vuudady) - v@o(dady))
<2/|vf | 511w —vlie

and hence the condition U is satisfied by Lemma 6. Therefore, our
theorem holds under the condition D for a bounded measurable b(x, 7).

REMARK. When b[x, u] is of average form with a bounded measura-
ble b(x, y), the propagation of chaos has been shown already by a different
method, see Sznitman [12] and Shiga-Tanaka [11].

ExAMPLE 2. Let b(x, ¥, v) and b (z, ¥, v) be S-valued Borel measura-
ble functions on SxSx.2#(S) which are bounded uniformly in x.

ConDITION E. If we . 2#(S) has a strictly positive density with re-
spect to the Lebesgue measure on S and if u, € .Z#(S) converges weakly
to u, then for any &>0 there exist a compact subset K and a closed
subset F' of SxS such that (-, -, ) is continuous on K, b™(-, -, u,)
converges to b(-, -, ) uniformly on K, uQu(F)<e and SXxS=KUF.

Assume the condition E and define b[z, ] (and ™[z, v]) for v € <#(S) by
43)  bls, ol={b@, v, opody) (370, o1={b" G, v, vyodw)) ,
then b™[x, v] satisfies the condition C. In fact, for feC,
|| Az, wunde) | i, wlndn)|
<| || Ao, v, wn.@u.(dady) —u@uidsdy)]

+ ||| 0@, v, w) b, v, wn@u.(dsdy) |
=I+1II,

where I<¢ for sufficiently large n as is shown in Example 1, and II can
be estimated as follows:
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II=< sup [0 (2, ¥, u.)—b(x, ¥, ) l“xlﬂw) | %, Qu.(dxdy)
+IANAB 110" D Qu.lF)
Se

for sufficiently large n, if we choose K and F so that u@u(F') is dominated
by {1+ FlI(JIb]| +sup,||b™|D}*. Thus the condition C is satisfied.

CONDITION L.
|b(, ¥, w)—b(=, ¥, v)|=cllu—vllc
for u, ve <#(S), where ¢ is a positive constant.

Under the condition L the condition U is satisfied. In fact, for G
defined by (19) we have

<G, £~ G, 115 || Vb v, wuRuidsdy)—o@u(dsdy)]|

+ ' “Vf(x){b(x. ¥, u)—b(z, ¥, v)}vQu(drdy) |
sconst. || Vf|| [|u—vlle

and hence the condition U follows from Lemma 6.
Therefore, our theorem holds under the conditions E and L for a
bounded measurable b(z, ¥, v).

§5. An application to a system of interacting coloured particles.

Given a bounded continuous functions {b,(x, ¥); %, =1, 2} on R*® we
define

1
1—-6

by (2, y)%—-l(_w,mn(y)+bn<x, )
(44) bz, ¥y, u)= 1 1
b, (2, y)'a—l(—w,‘r(u)]<y)+b22(x’ y)l-:'jl(r(u),oo)(y) ’ x>7(u) ’

low, @), r=v(u) ,

where 0<0<1 and 7(u) is the segregating front of the distribution u &
F(R") defined by

(45) Y(u)="7(u, )=min{x ; u((— o0, )) S0=u((— =, z])} .

It is clear that b(x, y, u) satisfies the condition E and moreover the
condition L (see Appendix of [8]). Thus the conditions B, C and U are
fulfilled.
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Let (X, X,, -+, X,.+,) be the solution of the SDE (1) with b [z, u]
defined by (43) in terms of b(z, y, u) given in (44), where 6= 6(m, n)=
m/(m~+n), and moreover let the sequence of initial distributions be a
symmetric u-chaotic family. Applying the order statistics (Lemma 2 of
[8]) to (X, -+, X,.+.), We obtain the reflected processes of two segregated
groups (X, --+, X,,, Y}, ---, Y,) which satisfy the following SDE'’s

X6)= X,0)+ Br )+ 35 | bu(X,(s), Xilo))ds

+2 3 [ bu(Xlo), Vs —330ut),  1sism,
(46) { k= =

Yi(6)=Y0)+B1 @)+ 3 [ 5.(¥i(0), Xulo)ds

[

+2 3 [ bu(¥ite), Vs + 300t 1sism,

where
47 m{ax X,= mm Y;(t) for vi=0,
1sism
(48) ®,(t) 1is continuous, monotone nondecreasing ,

2,;0)=0 and supp(d®,;)c{t=0: X,(t)= Y,(¢)},

and ({B;(t), Bf(t);1<=i<m,1<j=<n} are independent one dimensional
Brownian motions starting at 0, which are independent of the initial
values. Under the assumption that the distribution u satisfies the
positivity condition (see (20) of [8]), the sequence of the distributions of
the initial values (X,(0), -, X,(0), Y,(0), ---, Y,(0)) is (u, u,)-chaotic
(Definition 3 of [8]) by Lemma 4 of [8].

By our theorem in §4, the propagation of chaos holds for the diffusion
processes (X, X,, --+, X,...), i.e., the sequence of the distributions of
(Xi(®)y Xo(2), + ) Xin(t)) is a symmetric wu(t)-chaotic family, where u(t)
is the unique solution of the non-linear equation (18). Therefore, the
sequence of the distributions of (X,(¢), ---, X,.(t), Yi(®), -+, Y.(2)) is
(u(€h, u(?),)-chaotic by Lemma 4 of [8]. That is, the propagation of
chaos holds for the diffusion processes of two segregated groups. This
is another proof of Theorem 3 in [8].
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