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Introduction

Let G/H be a semisimple affine symmetric space and let o be the
associated involutive automorphism of G. Let K be a o-stable maximal
compact subgroup of G. Then it is known (Flensted-Jensen [1], Rossmann
[9]) that G admits the decomposition G=KCH (with intersection), where
C is a so-called split Cartan subgroup of G. In this paper we are mainly
concerned with a simple parahermitian symmetric space M whose Weyl
group W(M) coincides with the Weyl group W(M*) of the fiber M* of
the Berger fibration of M ([5]). We then obtain a decomposition theorem
for the simple Lie group G which arises as the automorphism group of
M (Theorem 3.6). More precisely, we have the decomposition (with in-
tersection) G=KCH, (0<lI<r=dim C), where H, is the isotropy subgroup
of G at a point in M, and H, (1<I<r) is the isotropy subgroup of G at
a point on the boundary of M in a certain compactification of M. This
is a partial generalization of the above-mentioned decomposition due to
Flensted-Jensen and Rossmann; actually, when [=0, our decomposition is
theirs. In Appendix, we give the table of the rank of the operator
% (x) for each simple parahermitian symmetric space. That operator
played an essential role in our previous paper [4].

§1. Basic facts.

Throughout this paper we shall use the terminologies in the previous
papers [4], [2], [8]. Let (g, §, 0) be a simple symmetric triple satisfying
the condition: :

(C) there exists an element Zeg such that ad Z is a semisimple operator
with eigenvalues 0, 1 only and that % is the centralizer of Z in g.

We denote by m* the eigenspaces in g under the operator ad Z, and put
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m=m*+m~. Then the decomposition g=Hh+m is the decomposition into
+1 and —1 eigenspaces under o. Let z be a Cartan involution of g
which commutes with o, and let :

(L.1) g=t+p

be the corresponding Cartan decomposition, where t and p are +1 and —1
eigenspaces under z. Then we have the decomposition:

(1.2) g=¥*+m+5h,+m,,

where t*=HN¢t, my=mnt, h,=HNp, my=mNp. For any subspace b of p
we always identify a linear form )\ on b with an element in b with re-
spect to the inner product (,) on b defined by the Killing form of g.
We have Ze), ([4]). Let us choose a maximal abelian subspace a of p
which contains Z. Then a is contained in §,. Let 3(g, a) be a (restricted)
root system of g with respect to a. By our convention, X(g, a) is viewed
as a subset of a. Let X,(g, a) denote the subsystem of roots « € (g, a)
satisfying (a, Z)=0. 2X,(g, a) is the set of roots of §). Let us choose a
linear order in 3(g, a) in such a way that if a € X(g, a) is positive, then
(a, Z) is nonnegative. I*(g, a) denotes the set of positive roots in 3(g, a).
A root in the set 3(g, a)—23.(g, a) is called a complementary root. Note
that m* (resp. m~) is spanned by the root vectors for complementary
positive (resp. negative) roots. Let us choose a maximal system of
strongly orthogonal roots {8, ---, B,} in XY*(g, a)—23,(g, a) satisfying the
following two conditions ([11]): (1) B, is the highest root in X(g, a), and
Bi>B >+ >6,, (2) all B’s have the same length. Let g(a; a) denote the
root space for a root a € 3(g, a). Now choose a non-zero vector E, € g(a; B,),
1<+<7 in such a way [4] that

1.3) (B, tE)=—-2d",

where d=(8,, B.). Put E_,=—7FE,. Then we see that E_, € g(a; —3,), and
(1.4) [E, E_]=2d7'3, .

We set X,=E,+E_. Then

(1.5) ,_ c=‘i RX,
is a maximal abelian subspace in m, [4], which is called a (split) Cartan
subalgebra of (g, §, o). The dimension of c¢ is called the split rank of

@ 5, o).
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§2. Weyl groups.

We preserve notations and conventions in the previous section. Let
G be the adjoint group of the Lie algebra g, and let us consider the
Cayley transformation

@.1) | o=Adexp £ S (E_—E,) .
i=1
Let a, be the real span of 8, ---, 8, in a. 'We then have a=ai +a,, where

a; is the orthogonal complement of q, in a with respect to the inner
product (,). By the same reason as in Moore [7], we have

LEMMA 2.1. ¢(B)=2h, AZ1=<7) holds, where h,=(d/4)X,. In par-
ticular we have c(a,)=c. Furthermore c is the identity on ai.

Let a=c(a). Then G=ai +c is a maximal abelian subspace of p. The
coset space M=G/C(Z) is a simple parahermitian symmetric space of ad-
joint type [4] corresponding to the symmetric triple (g, §, o), where C(Z)
is the centralizer of Z in G. Let G* (resp. K*) be the analytic subgroup
of G generated by the subalgebra g*=1*+m, (resp. ¥*) of g. The coset
space M*=G*/K* is a noncompact Riemannian symmetric space which is
dual to the symmetric R-space M~ =G/U"=K/K’, where K is the maximal
compact subgroup of G generated by ¥, U "=C(Z)expm™ and K'=KNU"=
KnNC(Z). Note that M is diffeomorphic to the cotangent bundle T*M~
of M~. For a non-zero linear form \ on ¢, let

(2.2) g V) ={Xeg: (ad )X=0, H)X, Hec} .

Let X(g, c) denote the totality of non-zero linear forms ) on ¢ with g(c; ») #(0).
It is known [9], [8] that X(g, ¢) satisfies the axiom of a root system in c.
Let 3(g, @) be the root system of g with respect to G. As was remarked
in [9], the relation

(2.3) 2(g, o)={al. : al. #0, a € 2(g, @)}

is valid. The following proposition is a special case of a result of Oshima-
Sekiguchi [8], but our proof is rather classification-free.

PROPOSITION 2.2. Let (g, 9, o) be a simple symmetric triple of split
rank r satisfying the condition (C). Then the root system 3(g, ¢) 18 given by

2.4 {£hxh) A=si<j=sr), £2h,(A=127))

or
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(2.5) {x(h.xh) A=i<j=7), £2h,, x£h, A=i=7)}.
Im particular (g, ¢) 18 of type C, or of type BC,.

PROOF. Let ®:a—aq, and @': 4—c be the orthogonal projections with
respect to the inner products induced by the Killing form of g. Then
we have [11]

(2.6) ' (2(g, a))—(0)
={+(B;xB)H2(A=Zi<j=r), £B,(1=Z1=57))
or
={£(BEBRN2(A=SI<IET), B, *B./2 A=ZiIZT)}.

Also we have the commutative diagram

0

w
a
(2.7) cl ~ Je.
w

—_— C

Q——9Q

Since the Cayley transformation ¢ sends 3(g, a)Ca to 3(g, 4 Ca, we have
w(3(g, &) —(0)=c(w(Z(g, a)))—(0) .
Hence, by Lemma 2.1 and (2.3) we get the assertion of the proposition.

The maximal abelian subspace ¢ of m, is also a maximal abelian sub-
space for the symmetric pair (g* ¥*). One can consider the root system
2(g*, c¢) of g* with respect to ¢, which is a subsystem of the root system
3(g, c). Let W(M) (resp. W(M*)) denote the Weyl group of M (resp. M™),
or equivalently, the Weyl group of the root system X(g, c¢) (resp. J(g*, ¢)).
W (M*) is obviously a subgroup of W(M).

PROPOSITION 2.3. Let (g, 9, o) be a simple symmetric triple of split
rank r satisfying the condition (C), and let M be the corresponding para-
hermitian symmetric space of adjoint type. Then W(M)= W(M*) holds
if and only +f M s one of the following coset spaces:

1) SL(p+gq, F)/S(GL(p, F)xGL(q, F))*, F=R, C or H, where p=q

for F=R, and p<q for F=R,

2) SO0@2n+1, 2n+1)/GL2n+1, R),

3) Sp(n, n)/GL(n, H),

4) SO(2n, C)/GL(n, C),

5) Sp(n, C)/GL(n, C),

*) For the notation, see [2].
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6) SO(p+1, 1)/SO(p)R*,

7 SO(n+2, C)/SO(n, C)C*,

8) the space of adjoint type corresponding to the pair (E, 30(5, 5)+
R), (Es, 80(1, 9)+ R), (EF, 30(10, C)+C) or (Ef, E$+C).

PrROOF. As is known in [4], [2], the above coset spaces are dif-
feomorphic respectively to the cotangent bundle of the following sym-
metric R-spaces: 1) the Grassmannian G, (F) (p<q for F%=R, p<q
for F=R), 2) SO2n+1), 3) Sp(n), 4) SO(2n)/Un), 5) Sp(n)/Un),
6) the Mobius space in the real projective space P,.,(R),
7) SO(n+2)/SO(n) x SO2), 8) G, .(H)/Z,, the octanion projective plane P,(0),
E,/Spin(10)T* or E,/E,T*. The root systems 3I(g*, c) are determined in [6]
for the non-compact duals M* of the symmetric R-spaces M~. Hence
we can see by inspection 'that M* is the dual to one of the afore-
mentioned symmetric R-spaces if and only if 3(g*, c) is either one of

2.8) {x£(=xh)(Asi<jsr), £h,(1=i=r)} (type B,),
{x(hth) Asi<j=7r), *xh, *£2h, (1=i=<7r)} (type BC,),
or

{(h,xth;) A<Si<j=<7r), £2h, (1=Z1Z7)} (type C,).

Furthermore, only in that case the Weyl group W(M*) consists of all
signed permutations hj—z+h,,, 0€S, (=the symmetric group of degree
7). Therefore, in view of Proposition 2.2, we get the assertion of the
proposition.

Let A be a subgroup of G, and b be an abelian subspace of p. We
denote by N,(b) (resp. C,(b)) the normalizer (resp. centralizer) of b in A.
We know [9]

(2.9) W(M)= Ng(c)/Ck(c) .
Also we have

LEMMA 2.4. W(M™*)= Nx/(c)/Cg(c).

PrOOF. By the general theory of symmetric spaces, we have
(2.10) W(M™*)= Ng.(c)/Cgulc) ,

since K* is the analytic subgroup of G* generated by ¥*. Let us put
Y,=FE,—~E_,(1<t<r), and let a’ be the real span of Y,, --+,Y,. Then o
is a maximal abelian subspace of m, ([11]) and so it is a Cartan subalgebra
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of the compact symmetric pair (¥, *). Let us now consider the para-
complex structure I=ad.Z on m. Then m* are +1 eigenspaces of I.
Since E,em* and E_em~, we have IY,=X, (1=t<7). In particular I
sends a’ to ¢. Since K'=KNC(Z), it follows that I commutes with each
operator in Ad, K’. Hence, for each a€ K’, we have the commutative
diagram

, Ada
ad — a
(2.11) .
Il Ada J.I
c— ¢
Using this diagram, we have
(2.12) Ngi(©)/Cro(c) = N (a')/Cxi(a’) .

Let A'=expa’. It is known [12] that for the compact symmetric pair
(K, K'), one has

(2.138) K'=K*K'n4').

Therefore an easy argument shows that Ni.(a')=Ng@)(K'NA’) and
Ce(a)=Cre(a")(K'NA"). From these two relations and (2.11) again, we
have

(2.14) Ng(a')/Cx(a")= Ngu(a')/Crs(a") = Ngo(€)/Crs(c) -
The lemma now follows from (2.10), (2.14) and (2.12).

§3. Orbit structure.

Throughout this section, we will assume that a symmetric triple
(8, b, o) is simple of split rank r and satisfies the two conditions (C) and
WM)=W(M*). Let M*=G/U*, where U*=C(Z)exp m*, and let us con-
sider the compact manifold M=M-x M*. We denote the origins of M=
by o*. We define the mapping & of m to i by putting

8.1) &X,Y)=(exp X:-0~, exp Y-ot), Xem*,Yem .

Then ¢ is an imbedding of m and the image &(m) is open dense in M [4].
G acts on M by the rule

8.2) 9, )=(gp, 90) ,  (p, @) € M-x M* ,

which is called the diagonal G-action. The g-equivariant action of G on
m for the diagonal G-action is birational ([6]). Let C=expccCG, and let
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(04, 0,) be the origin of m. The ¢-equivariant action of C is defined at
the point (0,, 0,) and its orbit C(o, 0,) is given by ([4])

8.8) Cloy 0)={F t.X, e c: tI<1 (1=iz)} .

Let I, be a subset of {1,2, ---, r} consisting of ! integers, and let ¢=
(€)ier; be an l-tuple of the numbers ¢,=1 or —1. And put

(3.4) P, e)={teZIle‘X,+“§I‘,lt,-X,-: ltil<1l(5¢D)}.

Then P(I,, ¢) is an open (r—I)-face of the closed r-cube C(o,, 0,), and every

open (r—I)-face of C(o, 0,) can be described in that way by means of
suitable I, and e.

LEMMA 3.1. For given I, and e=(&)er,, the group C has the ¢-
equivariant action at the point 3. &.X,, and we have

(3.5) P, ¢) =C(‘GZI‘, €.X,)

PROOF. The ¢-equivariant action of exp >, ¢, X, at a point 33/, )\, X, ¢
is given by ([4])

» r Ng ch t; +sh tt
(3.6) (exp Z;i t’X‘) (tz=1 MoK, ) z—‘i nshit,+chi, X

Therefore it follows that
(3.7) (exp 3 X )( S e X)= 3 e Xt 5, (th )X, ,
i=1 tel; tel; jelg

which implies (3.5).

LemMMA 3.2. For given I, and e=(¢,);es,, there exists ke Ng.(c) such
that :

(3.8) (Ad k)(;; X,) =3, &%,

ProoF. By Proposition 2.2, the Weyl group W(M) consists of all
signed permutations &, =+h,,, 0 €S,. Therefore, noting that X,=(d/4)k,,
one can find 7€ W(M) such that p(Cii-, X;)=3 ;e ;X;. By the assump-
tion W(M)=W(M*) and Lemma 2.4, there exists an element ke Ng.(c)
such that »=(Ad k)|..

Let
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0=3 X, (A=<I<r), o0,=(0,0),
o,=8(0) (O=<l=r).

3.9)

Note that 6,=(0~, 07). Let us consider the orbit
(3.10) M,=Go, o=sl=r
under the diagonal G-action in M.

LEMMA 3.3. M\NM,.=2 (#l).

PrROOF. We can assume that [<l’. Let us recall the operator .%¥": m—
End m* ([4]):

(3.11) 9 () =id —ad .+ [z*, 2] +7]1‘—(ad oy (ad z-)

where x=2*+2~, x*em*. Let ¢,=rank .2¢7(o;,). Then, by a result of [4],
we have 7,>1,., since I<l’. Now suppose that M;N M, #@. Then there
exists an element g € G such that ¢o0,=0,, or equivalently, £'g&(o,)=o,..
That means that g has the g-equivariant action at the point o, The G-
covariance ([4]) of the operator .22 now implies that %,=1%,, which is a
contradiction.

LEMMA 3.4. The orbit M, is open dense in I.

PROOF. We only give a sketch of the proof, since it is similar to
the arguments in Tanaka [13] p. 313. Let m be the projection of GXG
onto M defined by x(a, b)=(ao", bo*), and let A: GX G—G be the map de-
fined by A(a, b)=b"'a. Let 2 denote the subset (expm")C(Z)(expm )=
U*U- in G. Then 2 is open dense in G ([10]). It can be proved that
7 (M,)=2"%2). From these facts it follows that M, is open dense in M.

Let P® be the union of all open (»—1)-faces of C(0,, 0,). Then one has
(3.12) Clo,, o) = ,I_Io Pw
LEMMA 3.5. M:ld KE(P™)) .
=0

ProOF. We have
(3.13) M=K&(Clo,, 0,)) .
The proof of this fact is done by the same way as that of (4.48) in [4].
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Only one distinet point is that we use now Lemma 8.4 instead of using

Theorem 3.1 in [4]. The assertion of the lemma is an easy consequence
of (3.12) and (3.13).

Finally we have the following decomposition for the group G.

THEOREM 3.6. Let (g, 9, o) be a simple symmetric triple of split rank
r, satisfying the condition (C). Let G be the adjoint group of g, and K
be the maximal compact subgroup of G generated by the subalgebra ¥ in
(1.1). Let C be the analytic subgroup generated by the split Cartan sub-
algebra ¢ of g given in (1.5). Let H, (0=<I<7) be the isotropy subgroup
of G at the point 0, (cf. (3.9)). Suppose that the two Weyl groups W(M)
and W(M*) coincides. Then G can be expressed as

(3.14) G=KCH, (O=<Ii=7r).

PrROOF. Let us consider an open (r—I)-face P(I,, €) of the closed »-

cube C(0, 0,). Then, by Lemmas 3.1 and 3.2, we have P(I;, ¢)=C((Ad k)o,),
where k € Ng.(c). The right-hand side is the C-orbit under the £-equivariant
action. As is known in [4], Ad k coincides with the g-equivariant action of
k, since k€ C(Z). Since k normalizes C, we have P(I;, ¢)=(£'Ce)(e*k&)(0,) =
& 'Ck(0,)=¢&""kC(0,), which implies that

(3.15) &P, ¢))=kC(0)) .
Consequently,
(3.16) | (PMYC KC(3,)cGo,=M, .

Therefore we have
(8.17) Ke(PYYc M, .

So, by Lemmas 8.5 and 8.3, we conclude
(3.18) M= zI-Io M, ,

and hence, again by Lemma 3.5 and (3.17) we obtain M;=K&P"?). In
view of (3.16) we have M,=Kz(PY)C KC(6,)cM,. Therefore we get Go,=
KCo,, which implies the assertion of the theorem. .

In the course of the proof, we have shown

COROLLARY 3.7. Under the same assumption as in the theorem, the
G-orbit M, in M is written as '
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(3.19) M,=KCbo, , o=sl=sr.

REMARK 3.8. The G-orbit decomposition (8.18) of M was originally
obtained in [4], while the above arguments give an alternative proof for
it under the assumption that W(M)= W(M*).

Let a,=exp 3.i., E, and b,=exp S E_, A=l=7), and let a,=b,=1.
Then one can write

(3.20) 0,=(a;0-, bo") , osisr.
The following corollary is a special case of a result of Takeuchi [11].

COROLLARY 8.9. Under the assumption of Theorem 3.6, we have the
(U-, U*)-coset decomposition of G:

(3.21) G= ;_10 U-arb,U* .

PrOOF. Let ge G, and let us write it in the form g=a™'b, where
a,beG. From (3.18) it follows that the point (a0, bo*) € M is sent to
one of the reference points, 0;, under the diagonal G-action on M. An
easy argument shows that ge U a b U*=U"a;'b,U*. The disjointness of
the union in (3.21) also follows from (3.18).

Appendix

We give here the table of the numbers 4,=rank . (0,), 0=I<r, for
each simple parahermitian symmetric pair (g, §) of split rank ». Note that
by the G-covariance of the operator .9 ([4]), all possible values of the
rank of the operator .2 (x) are {i, %, **-, t,}, a8 long as x varies in m.

Type () LW (OsI=7)

Al 8l(r+q, R), 8l(r, R)+8l(qg, R)+ R) (r—=0@@-0
1<r=q

AIl @l(r+q, H), 8l(r, H)+38l(qg, H)+R) 4(r—1U)(q-1)
1<r=q

AIIl @u(r, r), 8l(r, C)+R), r=2 (r—1)*

BDI (8o(p, q), 80(p—1, ¢—1)+R), 2=p=q Le=p+q¢—2, i,=1, 1,=0

BDII (80(1, q), 30(¢—1)+R), 2=¢ io=q'—17 1,=0

CI (8p(r, R), gl(r, R)), r=2 (r—=0(r—1+1)/2

CII @p(r, r), gl(r, H)), r=2 (r—0D@2r—21+1)

DI (80(27, 27), gl(2r, R)), r=2 (r—D@2r—2l-1)

(8o(2r+1, 2r+1), gl(2r+1, R)), r=2 (r—0)2r—21+1)
DIII (80(2r, H), gl(r, H)), r=2 (r—0)2r—21—-1)
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EI (£, 80(5, 5)+ R) 1,=16, 1,=5, 7,=0

EIV (E%, 80(1, 9)+R) 1,=16, 2,=0

EV (£ Ei+R) 1,=27, 1,=10, 1,=1, 2,=0

EVI1 (£ Ei+R) 1, =27, 1,=10, i,=1, 4,=0

AJe€ ®@l(r+gq, C), 8l(r, C)+38l(g, C)+C) 2(r—1U)(q—-10)

1<r=q

BDI¢ (8o(n+2, C), 8o(n, C)+C), n=3 h=2m, 1,=2, 1,=0

CI° @p(r, C), gU(r, C)), r=2 (r—0(r—1+1)

DI¢ (8o(4r, C), gl2r, C), r=2 2(r—-02r—21—-1)
(8o(4r+2, C), gl(2r+1, C)), r=2 2(r—0D2r—2l+1)

EI¢ (EE, 80(10, C)+C) 1,=32, 1,=10, 7,=0

Eve (Ef, ES+C) t,=504, 1,=20, 1,=2, 1,=0
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