A Decomposition Theorem for Simple Lie Groups Associated with Parahermitian Symmetric Spaces

Soji KANEYUKI

Sophia University

Introduction

Let G/H be a semisimple affine symmetric space and let σ be the associated involutive automorphism of G. Let K be a σ -stable maximal compact subgroup of G. Then it is known (Flensted-Jensen [1], Rossmann [9]) that G admits the decomposition G = KCH (with intersection), where C is a so-called split Cartan subgroup of G. In this paper we are mainly concerned with a simple parahermitian symmetric space M whose Weyl group W(M) coincides with the Weyl group $W(M^*)$ of the fiber M^* of the Berger fibration of M ([5]). We then obtain a decomposition theorem for the simple Lie group G which arises as the automorphism group of M (Theorem 3.6). More precisely, we have the decomposition (with intersection) $G = KCH_l$ $(0 \le l \le r = \dim C)$, where H_0 is the isotropy subgroup of G at a point in M, and H_i $(1 \le l \le r)$ is the isotropy subgroup of G at a point on the boundary of M in a certain compactification of M. is a partial generalization of the above-mentioned decomposition due to Flensted-Jensen and Rossmann; actually, when l=0, our decomposition is theirs. In Appendix, we give the table of the rank of the operator $\mathcal{K}(x)$ for each simple parahermitian symmetric space. That operator played an essential role in our previous paper [4].

§ 1. Basic facts.

Throughout this paper we shall use the terminologies in the previous papers [4], [2], [3]. Let $(g, \mathfrak{h}, \sigma)$ be a simple symmetric triple satisfying the condition:

(C) there exists an element $Z \in \mathfrak{g}$ such that ad Z is a semisimple operator with eigenvalues $0, \pm 1$ only and that \mathfrak{h} is the centralizer of Z in \mathfrak{g} .

We denote by m^{\pm} the eigenspaces in g under the operator ad Z, and put Received December 10, 1986

 $m=m^++m^-$. Then the decomposition $g=\mathfrak{h}+m$ is the decomposition into +1 and -1 eigenspaces under σ . Let τ be a Cartan involution of g which commutes with σ , and let

$$\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$$

be the corresponding Cartan decomposition, where t and p are +1 and -1 eigenspaces under τ . Then we have the decomposition:

$$\mathfrak{g} = \mathfrak{t}^* + \mathfrak{m}_{\mathfrak{t}} + \mathfrak{h}_{\mathfrak{s}} + \mathfrak{m}_{\mathfrak{s}} ,$$

where $\mathfrak{k}^* = \mathfrak{h} \cap \mathfrak{k}$, $m_{\mathfrak{k}} = \mathfrak{m} \cap \mathfrak{k}$, $\mathfrak{h}_{\mathfrak{p}} = \mathfrak{h} \cap \mathfrak{p}$, $m_{\mathfrak{p}} = \mathfrak{m} \cap \mathfrak{p}$. For any subspace \mathfrak{h} of \mathfrak{p} we always identify a linear form λ on b with an element in b with respect to the inner product (,) on b defined by the Killing form of g. We have $Z \in \mathfrak{h}$, ([4]). Let us choose a maximal abelian subspace \mathfrak{a} of \mathfrak{p} which contains Z. Then α is contained in $\mathfrak{h}_{\mathfrak{p}}$. Let $\Sigma(\mathfrak{g}, \alpha)$ be a (restricted) root system of g with respect to a. By our convention, $\Sigma(g, a)$ is viewed as a subset of a. Let $\Sigma_1(g, a)$ denote the subsystem of roots $\alpha \in \Sigma(g, a)$ satisfying $(\alpha, Z) = 0$. $\Sigma_1(g, a)$ is the set of roots of \mathfrak{h} . Let us choose a linear order in $\Sigma(g, a)$ in such a way that if $\alpha \in \Sigma(g, a)$ is positive, then (α, Z) is nonnegative. $\Sigma^+(\mathfrak{g}, \mathfrak{a})$ denotes the set of positive roots in $\Sigma(\mathfrak{g}, \mathfrak{a})$. A root in the set $\Sigma(g, a) - \Sigma_i(g, a)$ is called a complementary root. Note that m⁺ (resp. m⁻) is spanned by the root vectors for complementary positive (resp. negative) roots. Let us choose a maximal system of strongly orthogonal roots $\{\beta_1, \dots, \beta_r\}$ in $\Sigma^+(\mathfrak{g}, \mathfrak{a}) - \Sigma_1(\mathfrak{g}, \mathfrak{a})$ satisfying the following two conditions ([11]): (1) β_i is the highest root in $\Sigma(g, a)$, and $\beta_1 > \beta_2 > \cdots > \beta_r$, (2) all β_i 's have the same length. Let $g(\alpha; \alpha)$ denote the root space for a root $\alpha \in \Sigma(\mathfrak{g}, \mathfrak{a})$. Now choose a non-zero vector $E_i \in \mathfrak{g}(\mathfrak{a}; \beta_i)$, $1 \le i \le r$ in such a way [4] that

$$(E_i, \tau E_i) = -2d^{-1},$$

where $d = (\beta_1, \beta_1)$. Put $E_{-i} = -\tau E_i$. Then we see that $E_{-i} \in g(\alpha; -\beta_i)$, and

$$[E_{\iota}, E_{-\iota}] = 2d^{-1}\beta_{\iota}.$$

We set $X_i = E_i + E_{-i}$. Then

$$c = \sum_{i=1}^{\tau} RX_i$$

is a maximal abelian subspace in m, [4], which is called a (split) Cartan subalgebra of (g, h, σ) . The dimension of c is called the split rank of (g, h, σ) .

§ 2. Weyl groups.

We preserve notations and conventions in the previous section. Let G be the adjoint group of the Lie algebra g, and let us consider the Cayley transformation

(2.1)
$$c = Ad \exp \frac{\pi}{4} \sum_{i=1}^{r} (E_{-i} - E_{i})$$
.

Let a_0 be the real span of β_1, \dots, β_r in a. We then have $a = a_0^{\perp} + a_0$, where a_0^{\perp} is the orthogonal complement of a_0 in a with respect to the inner product (,). By the same reason as in Moore [7], we have

LEMMA 2.1. $c(\beta_i)=2h_i$ $(1 \le i \le r)$ holds, where $h_i=(d/4)X_i$. In particular we have $c(\alpha_0)=c$. Furthermore c is the identity on α_0^{\perp} .

Let $\hat{\mathfrak{a}}=c(\mathfrak{a})$. Then $\hat{\mathfrak{a}}=\mathfrak{a}_0^\perp+c$ is a maximal abelian subspace of \mathfrak{p} . The coset space M=G/C(Z) is a simple parahermitian symmetric space of adjoint type [4] corresponding to the symmetric triple $(\mathfrak{g},\,\mathfrak{h},\,\sigma)$, where C(Z) is the centralizer of Z in G. Let G^* (resp. K^*) be the analytic subgroup of G generated by the subalgebra $\mathfrak{g}^*=\mathfrak{k}^*+\mathfrak{m}_{\mathfrak{p}}$ (resp. \mathfrak{k}^*) of \mathfrak{g} . The coset space $M^*=G^*/K^*$ is a noncompact Riemannian symmetric space which is dual to the symmetric R-space $M^-=G/U^-=K/K'$, where K is the maximal compact subgroup of G generated by \mathfrak{k} , $U^-=C(Z)\exp\mathfrak{m}^-$ and $K'=K\cap U^-=K\cap C(Z)$. Note that M is diffeomorphic to the cotangent bundle T^*M^- of M^- . For a non-zero linear form λ on \mathfrak{c} , let

(2.2)
$$g(c; \lambda) = \{X \in g : (ad H)X = (\lambda, H)X, H \in c\}.$$

Let $\Sigma(g,c)$ denote the totality of non-zero linear forms λ on c with $g(c;\lambda)\neq(0)$. It is known [9], [8] that $\Sigma(g,c)$ satisfies the axiom of a root system in c. Let $\Sigma(g,\hat{a})$ be the root system of g with respect to \hat{a} . As was remarked in [9], the relation

(2.3)
$$\Sigma(\mathfrak{g},\mathfrak{c}) = \{\alpha|_{\mathfrak{c}} : \alpha|_{\mathfrak{c}} \neq 0, \ \alpha \in \Sigma(\mathfrak{g},\hat{\mathfrak{a}})\}$$

is valid. The following proposition is a special case of a result of Oshima-Sekiguchi [8], but our proof is rather classification-free.

PROPOSITION 2.2. Let (g, h, σ) be a simple symmetric triple of split rank r satisfying the condition (C). Then the root system $\Sigma(g, c)$ is given by

(2.4)
$$\{\pm (h_i \pm h_j) (1 \le i < j \le r), \pm 2h_i (1 \le i \le r)\}$$

$$(2.5) \qquad \{\pm (h_i \pm h_j) (1 \le i < j \le r), \pm 2h_i, \pm h_i (1 \le i \le r)\}.$$

In particular $\Sigma(g, c)$ is of type C_r or of type BC_r .

PROOF. Let $\varpi: \alpha \to \alpha_0$ and $\widehat{\varpi}: \widehat{\alpha} \to c$ be the orthogonal projections with respect to the inner products induced by the Killing form of g. Then we have [11]

 \mathbf{or}

$$= \{\pm (\beta_i \pm \beta_j)/2 \ (1 \le i < j \le r), \ \pm \beta_i, \ \pm \beta_i/2 \ (1 \le i \le r)\}.$$

Also we have the commutative diagram

$$(2.7) \qquad \qquad \begin{array}{c} a \xrightarrow{\quad \boldsymbol{\varpi} \quad} \alpha_0 \\ c \downarrow \quad \hat{\boldsymbol{\varpi}} \quad \downarrow c \\ \hat{a} \xrightarrow{\quad \boldsymbol{\varpi} \quad} c \end{array}$$

Since the Cayley transformation c sends $\Sigma(g, a) \subset a$ to $\Sigma(g, \hat{a}) \subset \hat{a}$, we have

$$\hat{\boldsymbol{\varpi}}(\Sigma(\mathbf{g}, \hat{\mathbf{a}})) - (0) = c(\boldsymbol{\varpi}(\Sigma(\mathbf{g}, \mathbf{a}))) - (0)$$
.

Hence, by Lemma 2.1 and (2.3) we get the assertion of the proposition.

The maximal abelian subspace c of \mathfrak{m}_* is also a maximal abelian subspace for the symmetric pair $(\mathfrak{g}^*, \mathfrak{k}^*)$. One can consider the root system $\Sigma(\mathfrak{g}^*, \mathfrak{c})$ of \mathfrak{g}^* with respect to c, which is a subsystem of the root system $\Sigma(\mathfrak{g}, \mathfrak{c})$. Let W(M) (resp. $W(M^*)$) denote the Weyl group of M (resp. M^*), or equivalently, the Weyl group of the root system $\Sigma(\mathfrak{g}, \mathfrak{c})$ (resp. $\Sigma(\mathfrak{g}^*, \mathfrak{c})$). $W(M^*)$ is obviously a subgroup of W(M).

PROPOSITION 2.3. Let (g, h, σ) be a simple symmetric triple of split rank r satisfying the condition (C), and let M be the corresponding parahermitian symmetric space of adjoint type. Then $W(M) = W(M^*)$ holds if and only if M is one of the following coset spaces:

- 1) $SL(p+q, \mathbf{F})/S(GL(p, \mathbf{F}) \times GL(q, \mathbf{F}))^{*}$, $\mathbf{F} = \mathbf{R}$, \mathbf{C} or \mathbf{H} , where $p \leq q$ for $\mathbf{F} \neq \mathbf{R}$, and p < q for $\mathbf{F} = \mathbf{R}$,
- 2) SO(2n+1, 2n+1)/GL(2n+1, R),
- 3) $Sp(n, n)/GL(n, \mathbf{H})$,
- 4) SO(2n, C)/GL(n, C),
- 5) Sp(n, C)/GL(n, C),

^{*)} For the notation, see [2].

- 6) $SO(p+1, 1)/SO(p)R^*$,
- 7) $SO(n+2, C)/SO(n, C)C^*$,
- 8) the space of adjoint type corresponding to the pair $(E_6^1, \$o(5, 5) + \mathbf{R})$, $(E_6^4, \$o(1, 9) + \mathbf{R})$, $(E_6^c, \$o(10, \mathbf{C}) + \mathbf{C})$ or $(E_7^c, E_6^c + \mathbf{C})$.

PROOF. As is known in [4], [2], the above coset spaces are diffeomorphic respectively to the cotangent bundle of the following symmetric R-spaces: 1) the Grassmannian $G_{p,q}(F)$ $(p \leq q \text{ for } F \neq R, p < q)$ for F = R), 2) SO(2n + 1), 3) Sp(n), 4) SO(2n)/U(n), 5) Sp(n)/U(n), in Möbius space the realprojective space 7) $SO(n+2)/SO(n) \times SO(2)$, 8) $G_{2,2}(\boldsymbol{H})/\boldsymbol{Z}_2$, the octanion projective plane $P_2(\boldsymbol{O})$, $E_6/Spin(10)T^1$ or E_7/E_6T^1 . The root systems $\Sigma(\mathfrak{g}^*,\mathfrak{c})$ are determined in [6] for the non-compact duals M^* of the symmetric R-spaces M^- . we can see by inspection that M^* is the dual to one of the aforementioned symmetric R-spaces if and only if $\Sigma(g^*, c)$ is either one of

$$\begin{array}{lll} (2.8) & \{\pm(h_i\!\pm\!h_j)\,(1\!\leq\!i\!<\!j\!\leq\!r),\ \pm h_i\,(1\!\leq\!i\!\leq\!r)\}\ (\text{type B}_r)\ , \\ & \{\pm(h_i\!\pm\!h_j)\,(1\!\leq\!i\!<\!j\!\leq\!r),\ \pm h_i,\ \pm 2h_i\,(1\!\leq\!i\!\leq\!r)\}\ (\text{type BC}_r)\ , \\ \text{or} \\ & \{\pm(h_i\!\pm\!h_j)\,(1\!\leq\!i\!<\!j\!\leq\!r),\ \pm 2h_i\,(1\!\leq\!i\!\leq\!r)\}\ (\text{type C}_r)\ . \end{array}$$

Furthermore, only in that case the Weyl group $W(M^*)$ consists of all signed permutations $h_i \mapsto \pm h_{\rho(i)}$, $\rho \in \mathfrak{S}_r$ (=the symmetric group of degree

signed permutations $h_i \mapsto \pm h_{\rho(i)}$, $\rho \in \mathfrak{S}_r$ (=the symmetric group of degree r). Therefore, in view of Proposition 2.2, we get the assertion of the proposition.

Let A be a subgroup of G, and \mathfrak{b} be an abelian subspace of \mathfrak{p} . We denote by $N_A(\mathfrak{b})$ (resp. $C_A(\mathfrak{b})$) the normalizer (resp. centralizer) of \mathfrak{b} in A. We know [9]

$$(2.9) W(M) \cong N_K(\mathfrak{c})/C_K(\mathfrak{c}) .$$

Also we have

LEMMA 2.4. $W(M^*) \cong N_{K'}(c)/C_{K'}(c)$.

PROOF. By the general theory of symmetric spaces, we have

$$(2.10)$$
 $W(M^*)\!\cong\!N_{{\scriptscriptstyle{K^*}}\!}({
m c})/C_{{\scriptscriptstyle{K^*}}\!}({
m c})$,

since K^* is the analytic subgroup of G^* generated by f^* . Let us put $Y_i = E_i - E_{-i}$ ($1 \le i \le r$), and let \mathfrak{a}' be the real span of Y_1, \dots, Y_r . Then \mathfrak{a}' is a maximal abelian subspace of \mathfrak{m}_i ([11]) and so it is a Cartan subalgebra

of the compact symmetric pair (t, t^*) . Let us now consider the paracomplex structure $I=\operatorname{ad}_{\mathfrak{m}} Z$ on \mathfrak{m} . Then \mathfrak{m}^{\pm} are ± 1 eigenspaces of I. Since $E_{\mathfrak{t}} \in \mathfrak{m}^{+}$ and $E_{-\mathfrak{t}} \in \mathfrak{m}^{-}$, we have $IY_{\mathfrak{t}} = X_{\mathfrak{t}}$ $(1 \leq i \leq r)$. In particular I sends \mathfrak{a}' to \mathfrak{c} . Since $K' = K \cap C(Z)$, it follows that I commutes with each operator in $\operatorname{Ad}_{\mathfrak{m}} K'$. Hence, for each $a \in K'$, we have the commutative diagram

(2.11)
$$\begin{array}{c}
\alpha' \xrightarrow{\operatorname{Ad} a} \alpha' \\
I \downarrow c \xrightarrow{\operatorname{Ad} a} C
\end{array}$$

Using this diagram, we have

$$(2.12) N_{K'}(c)/C_{K'}(c) \cong N_{K'}(\alpha')/C_{K'}(\alpha') .$$

Let $A' = \exp \alpha'$. It is known [12] that for the compact symmetric pair (K, K'), one has

$$(2.13) K' = K^*(K' \cap A').$$

Therefore an easy argument shows that $N_{K'}(\alpha') = N_{K^{\bullet}}(\alpha')(K' \cap A')$ and $C_{K'}(\alpha') = C_{K^{\bullet}}(\alpha')(K' \cap A')$. From these two relations and (2.11) again, we have

$$(2.14) N_{\kappa'}(\alpha')/C_{\kappa'}(\alpha') \cong N_{\kappa^*}(\alpha')/C_{\kappa^*}(\alpha') \cong N_{\kappa^*}(c)/C_{\kappa^*}(c) .$$

The lemma now follows from (2.10), (2.14) and (2.12).

§ 3. Orbit structure.

Throughout this section, we will assume that a symmetric triple (g, h, σ) is simple of split rank r and satisfies the two conditions (C) and $W(M) = W(M^*)$. Let $M^+ = G/U^+$, where $U^+ = C(Z) \exp m^+$, and let us consider the compact manifold $\tilde{M} = M^- \times M^+$. We denote the origins of M^\pm by o^\pm . We define the mapping ξ of m to \tilde{M} by putting

(3.1)
$$\xi(X, Y) = (\exp X \cdot o^-, \exp Y \cdot o^+), \quad X \in \mathfrak{m}^+, Y \in \mathfrak{m}^-.$$

Then ξ is an imbedding of m and the image $\xi(m)$ is open dense in \tilde{M} [4]. G acts on \tilde{M} by the rule

(3.2)
$$g(p, q) = (gp, gq), (p, q) \in M^- \times M^+,$$

which is called the diagonal G-action. The ξ -equivariant action of G on m for the diagonal G-action is birational ([6]). Let $C = \exp \mathfrak{c} \subset G$, and let

 (o_1, o_2) be the origin of m. The ξ -equivariant action of C is defined at the point (o_1, o_2) and its orbit $C(o_1, o_2)$ is given by ([4])

(3.3)
$$C(o_1, o_2) = \left\{ \sum_{i=1}^r t_i X_i \in \mathfrak{c} : |t_i| < 1 \ (1 \leq i \leq r) \right\}.$$

Let I_i be a subset of $\{1, 2, \dots, r\}$ consisting of l integers, and let $\varepsilon = (\varepsilon_i)_{i \in I_l}$ be an l-tuple of the numbers $\varepsilon_i = 1$ or -1. And put

$$(3.4) P(I_l, \varepsilon) = \{ \sum_{i \in I_l} \varepsilon_i X_i + \sum_{j \notin I_l} t_j X_j : |t_j| < 1 \ (j \notin I_l) \}.$$

Then $P(I_l, \varepsilon)$ is an open (r-l)-face of the closed r-cube $\overline{C(o_1, o_2)}$, and every open (r-l)-face of $\overline{C(o_1, o_2)}$ can be described in that way by means of suitable I_l and ε .

LEMMA 3.1. For given I_l and $\varepsilon = (\varepsilon_i)_{i \in I_l}$, the group C has the ξ -equivariant action at the point $\sum_{i \in I_l} \varepsilon_i X_i$, and we have

(3.5)
$$P(I_l, \varepsilon) = C(\sum_{i \in I_l} \varepsilon_i X_i).$$

PROOF. The ξ -equivariant action of exp $\sum_{i=1}^{r} t_i X_i$ at a point $\sum_{i=1}^{r} \lambda_i X_i \in \mathfrak{c}$ is given by ([4])

(3.6)
$$\left(\exp \sum_{i=1}^r t_i X_i\right) \left(\sum_{i=1}^r \lambda_i X_i\right) = \sum_{i=1}^r \frac{\lambda_i \operatorname{ch} t_i + \operatorname{sh} t_i}{\lambda_i \operatorname{sh} t_i + \operatorname{ch} t_i} X_i.$$

Therefore it follows that

(3.7)
$$\left(\exp \sum_{i=1}^{r} t_i X_i\right) \left(\sum_{i \in I_l} \varepsilon_i X_i\right) = \sum_{i \in I_l} \varepsilon_i X_i + \sum_{j \in I_l} (\operatorname{th} t_j) X_j ,$$

which implies (3.5).

LEMMA 3.2. For given I_l and $\varepsilon = (\varepsilon_i)_{i \in I_l}$, there exists $k \in N_{K'}(c)$ such that

(3.8)
$$(\operatorname{Ad} k) \left(\sum_{i=1}^{l} X_{i} \right) = \sum_{j \in I_{l}} \varepsilon_{j} X_{j} .$$

PROOF. By Proposition 2.2, the Weyl group W(M) consists of all signed permutations $h_i \mapsto \pm h_{\rho(i)}$, $\rho \in \mathfrak{S}_r$. Therefore, noting that $X_i = (d/4)h_i$, one can find $\eta \in W(M)$ such that $\eta(\sum_{i=1}^l X_i) = \sum_{j \in I_l} \varepsilon_j X_j$. By the assumption $W(M) = W(M^*)$ and Lemma 2.4, there exists an element $k \in N_{K'}(c)$ such that $\eta = (\operatorname{Ad} k)|_{i}$.

Let

(3.9)
$$o_{l} = \sum_{i=1}^{l} X_{i} \quad (1 \leq l \leq r) , \qquad o_{0} = (o_{1}, o_{2}) ,$$

$$\overline{o}_{l} = \xi(o_{l}) \quad (0 \leq l \leq r) .$$

Note that $\overline{o}_0 = (o^-, o^+)$. Let us consider the orbit

$$(3.10) M_l = G\bar{o}_l (0 \leq l \leq r)$$

under the diagonal G-action in \widetilde{M} .

LEMMA 3.3. $M_l \cap M_{l'} = \emptyset$ $(l \neq l')$.

PROOF. We can assume that l < l'. Let us recall the operator $\mathcal{K}: \mathfrak{m} \rightarrow \mathbb{E} \mathfrak{n} \mathfrak{m}^+$ ([4]):

(3.11)
$$\mathscr{K}(x) = \mathrm{id} - \mathrm{ad}_{\mathfrak{m}^+}[x^+, x^-] + \frac{1}{4} (\mathrm{ad} x^+)^2 (\mathrm{ad} x^-)^2,$$

where $x=x^++x^-$, $x^{\pm} \in \mathbb{M}^{\pm}$. Let $i_l=\operatorname{rank} \mathscr{K}(o_l)$. Then, by a result of [4], we have $i_l>i_{l'}$, since l< l'. Now suppose that $M_l\cap M_{l'}\neq \emptyset$. Then there exists an element $g\in G$ such that $g\bar{o}_l=\bar{o}_{l'}$, or equivalently, $\xi^{-1}g\xi(o_l)=o_{l'}$. That means that g has the ξ -equivariant action at the point o_l . The G-covariance ([4]) of the operator \mathscr{K} now implies that $i_l=i_{l'}$ which is a contradiction.

LEMMA 3.4. The orbit M_0 is open dense in \widetilde{M} .

PROOF. We only give a sketch of the proof, since it is similar to the arguments in Tanaka [13] p. 313. Let π be the projection of $G \times G$ onto \widetilde{M} defined by $\pi(a, b) = (ao^-, bo^+)$, and let $\lambda : G \times G \to G$ be the map defined by $\lambda(a, b) = b^{-1}a$. Let Ω denote the subset $(\exp \mathfrak{m}^+)C(Z)(\exp \mathfrak{m}^-) = U^+U^-$ in G. Then Ω is open dense in G ([10]). It can be proved that $\pi^{-1}(M_0) = \lambda^{-1}(\Omega)$. From these facts it follows that M_0 is open dense in \widetilde{M} .

Let $P^{(l)}$ be the union of all open (r-l)-faces of $\overline{C(o_1, o_2)}$. Then one has

$$\overline{C(o_1, o_2)} = \prod_{l=0}^r P^{(l)}.$$

LEMMA 3.5. $\widetilde{M} = \bigcup_{l=0}^r K(\xi(P^{(l)}))$.

PROOF. We have

(3.13)
$$\widetilde{M} = K\xi(\overline{C(o_1, o_2)}).$$

The proof of this fact is done by the same way as that of (4.48) in [4].

Only one distinct point is that we use now Lemma 3.4 instead of using Theorem 3.1 in [4]. The assertion of the lemma is an easy consequence of (3.12) and (3.13).

Finally we have the following decomposition for the group G.

Theorem 3.6. Let (g, h, σ) be a simple symmetric triple of split rank r, satisfying the condition (C). Let G be the adjoint group of g, and K be the maximal compact subgroup of G generated by the subalgebra \mathfrak{k} in (1.1). Let G be the analytic subgroup generated by the split Cartan subalgebra \mathfrak{c} of \mathfrak{g} given in (1.5). Let H_1 $(0 \le l \le r)$ be the isotropy subgroup of G at the point \overline{o}_l (cf. (3.9)). Suppose that the two Weyl groups W(M) and $W(M^*)$ coincides. Then G can be expressed as

$$G = KCH_l \qquad (0 \le l \le r) .$$

PROOF. Let us consider an open (r-l)-face $P(I_l, \varepsilon)$ of the closed r-cube $\overline{C(o_l, o_l)}$. Then, by Lemmas 3.1 and 3.2, we have $P(I_l, \varepsilon) = C((\operatorname{Ad} k)o_l)$, where $k \in N_{K'}(c)$. The right-hand side is the C-orbit under the ξ -equivariant action. As is known in [4], Ad k coincides with the ξ -equivariant action of k, since $k \in C(Z)$. Since k normalizes C, we have $P(I_l, \varepsilon) = (\xi^{-1}C\xi)(\xi^{-1}k\xi)(o_l) = \xi^{-1}Ck(\overline{o}_l) = \xi^{-1}kC(\overline{o}_l)$, which implies that

$$\xi(P(I_{l}, \varepsilon)) = kC(\bar{o}_{l}).$$

Consequently,

$$\xi(P^{(l)}) \subset KC(\bar{o}_l) \subset G\bar{o}_l = M_l.$$

Therefore we have

$$(3.17)$$
 $K_{\xi}(P^{(l)}) \subset M_l$.

So, by Lemmas 3.5 and 3.3, we conclude

$$\widetilde{M} = \coprod_{l=0}^{r} M_{l} ,$$

and hence, again by Lemma 3.5 and (3.17) we obtain $M_i = K\xi(P^{(i)})$. In view of (3.16) we have $M_i = K\xi(P^{(i)}) \subset KC(\bar{o}_i) \subset M_i$. Therefore we get $G\bar{o}_i = KC\bar{o}_i$, which implies the assertion of the theorem.

In the course of the proof, we have shown

COROLLARY 3.7. Under the same assumption as in the theorem, the G-orbit M_i in \widetilde{M} is written as

$$(3.19) M_l = KC\bar{o}_l , 0 \leq l \leq r .$$

REMARK 3.8. The G-orbit decomposition (3.18) of \widetilde{M} was originally obtained in [4], while the above arguments give an alternative proof for it under the assumption that $W(M) = W(M^*)$.

Let $a_i = \exp \sum_{i=1}^l E_i$ and $b_i = \exp \sum_{i=1}^l E_{-i}$ $(1 \le l \le r)$, and let $a_0 = b_0 = 1$. Then one can write

$$\overline{o}_{l} = (a_{l}o^{-}, b_{l}o^{+}), \qquad 0 \leq l \leq r.$$

The following corollary is a special case of a result of Takeuchi [11].

COROLLARY 3.9. Under the assumption of Theorem 3.6, we have the (U^-, U^+) -coset decomposition of G:

(3.21)
$$G = \prod_{l=0}^{r} U^{-} a_{l}^{-1} b_{l} U^{+}.$$

PROOF. Let $g \in G$, and let us write it in the form $g=a^{-1}b$, where $a, b \in G$. From (3.18) it follows that the point $(ao^-, bo^+) \in \widetilde{M}$ is sent to one of the reference points, \overline{o}_l , under the diagonal G-action on \widetilde{M} . An easy argument shows that $g \in U^-a^{-1}bU^+ = U^-a_l^{-1}b_lU^+$. The disjointness of the union in (3.21) also follows from (3.18).

Appendix

We give here the table of the numbers $i_i = \operatorname{rank} \mathcal{K}(o_i)$, $0 \le l \le r$, for each simple parahermitian symmetric pair $(\mathfrak{g}, \mathfrak{h})$ of split rank r. Note that by the G-covariance of the operator $\mathcal{K}([4])$, all possible values of the rank of the operator $\mathcal{K}(x)$ are $\{i_0, i_1, \dots, i_r\}$, as long as x varies in m.

Type
$$(\mathfrak{g},\mathfrak{h}) \qquad \qquad i_{l} (0 \leq l \leq r)$$
AI
$$(\mathfrak{sl}(r+q,R),\mathfrak{sl}(r,R)+\mathfrak{sl}(q,R)+R) \qquad (r-l)(q-l)$$

$$1 < r \leq q$$
AII
$$(\mathfrak{sl}(r+q,H),\mathfrak{sl}(r,H)+\mathfrak{sl}(q,H)+R) \qquad 4(r-l)(q-l)$$

$$1 < r \leq q$$
AIII
$$(\mathfrak{su}(r,r),\mathfrak{sl}(r,C)+R), r \geq 2 \qquad (r-l)^{2}$$
BDI
$$(\mathfrak{so}(p,q),\mathfrak{so}(p-1,q-1)+R), 2 \leq p \leq q \qquad i_{0} = p+q-2, \ i_{1} = 1, \ i_{2} = 0$$
BDII
$$(\mathfrak{so}(1,q),\mathfrak{so}(q-1)+R), 2 \leq q \qquad i_{0} = q-1, \ i_{1} = 0$$
CI
$$(\mathfrak{sp}(r,R),\mathfrak{gl}(r,R)), r \geq 2 \qquad (r-l)(r-l+1)/2$$
CII
$$(\mathfrak{sp}(r,r),\mathfrak{gl}(r,H)), r \geq 2 \qquad (r-l)(2r-2l+1)$$
DI
$$(\mathfrak{so}(2r,2r),\mathfrak{gl}(2r,R)), r \geq 2 \qquad (r-l)(2r-2l-1)$$

$$(\mathfrak{so}(2r+1,2r+1),\mathfrak{gl}(2r+1,R)), r \geq 2 \qquad (r-l)(2r-2l-1)$$

$$(\mathfrak{so}(2r,H),\mathfrak{gl}(r,H)), r \geq 2 \qquad (r-l)(2r-2l-1)$$

\mathbf{EI}	$(\boldsymbol{E}_{6}^{1},\mathfrak{So}(5,5)\!+\!\boldsymbol{R})$	$i_0 = 16, i_1 = 5, i_2 = 0$
EIV	$(E_6^4, \mathfrak{So}(1,9) + R)$	$i_0 = 16, i_1 = 0$
\mathbf{EV}	$(E_7^1, E_6^1 + R)$	$i_0 = 27$, $i_1 = 10$, $i_2 = 1$, $i_3 = 0$
EVII	$(E_7^3, E_6^4 + R)$	$i_0 = 27$, $i_1 = 10$, $i_2 = 1$, $i_3 = 0$
$\mathbf{AI}^{m{c}}$	$(\mathfrak{SI}(r+q, C), \mathfrak{SI}(r, C) + \mathfrak{SI}(q, C) + C)$	2(r-l)(q-l)
	$1{<}r{\le}q$	
$\mathrm{BDI}^{oldsymbol{c}}$	$(\$o(n+2, C), \$o(n, C)+C), n \ge 3$	$i_0 = 2n, i_1 = 2, i_2 = 0$
CI^c	$(\mathfrak{sp}(r,\pmb{C}),\mathfrak{gl}(r,\pmb{C})),r\!\geqq\!2$	(r-l)(r-l+1)
$\mathrm{DI}^{oldsymbol{c}}$	$(\mathfrak{so}(4r, \mathbf{C}), \mathfrak{gl}(2r, \mathbf{C})), r \geq 2$	2(r-l)(2r-2l-1)
	$(\mathfrak{so}(4r+2, extbf{ extit{C}}), \mathfrak{gl}(2r+1, extbf{ extit{C}})), r \! \geq \! 2$	2(r-l)(2r-2l+1)
$\mathbf{EI_c}$	$(E_6^c, \mathfrak{so}(10, \mathbf{C}) + \mathbf{C})$	$i_0 = 32, i_1 = 10, i_2 = 0$
$\mathbf{E}\mathbf{V}^{oldsymbol{c}}$	$(E_7^c, E_6^c + C)$	$i_0 = 54$, $i_1 = 20$, $i_2 = 2$, $i_3 = 0$

Bibliography

- [1] M. Flensted-Jensen, Spherical functions on a real semisimple Lie groups, A method of reduction to the complex case, J. Funct. Anal., 30 (1978), 106-146.
- [2] S. KANEYUKI and M. KOZAI, Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 81-98.
- [3] S. KANEYUKI and M. KOZAI, On the isotropy subgroup of the automorphism group of a parahermitian symmetric space, Tokyo J. Math., 8 (1985), 483-490.
- [4] S. KANEYUKI, On orbit structure of compactifications of parahermitian symmetric spaces, to appear in Japanese J. Math., 13 (1987).
- [5] M. FLENSTED-JENSEN, Analysis on Non-Riemannian Symmetric Spaces, CBMS Regional Conf. Ser. in Math., 61, Amer. Math. Soc., Providence, 1986.
- [6] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Math. Lect., Univ. Calif. Irvine, 1977.
- [7] C.C. Moore, Compactifications of symmetric spaces II: The Cartan domains, Amer. J. Math., 86 (1964), 358-378.
- [8] T. OSHIMA and J. SEKIGUCHI, The restricted root system of a semisimple symmetric pair, Group Representations and Systems of Differential Equations, Adv. Stud. Pure Math., 4, 1984, 433-497, Kinokuniya, Tokyo and North-Holland, Amsterdam.
- [9] W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math., 31 (1979), 157-180.
- [10] M. TAKEUCHI, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo Sect. I, 12 (1965), 81-192.
- [11] M. TAKEUCHI, On conjugate loci and cut loci of compact symmetric spaces II, Tsukuba J. Math., 3 (1979), 1-29.
- [12] M. TAKEUCHI, Modern Spherical Functions, Iwanami Shoten, Tokyo, 1975 (in Japanese).
- [13] N. TANAKA, On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J., 14 (1985), 277-351.

Present Address:
DEPARTMENT OF MATHEMATICS
SOPHIA UNIVERSITY
KIOICHO, CHIYODA-KU, TOKYO 102