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A Note on Ideal Bases

Fuminori KAWAMOTO

Gakushuin University

S1. Construction of ideal bases.

In Okutsu [2], integral bases of finite separable extensions of quotient
fields of Dedekind domains were obtained in terms of “divisor polynomials”
introduced there. The purpose of this note is to generalize this result to
ideal bases. In §2, we shall give an example which illustrates this result.

Let o be a Dedekind domain with the quotient field £ and f(x) a
monic irreducible separable polynomial of degree » in o[x]. Let @ be one
of the roots of f(z) in an algebraic closure % of k. Let K=Fk(#) and assume
that % is a fixed non-zero ideal of K throughout this section. Let {p;};c.4
be the set of all prime ideals of o, k; a completion of ¥ with respect to
p;, and o, its valuation ring. Fixing an embedding of % in k;, we assume
that % is a subfield of k,. Let %, be an algebraic closure of k;,. We de-
note by @,( ) (or @,,( )) the exponential valuation on L, which is the
unique extension of the p;-adic valuation of k. For each e 4, let fla)=
I1:2, f,,(x) be a factorization of f(x) in k;[x], where f,.(x) is a monic ir-
reducible polynomial in o,[x]. For simplicity, we will write s for s; in
some cases. Let 6,, be one of the roots of f; (x) in k,, We define a k-
isomorphism ¢, , from K=£k(@) into &k, by putting ¢, (6)=6,,. Let ¢ (A)=
A0, 0,0 Which is an ideal of k,(6,,) where o4, , is the valuation ring of
k:(6,.). For each )\ € 4, we define a rational-valued and --valued function
?.,( ) on K as follows:

D(a)= g:is?; {@a(3, () — Pa(e,,(A))} (aeK).

Then we note that o is an element of U if and only if @,(@)=0 for any
A€ A. For a polynomial g(x)=ax™++++«+a, in ofx], we put

P:(g(x)) = min p;(a;) .
0Sjism

PROPOSITION 1. For each )\ € A and any positive integer m (<n),y there
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exists a monic polynomial g, .(x) of degree m in o[x], having the following
property.
For any polynomial g(x) of degree m in o[x], we have

D,(9:,m(0) = ?,(9(8)) —pa(9(x)) .

ProoF. Let ne4 and 1=m<n be fixed. Let a €o such that p,(a)=
P,(9(x)). Then g(x)/a is the polynomial in o,[x] and consider the factoriza-
tion of it into irreducible factors. g(x)/a may be decomposed in o,[x] as
H(x)G(x), where H(x) is a monic polynomial in o,[#], and G(x) is a poly-
nomial in o[x] without integral roots. Since G(0) is a unit of o;, $:(6;,)=0
implies @,(G(6,,)=0 for any 7 (1=1=s). Consequently we have P(M(6,,9)) =
#.(G(8,,) for any monic polynomial M(x) in o;Jx] such that deg M(x)=
deg G(x) and for all <. Thus

@, (H(0)M(0)) Z P(H(9)G(8)) = 0:(9(8)) — Pa(9(x))

where H(z)M(x) is a monic polynomial of degree m in o,[x]. Since m<n
and f(z) is separable, we have @,(H(0)M(6))<eo>. So we may assume that
H(6,)M(9,,) is non-zero if 1=i=<7, and is zero if r<i1<s. Let ¢ be a
positive integer such that

> P(H(6;,0M(8;,)) — Paea, (W) + max P2(62,4(A))

for any ¢ (1<i<7). Let h(x) be a monic polynomial of degree m in o[x]
satisfying h(x)= H(x)M(x) mod p,;°. Then we have p,(h(6;,.) — H(6:,)M(6:,0)) =
¢ (1<i<s). Thereforeif 1<i=<r, by the definition of ¢, we have @;(h(6,,.))=
P(H(0,,)M(6,,)), so that

P(h(63,:)) — P, (A) = ¢I(H(02,1)M(01,1)> —@3(62,4()) .
If r<j<s,

Pa(h(6,,7))— P63, (A))=c— P61, 5(A))
> @(H(6:,)M(6:,0)) — Paler,«(AN))

for any © (1=<7=<7). Hence
D,(1(6))=D,(H(0)M(6)) «

So we have to show that the set of rational numbers {@,(h(6)) | h(x) is a
monic polynomial of degree m in o[x]} has the maximum value. It follows
from the facts that @,( ) is a discrete valuation and ¢1(h(0))<oo by the
same reason as above. This proves our proposition.
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DEFINITION. We will call a monic polynomial g, ,.(x) with the property
in Proposition 1 a divisor polynomial of degree m of ¢ and ¥« for p,.
We put 24 ,,=9,(9:,.(0)) and v, ,=[t4; .], where [x] is the greatest integer
=z as usual. y,, will be called the integrality index of degree m of ¢
and ¥ for p, (it follows from the above proof that g, and v,, do not
depend on the choice of g, ,.(x)).

PROPOSITION 2. We put Ad,={ne€ 4 | p, is a prime divisor of d(f) or
Ny, A}, where d(f)=(—1)"""V2N_,.(f'(8)) and f'(x) denotes the derivative
of flx). If \¢&A, then we have D,(9(6))=0 for any m 1=<m<n) and for
any monic polynomial g(x) of degree m im o[x]. In particular, t; .=
V;m=0.

PROOF. For any ¢(1=<i=<s), we put u,=max{p,(0;,—0,.")| o: ky-iso-
morphism on %, such that 0:,"F60,,:}, and v,=max{p;(0;,—0;.°) | 1=1'<s
and ©'#1, o: k;-isomorphism on k;}. Then there is some 1, (1=1,<s) such
that P9(0;,,)) =max{mu,, mv,}. Though this fact is shown in Okutsu
[2], its proof will be recalled here for the sake of completeness. Let
g(x)= 1'[, 1 9;(x) be an irreducible decomposition in o,[x] and v; a root of
g;x)in k,. Forany ¢ (1<7<s)and any j (1=75=t), we put w, ;=max{p,(0, ,—
7i°) | o2 ky-isomorphism on k;}. Now, for any 1 (1=1=<s), we assume that
there is some j(i) 1=j(4)=<t) such that w,;,>max{u, v;}. Put w,;,=
P(0:,—7iw°). Since w, ;,,>u,and 4, ,is separable over k,(7;,°), by Krasner’s
lemma (ef. [1]), we have k(0. Cki(7;’), so that deg f; . (x)<deg g, ().
On the other hand, if j(¢)=7(#'), then we have i=1¢ for the following
reason. Put w, ;u=@(0;,0—7;u»°) and assume v,<v,. Then @,(6,,—
02,77 1)'—@2(02,;—1—02,¢'a’_1)_2.min{w¢,i(i), Wy, iun}>v;. S0 we have i=1" by
the definition of v,. Consequently

'n=degf(9c)§i§'1=1 deg g;,(x)=deg g(x)=m .

This is impossible. Hence there is some 4,(1<%,<s) such that Wy i S
max{u,, v,} for any j(1=<j=t). Thus we get p,(9(6;.))=max{mu,, mv,}.
Therefore

0,(9(0) = P(9(0,,4,)) — Palts,4,(M))
=max{miy, mv,}—min @, (A)) .

Hence

(*). d?z(g(ﬂ))érlr;g{muh mv;} “f’;,i?, Pa(es,4(A))
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for any monic polynomial g(x) of degree m in o[z]. Then our hypothesis
yields u,=v,=0 and @;(¢; (A))=0 for any 7 (1=1=s). So we have 9,(9(6))=0
by (*) and the definition of @,( ). The proof is completed.

THEOREM 1. The motations being as above, for amy positive integer
m (<n), let g.(x) be a monic polynomial of degree m in o[x] satis-
fying g.(x)=g, .(x) mod plrunteid*t for any \e€d, where we put a;=
max,z.s,, Pi6, (W) for any A€ A. Then we have

U = 5D Db "0 (0)
where we put b,=UNk and b,=Tle, P"0™ .

REMARK 1. We can write b,=]].c. P:°*, where ¢, is the least integer
Zax-

PROOF OF THEOREM 1. By Proposition 2, g.(x) is a divisor polynomial
of degree m for p, for any n¢ A4,. We shall show that g.(x) is also a
divisor polynomial of degree m for p;, for any an€ 4,. By the definition

of g.(x), we have @P;(gm(0:)—92n(02))Z[ts,m+a:]l+1> nta, for any 1
(1<i<s). Consequently for any %

Pi(Gm(02,0)) — Pa(62,(AN))
Zmin{P:(g:,w(02,0)) H2,m~+ 0} — Pa(6,(AN))
=min{@;(gz,m(01,0)) — Pa(62,(N)), Lz, m}
= ﬂl,m .

Therefore we have 0,(g.(0)=P:(g: (). As g, .(®) is a divisor polynomial,
we have 9,(g,.(0))=0;(g:.(0)) and g.(x) is a divisor polynomial of degree
m for p, for any ne 4,. Consequently @,(b,7'9,.(0))=2:(9.(0))—v;.=0 for
any M€ 4, so that b,7'g.() CA 1=m<n). Conversely, let a be an element
of 9. Then there are an element ¢ of o and a polynomial h(x) in o[x]
such that a=h(8)/c and deg h(x)<n. Since g,(x) (1=m<m) are monic poly-
nomials of degree m, we can write h(x)=> -, @ngn(x) With some elements
a,’s of o, where we put g,(x)=1 and t=degh(x). For any ned, t,=
®,(h(8)) — P (h(2)) = D (h(6)) — Pa(a;). Therefore @y (a./ec)+ ., 2P:(a)=0 by
a €, so p(a,/c)=—v,, for any n€ 4. Hence we have a,/c €b,". Repeating
this process, we have a./ceb,™ for any m (1=m=t). Then we have
a,/c €b,. TFurthermore {gn.(f)}m=o,...,.n1 i8 linearly independent over k, be-
cause g¢,(x) is a polynomial of degree m. This proves our theorem.

REMARK 2. For some m (1=<m<n)and \ € 4,, assume that @,(h(0))=v;,n
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for any monic polynomial A(x) of degree m in o[x] (for example, if a;=0
and v, ,=0 for some m and )€ 4, we have ?,(h(6))=0=y,,, for any h(z)).
Then it is easy to see from the first part of above proof that we do not
have to solve the simultaneous congruences as in Theorem 1 for these m

and ).

§2. An example.

In this section, we will use the same notations as in the previous
section. Let Z, Z,, Q, and @, denote the ring of rational integers, the
ring of p-adic integers, the field of rational numbers, and the field of p-
adic numbers respectively where p is a prime. Let I be an odd prime
and K=Q({) where { is a fixed primitive I-th root of unity. Let f(x)=
' +---+2x+1land 1Sm=<I—2. We note that ! is the only prime divisor
of d(f) and @,({*—&)=1/(I1—1) (7). Suppose that » is a rational integer.
Since f(x+1) is of Eisenstein type for I, f(x) is irreducible in Z[x]. We
define a @-isomorphism ¢ from K into @, by putting «)=C. Let I=
{a e og | i(e(a))>0}, where o, is the ring of integers in K. [ is a unique
prime ideal lying above ! in K, generated by {—1. By (), we have
P9 — P = (m—n)/I—1)=p,({—1)")— p,(«(I")) for any monic poly-
nomial g(x) of degree m in Z[x]. Consequently (@—1)" and [(m—n)/(—1)]
are a divisor polynomial and the integrality index of degree m of ¢ and
[* for I. Hence we have by Theorem 1

In — §Zl~[(m—n)/(l—1)](<:_1)m .
m=0

Suppose that p is a prime number such that p=1 mod!l. Then since
¢ is an element of Z,, f(x)=TI!c} (x—C*) is the irreducible decomposition
in Z,[x]. For each ¢ (1<i<I—1), we define a Q-isomorphism ¢, from K into
Q, by putting £(0)=¢'. Let p,={acox|p,(a)>0}. Thenp, ---, b,_, are
all prime ideals lying above p in K. Suppose that = is a positive integer
and let 1<¢<!—1. Then there exists an element a; of Z satisfying a,=
¢ mod p"Z,. Consequently p,(a,—*)=n and since P,({'—8) =0, p,(a;—)=0
(4#1). By (x), we have

. 5’21- 1{%(g(é:")) — @, (e;(p:")}
=0= f}si?_ 1{%((C" —a,)™)— @, (v}

for any monic polynomial g(x) of degree m in Z|x]. Hence (x—a,)™ and
0 are a divisor polynomial and the integrality index of degree m of {
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and p,” for p. Furthermore (x—1)" and [m/(l—1)]=0 are a divisor poly-
nomial and the integrality index of degree m of { and p,» for I. Since
Pi(e(p™))=0 and [m/(l—1)]=0, by Theorem 1 and Remark 2, we have

b= Zr@®ZC—a)r  (Asisl-1).

For each 4 (1<i<l—1), we define a Q-automorphism ¢, of K by putting
00 =C" Then p < =p, For any s (2=<s=<l), we put %, =]Iizip, " " =
TIicipt#, Let (x/p,): denote the I-th power residue symbol modp, in K
and put X(z)=(z/p,)i*. Let J(X, X)) =—3, X(2)X!(1 —x) and z(p,) = — 3%, X(®)C,"
where x runs through all representatives of o, mod p, and {, is a primi-
tive p-th root of unity. A, (2<s<l—1) is a principal ideal of K, generated
by TI:=JX, %) and ¥, is a principal ideal of K, generated by z(p).
We shall look for an ideal basis of ¥,. Let g(x) be a monic polynomial of
degree m in Z[x]. This may be decomposed as g(x)=ITizi (x —£*)**h(x) mod pZ,
where ¢, is a non-negative integer, h(x) is a monic polynomial in Z,[x] and
@,(MC))=0 for any ¢ 1=<i=<l—1). Since m<l—1and Si-te,+deg h(x)=m,
there is some ¢, with ¢,=0. Then P,(9(€*)=0. Therefore

. _glsip_ 1{%(gr(C‘)) — @,(6(U,))}

— min {9 —Py @} = —| L&
fgsisl—1 l

If i, is the largest integer with e,=0, 4, =l—1—m. Hence we have
min {p,(9(C9) —pa) s - 12 |
1gisl—1 l

for any monic polynomial g(x) of degree m in Z[x]. For any J1AZ£1-2),
there exists an element a; of Z such that a;='"" mod pt¢~1=#/1*Z  (note
that if s=l, we can put a;="7 mod p'*74, and if a={"' mod pt*~»~1*
with a€Z, we may put a;=a?). Let g.@)=[Ir(zx—a;) (l=m=l-2).
Since @,(a;—9)>0, P(a;—CN=0A=i#l—g=l-1). Consequently

‘ (1—1)s .
D0 =3 q:,(cf_a,):{%@ —a,_,)g[——l ]+1 I—1-m<i<l—1)
o 0 Asisl—1—-m
and

=0 (I—-1-m<i=sl-1)
Po(gn(C ))—cpp(ei(ﬁl.)){: _[ 1l8_ ] A<i<l—1—m) .
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Therefore

min (2,(0.(C9) =, (e} = —[ L=1mms ]
1gisl—1 l

Hence g,(x) and —[(I—1—m)s/l] are a divisor polynomial and the inte-

grality index of degree m of ¢ and U, for p. Furthermore (x—1)" and

[m/(l—1)]=0 are a divisor polynomial and the integrality index of degree

m of { and ¥, for I, so, by Theorem 1 and Remark 2, we have

A, = ZpP B Zp g () (2<s<l) .
m=1
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