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Abstract. In this paper, we get the fact that the identity map of SU(3)/T(k,[) which is a 7-dimensional
non-symmetric normal homogeneous space is stable.

1. Introduction and the main result.

It is interesting whether the identity map of a given Riemannian manifold (M, g)
is stable or not. Y. Ohnita [3] obtained the complete stability results about identity
maps of compact irreducible simply connected Riemannian symmetric spaces. It is
known [7] that the identity maps of every closed Riemannian manifold of constant
curvature (positive, zero or negative) are stable except the standard unit spheres (5", can),
n>3. To show stability of the identity map of positively curved homogeneous spaces
which are not symmetric and have non-constant curvatures seems to be difficult.

In this paper, we consider the stability of the non-symmetric 7 dimensional
homogeneous space SU(3)/T(k,l), admitting positively curved Riemannian met-
rics, which was discovered by S. Aloff and N. R. Wallach (cf. [1]). Here T(k, 1)
= {diag[e?™*0, 270 ¢~ 27ik+D0Y . g R} | k|+|1|#0 (k,leZ), i=/—1. We fix an
Ad(SU(3))-invariant inner product (-, *) on the Lie algebra su(3) of SU(3). Let g be the
SU(3)-invariant Rimannian metric on SU(3)/T(k, l) induced from this inner product
(., .).

In this paper, we have the following:

THEOREM. Let SU3)/T(k, ) have the SU(3)-invariant metric g which is canonically
induced from an Ad(SU(3))-invariant inner product on the Lie algebra su(3). Assume that
k, | are relatively prime. Then, the identity map of (SU(3)/T(k, 1), g) is stable.
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2. Proof of the main theorem.

In this section, we use the following notations.
G=SU(3), g: the Lie algebra of SU(3), i=\/jl,
t={diag[ix,, ix,, ix3]| x; + X, + x3=0, each x;e R},
T =T(k, I)={diag[e*"™*?, 21, ¢~ 2"k +D] | e R} , |k|+]|1|#0 (k,Ie2Z),
t(k, 1) : the Lie algebra of T(k, 1),
B(X, Y)=6Trace(XY), X, Yeg: the Killing form of g,
M=G/T=SUQ3)/T(k,1),
I'(G)={Het|exp H=e¢} : the unit lattice,
I={Ae/—1t*|MH)e/—12nZ for all HeI(G)} :

the set of all G-integral forms on t .
We give an Ad(G)-invariant inner product (-, *) on g by
) (X, Y)=—B(X, Y)=—6Trace(X, Y), (X,Yeg).

Let g be the SU(3)-invariant Riemannian metric on SU(3)/T(k, I) induced from this inner
product (-, -). We denote by e;e/—11* (j=1, 2, 3) the linear map

t°sdiag[x,, x5, x3]+>x; .

Put a=e, —e,, f=e,—e; and y=e, —e,;. We fix a lexicographic order < on ./—11*
in such a way that 0 < <a. Then the set P of all positive roots of g relative to t° and
half the sum ¢ of all elements in P are given by

(2) P={a,f,y} and o6=2e,+e,.
On the other hand, the elements H, _, €,/—1t such that (e;—e;)H)=B(H,,_.,, H)

for all Het and (e;, e;) are given as follows:
3 {Ha=%diag[l, —1,0], H,=1diag[0,1, —1], H,=}diag[1,0, —1],
(e1, e)=(ez, €2)=1/9, (e, e;)=—1/18.
Then the set D(G)={AeI|(4, a)>0 for all xe P} of all dominant integral forms relative
to t is given by
4 D(G)={A=m,e, +mye,|m;>m, >0, mie Z (j=1,2)} .

There exists a natural bijection from D(G) onto the set of all non-equivalent finite
dimensional irreducible unitary representation (¥, n;) having highest weight A. For
A€ D(G), put d(1) the dimension of the representation V. d(4) is given by
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A+a, )
5 d)=1]] ———.
(5) ) 411 6.
Therefore, we have for A=m e, +m,e,
(6) d(2)="4(m; —my+ 1)my +2)my +1).

Let X(M) be the set of all C®-vector fields on M. We identify ¥(M) with the following
C$£(G, m) (cf. [4, 7]). Here m is the orthogonal complement of t(k, ) in g.

DEeFINITION 2.1.  Let C®(G, m) be the space of all smooth maps of G into m. We
define the subspace CF(G, m) of C*(G, m) by

C2(G, m):={fe C*(G, m)] f(xh)=Ad(h~Y)f(x),xeG,heT} .
The identification @ of ¥(M) with C®(G, m), @ : CF(G, m)—> X(M), is given by
@) O(f)X) :=()(f(x))y, Xx€GC.

Here X, (X em), is the tangent vector of M at the origin {T} corresponding to f(x)em,
and (t,), is the differantial of the translation 7, : M3 y—>Xxye M. Then it turns out that
& is an isomorphism of C¥(G, m) onto ¥(M). Under the G-actions on ¥(M) or CF(G, m)
defined by

® {«rx)*V)p =)V, %YeG, VeXM),
@) :=f"1), x,yeG, feCy(G,m),

& is a G-isomorphism, that is,

® Dot f =(t)o¥(f), x€G, feCPGm).

The Jacobi operator J,; : ¥(M)— X(M) of the identity map of M is G-invariant (cf. [7,
p- 580]), that is,

(10) Ji((t ) V)=()eJidV),  V eXM).

Furthermore C2(G, m) is identified with the subspace (C*(G) ® m) of the tensor product
C*(G)@m.

DEFINITION 2.2. (C®(G)®m); is defined by the subspace of all elements
Y fi®X,;eC*(G)®m satisfying

1 1
2 Rhfi®Ad(h)Xi= Z fi®Xi
i=1 i=1

for all he T. Here (R, f)(x):= f(xh), he T, xe G, f € C*(G).
Under the G-actions on C*(G)® m or C®(G) defined by
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a1 { N :=fx"'y), x,yeG, feCG),

.,(f®X):=1,f®X, Xem,

the (C®(G) ® m)y is a G-submodule. The identification ¥ of CF(G, m) with (C*(G) @ m)r
is given by

7
(12) P():=2 f;®X;.  [eCFGm),
j=
where f (x)=z;= L Jf2)X;, xeG, and {X ;}]=1 is a fixed orthonormal basis of m with
respect to (¢, *). Then ¥ is a G-isomorphism of CF(G, m) onto (C*(G) ® m); with
(13) Yor, =107, xeG.

DEFINITION 2.3. Via @ and ¥, a G-invariant operator J on (C*(G) ® m) is defined
from the Jacobi operator J,; in such a way that the following diagram is commutative:

-1

@ 4
¥M) —— CF(G,m) —— (CP(G)@mM)r
J, l l]
¢_1 o0 W = o]
¥M) —— CF(G,m) —— (CZ(G)@m)r.
By (9), (10) and (13), the operator J is G-invariant, that is,
(14) Jot,=1,0J, x€G.
DeFINITION 2.4. Theoperators D,;,i=0, 1, 2, 3, acting on C*(G) ® m are given by

8
Dy:= ) XE®I,
k=1
7
D,:=) X,®Pncad(X,),
k=1

;
D, :=I1® Y ad(X;)e Py cad(X;),

i=1

D, :=1®ad(X;)?,

where P,, and Py,  are the projections of g=m @ t(k, I) onto m and t(k, I), respectively,
{X,}8_, is an orthonormal basis of (g, (-, *)) such that {X;}/_, (resp. {X}) is a basis
of m (resp. t(k, 1)), I is the identity operator of C®(G) or m, (Xf)(x) : =(d/dt) f (x exp(tX ))I,= 0
for Xeg, fe C*(G) and x€G.

All D,, i=0, 1, 2, 3, are independent of the choice of the above basis {X,}5_,. Thus
since R,oXf=(Ad(h)XXR,f), for fe C*(G), he T, and X eg, all D, keep the subspace
(C*(G)®m)y invariant. The Urakawa’s theorem can be stated as follows in our case:
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THEOREM 2.5 (cf. [7, p. 5861). The operator J of (C*(G) ® m); corresponding to
the Jacobi operator J,; of the identity map id,, coincides with the operator
D L= “‘DO—DI +D2+D3 s
where all D; are defined in Definition 2.4.

Let E;; denote a square matrix of order 3 with the (i, j)-entry being 1, and all the
other entries being 0. Then we put

1 =1
X, :=——=(E;2—E;)), X,:= (E12+E,y),
/12 /12
1 </ —1
X;:=—=(E;3—E3,), Xy:= (Ei3+E5;),
/12 12
1 < —1
Xs :=—=(Ey;—Ej3;), Xg:= (Exs+Es3p),
/12 12
X, = -1 diag[(k+21), —(2k+1), (k—D],

6./ r

S

J—1
Xg :=fdiag[k, I, —(k+1)],

12r
where r :=k?+kl+12%. Then
(15) {XD X29 T, X7} (resp. {XS})

is an orthonormal basis of m (resp. t(k, [)) with respect to (-, *).
We define an inner product ((-, +)) on ¥(M) by

(16) v, W))!=J gtv,Wyo,,  (V, WeX(M)),

M

and similarly define the Hermitian inner product ((-, *)) on the complexification X°(M)
of X(M). Then the representation (t, X°(M)) of G which is defined by (8) is a unitary
representation with respect to ((-, *)).

Frobenius’ reciprocity theorem can be stated as follows:

THEOREM 2.6 (cf. [2,9]). For the decomposition (t, X(M)=Y .. peyMAV, of
X°(M) into irreducible unitary representations of G, the multiplicity m(2) of V,, A€ D(G),
in X(M) or CF(G, m°) is

dim Homg(V,, CF(G, m9))=dim Hom(V,, m°),

where m® is an Ad(T)-module.
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To evaluate m(4) in Theorem 2.6, we apply the following Urakawa’s proposition:

ProrosITION 2.7 (cf. [8]). Assume k and | are relatively prime. Let (V,, ;) be an
irreducible unitary representation of G with the highest weight A=m,e, +m,e, € D(G).
Then, as a representation of T, V, is decomposed into T-irreducible submodules as follows:

my+1 m; p—q-—1
(17) V,=

Wiimy+mz+2-2p—q+d)+1(1 —p+q+2d) »
p=m2+19g=0 d=0

where W,, (me Z) is the 1-dimensional irreducible T-submodule of V, with the character
%t T(k, 1) 5 diag[e?™9, 278 o= 27ik+10Y,_, p2mimd ;_ \/—_‘1

By Theorem 2.6 and Proposition 2.7, we get for A€ D(G)

(18)  m(A) is the number of elements m, (m in W, of the right side of (17)), which
belong to {+(k—1), +(2k+1),0, +(k+2l)}.

We get for later use

LemMMA 2.8. Let (t, X(M)=) pyMA)V, be the decomposition of X(M) into
irreducible unitary representations of G. Assume k and | are relatively prime. Then
(a) m(4)=0 for A=e,, e, +e,€D(G),
(b) (A+258,A)=1 for Ae D(G)—{0, e,, e, +e,}.

ProOOF. From (17),
V=W, @W_,_,®W, and V, , ,=W_OW,, , @W_,.
Hence, from these decompositions and (18) we obtain (a). (b) follows from (1) ~(4).

REMARK. It’s very difficult to obtain m(4) for each A€ D(G) in Lemma 2.8 because
the number of elements m (m in W, of the right side of (17)) which become 0 is
dependent on k, I (cf. [8]).

For ¥ /i@ X,eV,=(C2(G)®@m); (A=m,e, +m,e, € D(G)), we have
i=1

7
(19) Dl(-;1ﬁ®xi)

1 k+1
={\/—E_(X5f3_x3f5+X6f4_X4f6)+ (2:;7) (X2f7"X7f2)}®X1
+{——1——(X5f4—X4f5+X3f6—X6f3)+M(X7f1—X1f7)}®X2
J12 2/r

+{ ! Xifs—Xsf1+Xef2—X,f6)+ : (X4f7—X7f4)}®X3

vz 2/
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1 l
+{\/—1—2-(X1f6_X6f1+X2f5_X5 2+ 2\/7
+{ ! (X3f1_X1f3+X4f2"‘Xzf4)+—k—(X7f6_‘X6f7)}®X5

J12 21
1

k
Xaf1—=X 1 fa+ X2 f3—X3/)+ 5
r

ktl Xifa— X, 1)+ k (Xefs—Xsfe)+ :

2/r 2/r 2/r
20) Dz<‘_i1fi®xi)=us<__iﬁ®xi)

—k—1p 2k +1)
—T(fl ®X, +f2®X2)—T

_ (k+2D)?
12r

(X7f3_X3f7)}®X4

(X5f7—X7f5)}®X6

+
~N—
B

VN

+
—~—

ﬂ

(X3f4—X4f3)}®X7 ,

(L®X;+fa®X,)

(fS®X5+f6®X6) ’

where all X; are defined in (15). Since all D;, i=0, 1, 2, 3, are G-invariant, i.e., D;ot,=
17,.oD; for all x€ G, all D; preserve the subspaces ¥V, invariant. By Schur’s lemma, there
exist constants c,(4) such that D;=c,(A)I on V, (i=0, 1,2, 3). Here, I is the identity
operator of V. Then we get

LEMMA 2.9. ¢,(A)=0o0nV,.

PrROOF. Since k and / are relatively prime, we have from (20)

(21) () =c3(4),
_ —(k—=1)? —(Rk+1)? —(k+21)?
(22) c,(A)= 5 or T or 1o or 0.

If Y fi®X;eV;, then we obtain from (22)

(@) fa=fa=fs=f¢=f7=0 on G, or
b) f1=f2=f5=f6=f7=0 on G, or
() fi=fr=f3=fa=f7=0 on G, or
) fi=fa=fi=fa=fs=f¢=0 on G.

Let v,=Y;-,f;®X;e V, be the highest weight vector with ((v,, v)))=(ll v, [.)*>=1. All
D; (i=0, 1,2, 3) keep {v,}° invariant. We define an inner product of f, f'(e C(G)) by
[ f(X)f (x),. Let

(23)
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(r, C2(G)= ) nAU,
Ae D(G)
be the decomposition of C(G) into irreducible unitary representations of G. Here n(1)

is the multiple of U, in C°(G) and the action of G on C?(G) is defined by (11). Classifying
the highest unit vector

7
U= Zlfz ®X;
into 4-cases of (23), we prove this lemma.

The case of (a) of (23); v;=f, ® X, +f, ® X,. Since the coefficient functions f;, f,
(€CZ(G)) in v; are highest weight vectors in the irreducible unitary representation
space (7, U,) of G, there exists constant ¢ such that f; =c¢f,. Now, if ¢=0, f; =0 on G.
Since v, =/, ® X, =(Ryp:x,/2) ® Ad(exptXg)X, for any te R, f, =0. This fact results
in wrong conclusion to the light of || v, ||, =1. Thus, c#0. Then,

—k—1
2/r
by the help of (19). From this fact, (1+c?)c,(2)f,=0, ie.,, c=+./—1 or ¢,(1)=

0. Assume c=+./—1. Then v;=+/—1f,@ X, +/,®X;=Reppix,(t/—112)®
Ad(exp tXg)X | + Rexpixo /2 ® Ad(exptXg)X, for any teR. From this equality, f, =
Jf>=0. This contradicts || v, || ,= 1. Therefore c¢,(1)=0.

The cases of (b), (c) of (23); These cases are proved in the same way as the above
proof.

The case of (d) of (23); v;=f; ® X,. Then ¢,(4)=0 with the help of (19).

Thus the proof of Lemma 2.9 is completed.

ex(d)
C

Dyv,=

{%(X7f1)®x1_(X7f1)®X2}=cl(}v)f1®X1+ [i®X,,

LeMMA 2.10. —1/2<c¢,(4)<0.
PrROOF. For k, I (€ Z) satisfying the conditions in T(k, I),

Ny AY 2 2
k—D” 1 Qk+h” 1 4 G+20* 1
12r 2 12r 2 12r

Hence the proof of this lemma is completed by (22).

Lemma 2.11. Forv=Y fi®X;eV,,
(@) —Dgv=(1+24, N)v,
(b) when A=0eD(G), —Dw=0 (i=1,2,3), ie., Jv=0.

PROOF. —D, is the Casimir operator of irreducible representation (n, V),
(V= C2(G)), of G which is defined by (z*(y) f)(x) : = f(xy), x, ye G, fe C*(G). In general,
the Casimir operator, of G, acting on C?(G) which is dependent on (-, *) of (1) is
Yo X?=Y7 X2 where (X)), is the above orthonormal basis of g and each X, is
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a right invariant vector field satisfying (X,),=X,, (cf. [9, p. 51]). From these facts, we
easily obtain (a) (cf. [5, 6]). '

Furthermore, when A=0 (e D(G)), ¥, contained in (C*(G)® m°); is generated by
f7® X,, where f, is a constant function on G. Hence, Jv=0.

Accordingly, the proof of Lemma 2.11 is completed.

Now, from Theorem 2.5 and Lemmas 2.8-2.11, we obtain the following.
((Jv, v))>0 for ve(C*(G)R@m)r(=X(M)).

Thus, we get the main theorem.
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