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Introduction.

Given a field K and a subring 4 of K, we consider the local ringed space Zar(K |A)
consisting of all valuation rings of K which contain 4 (see [4] or [5]). If 4 is a Hilbert
ring, in other words, if any prime ideals of 4 are intersections of maximal ideals (see
[1], p. 373), then the ringed space X =Zar(K |A) satisfies the condition

(D Bx: (Xa, Fx

Here X, is the set of closed points of X and &y is the structure sheaf on X. For the
morphism By of ringed spaces, see (17). Given a topological space W, we denote by tW
the set of irreducible closed subsets of W. If (W, &) is a ringed space, then tW also
has a structure of ringed spaces donoted by #W, %y). The correspondence
(W, F w)— (W, F ) gives rise to a covariant functor from the category of ringed spaces
to itself. Moreover, if Wis a T;-space, then the ringed space (X, & x) =W, & y) satisfies
the condition (1), and the morphism f: X— Y of ringed spaces obtained by ¢ from a
morphism of 7T';-ringed spaces satisfies the condition

(2) f(Xcl) < Ycl .

In this case, ¢ gives an equivalence of the categories (see section 1). Therefore, we shall
consider the following problem.

Xcl) q (X’ ﬁx) .

PrROBLEM 1. Characterize the ringed spaces (X, & x) satisfying the condition (1).

ExAMPLES. (i) Let X be an affine scheme Spec 4. Then X satisfies the condition (1)
if and only if A4 is a Hilbert ring.

(i) Any integral scheme X of finite type over a field satisfies the condition (1).

For a local ringed space (W, O), we introduce a morphism 7y, : W—SpecOy(W)
defined by y(x)=p 5 LX(M(Oy ). Here py 1 Oy(W)— Oy , are the canonical mappings
and m(R) denotes the unique maximal ideal of a local ring R. The next problem is
closely related to Problem 1.
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PrOBLEM 2. Characterize the local ringed space (W, Oy ) satisfying the condition:

3) twlny (F))=F, for any closed subsets F of SpecOy(W).
Relating to these problems, the following three theorems are obtained.

THEOREM 1. Let A be an integral domain, X=SpecA and W= X_,. Then the next
three conditions are equivalent:
(@) X satisfies the condition (1).
(b) W is irreducible and satisfies the condition (3).
(c) A is a Hilbert ring.

For a field K and a subring 4 of K, let Loc(K |A) denote the set of local subrings
of K which contain 4. Then the set Loc(K |A) has a structure of local ringed spaces (see

[6D).

THEOREM 2. Let X=Loc(K|4) and W=X_,. Then

(i) X satisfies the condition (1) if and only if A is a Hilbert Priifer ring with quotient
field K.

(ii) W is irreducible and satisfies the condition (3) if and only if A is Hilbert.

THEOREM 3. Let X =Zar(K|A) and W=X_,. Then the next three conditions are
equivalent:
(@) X satisfies the condition (1).
(b) W is irreducible and satisfies the condition (3).
(c) A is a Hilbert ring.

COROLLARY. Suppose that A is a Hilbert ring and i: W— X is the inclusion mapping.
Then

(i) Op=i"'04 and Ox=i,Oy.

(ii) Let Q7 (resp. Q%) be the sheaf of regular differential forms on X (resp. W) for
any multi-index m. Then Q' =i"1Q%, Q% =i, Q% and hence Q¥ X)=Qz(W) (see also
[6], Theorem 2).

Given an integral Hilbert ring 4, we introduce the following three categories.
®o(A): the category of fields K which contain 4 and A4-ring homomorphisms.
% ,(A): the category of local ringed spaces Zar(KIA) and dominant morphisms over
Spec A4 satisfying the condition (2).
%,(A4): the category of local ringed spaces Zar(K|A)cl and dominant morphisms over
SpecA.
We can give an explicit characterization for objects of both the categories €,(A4)
and %,(A4) among local ringed spaces (see Theorem 1 in [5] and Lemma 15).
From Theorem 1 in [5], the category €(4) is anti-equivalent to €,(A4). Moreover,
the next result is obtained as an application of Theorem 3.
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THEOREM 4. Let A be an integral Hilbert ring. Then

(1) the categories €,(A) and €,(A) are equivalent. Therefore the categories € y(A)
and € ,(A) are anti-equivalent.

(i) If A is an algebraically closed field k and K is a field finitely generated over k,
then

Zar(K|k), ~ proj.imV,
where V runs over all complete algebraic varieties over k with rational function field K.

In the following we shall prove Theorems 1, 2, 3 and 4.

The author wishes to express his thanks to Professor Shigeru Iitaka for his advices
and warm encouragement.

§1. Here we collect some properties of the functor ¢ omitting proofs. First we

consider in topological spaces. By (Top) we denote the category of topological spaces
and continuous mappings.

For a topological space X, let tX denote the totality of irreducible closed subsets
of X. There exists a unique topology on ¢X with the family of closed subsets {tE| E is
closed in X'}. Then the mapping: {closed subsets of X'} —{closed subsets of X } defined by

4 E—tE, for closed subsets E of X

is an inclusion-preserving bijection, and

(5 E is irreducible if and only if ¢E is irreducible ,

6) tE =m : the closure in tX, for any FEetX.
Thus the mapping: tX—#(tX) defined by
@) E— m , for FetX

is also an inclusion-preserving bijection. ;
For a continuous mapping f: X— Y, a mapping ¢f :tX—tY is defined by

(8) (tf)E) =j7(E"): the closure in Y, for EetX.
Then
)] @) '@F)=1f"1(F)), for any closed subsets F of Y.

Therefore tf is continuous, and hence ¢: (Top)—(Top) is a covariant functor.
For a topological space X, a mapping ay: X—tX is defined by

10) ocx(x)=m : the closure in X, for xeX.
Then, for any closed subsets E of X,
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(11) a;(tE)=E, oyE)=IE,

and hence o is continuous and dominant. Therefore o : id—¢is a natural transformation,
where id is the identity functor of the category (Top). Moreover the mapping: {closed
subsets of tX}—{closed subsets of X} defined by

(12) F—ax (F), for closed subsets F of tX
is an inclusion-preserving bijection and is the inverse of the mapping defined by (4).

LEMMA 1. Let X be a topological space. Then
(1) X satisfies Ty<>ox is injective
<>y is an into-homeomorphism.
(ii) a,x: tX—1(tX) is an inclusion-preserving homeomorphism.
(iii) X satisfies T, if and only if X satisfies Ty and Imoy = (1X).

We introduce the following three conditions for a continuous mapping f: X—Y.

(13) tf : tX—tY is a homeomorphism.

(14) f: X— f(X) is a closed mapping and Fn f(X)=F
for any closed subsets F of Y.

(15) f: X—Yis an into-homeomorphism and Fn f(X)=F
for any closed subsets F of Y .

LEMMA 2. Let f: X—Y be a continuous mapping. Then
(i) f is dominant if and only if tf is dominant.
@) (15 =(13)=(14).

Next we consider the functor ¢ in ringed spaces. By (R. Spaces), we denote the
category of ringed spaces.

For a ringed space (X, Fy), we put X, Fx)=(tX, ay,ZF x). We also write
F x=0xeF x-

For a morphism (f, f%): (X, #x)—(Y, #y) of ringed spaces, we put «(f, f*)=
(ff, ay /P We also write (ff)*=ay,f*. Accordingly ¢ becomes a functor:
(R. Spaces)—(R. Spaces).

Letting a% be the natural identity of ay, % x for any ringed space (X, # x), we obtain
a morphism «x &,,=(xx, a%): (X, F x)>UX, F ) of ringed spaces. Thus «:id—7is a
natural transformation, where id is the identity functor of (R. Spaces). Note that
Fxx=F x.y for any YetX, and hence (a%),: & ix,ax—>Z x,~ is the identity mapping
for any x € X. Moreover,

(16) any irreducible closed subset of X has a unique generic point in X

<> ay is bijective
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<> Ox, 7, 1S an isomorphism of ringed spaces.

LEMMA 3. Let X be a topological space. Then the category of sheaves on X and
the category of sheaves on tX are equivalent by the functors oy, and ox'.

LEMMA 4. Let (f, fH: (X, Fx)=(Y, Fy) be a morphism of ringed spaces. Then

(i) «f, f* is an isomorphism of ringed spaces if and only if tf is a homeomorphism
and f*: Fy— [ F x is an isomorphism of sheaves on Y.

(i) If Fy=f"'Fy, then F x=(tf)"'Fy.

(iii) If tf is a homeomorphism and Fy=f " 'Fy, then Fy= [, F x, and hence
«(f, 1) is an isomorphism of ringed spaces.

COROLLARY. Let (X,Fy) be a ringed space, WcX, Fy=% X|W and let

(i, i%: (W, F w)—(X, F x) be the inclusion morphism of ringed spaces. Then (i, i¥) is an
isomorphism of ringed spaces if and only if E~ W=E for any closed subsets E of X.

Suppose that ay is an isomorphism of ringed spaces for a ringed space (X, ).
Then we can define a morphism By of ringed spaces by

(17 By=oztoti: HX,)-X.

Here i: X_— X is the inclusion morphism of ringed spaces. Thus the following diagram
commutes:

X, ', X

(18) | j / l
HX.) ~X—» tX

ti

Therefore (X, & ,) satisfies the condition (1) if and only if any irreducible closed subset

of X has a unique generic point in X and E n X, =E for any closed subsets E of X.
Let us introduce the following two categories.

%, : the category of ringed spaces satisfying the condition (1) and morphisms of ringed
spaces satisfying the condition (2).
&,: the full subcategory of ringed spaces consisting of objects which satisfy the separable

condition T},.

Then the functor ¢: €,—%, gives an equivalence of categories, and X — X is the inverse
functor of ¢.

§2. In this section we study the relationship between the functor ¢ and intersection
sheaves.
Let K be a field, 4 a subring of K, X an irreducible topological space and
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s: X—>Loc(K |A) a continuous mapping. For any non empty open subsets V of X, define
Ox(V) to be (), _, s(x). Thus we obtain an integral local ringed space (X, Ox). Then Oy
is said to be an intersection sheaf of X with respect to the mapping s (see [6]).

LEMMA 5. Let K, A, X and s be as above. For any irreducible subset Y of X, we
put Ey=\) .., s(x)= K. Then

(i) ¢&yeLoc(K|A)and s(Y)={&y} in Loc(K|A). Therefore s is dominant if and only
if éx=K.

(i) If Y is dense in X, then &, =¢&y.

(iii) Let Oy be the intersection sheaf of X with respect to s. Then Oy y>~¢&y.
Thus RatX~¢&y. In what follows, we identify the above two rings. Then dom(a)=
s~ (Loc(K|A[«])) for any ae RatX =K.

(iv) (X, Oy) satisfies the condition (8) in [S] if and only if RatX is a field.

Proof. For aeK, we put Y(0)=Y ns~'(Loc(K|A[a])). Then ae &y if and only if
Y() # .

(i) For any a, fe&,, there exists xe Y such that a, fe s(x). Thus &, is a subring
of K. Note that £y = ) _, s(x)*. Since &, — & is an ideal of &y, we obtain &y e Loc(KlA).
Moreover,

(19) ﬂy m(s(x)) =m(Ey) .
It is clear that s(Y)c{—fﬁ. If we put V= Loc(KlA[ocl, ---,a,]) for any a,, - -, a,€K,
then Yns '(V)=Y(a)n - - N Y(a,). If éy eV, then Y(o,)# O (i=1, - -+, r). Since Yis
irreducible, we obtain Y n s~ (V) # . Thus s(Y) N V # & and hence &y € s(Y). Therefore
s(Y)={&y} o -

(ii) Since s(X)=s(Y)cs(Y)=s(X), we have s(Y)=s(X). By (i), we see that {&,}
= (V) =s(X)={&x}. Thus & =¢y.

(iii)) Themapping £y — Oy ydefined by a— {X(a), 2}y is an isomorphism of rings.

(iv) The “only if” part is verified from Lemma 7 in [5]. For “if” part, it suffices
to prove that ()__, m,(x)=0 for any non empty open sets V' of X, by Lemma 3 in [5].
By (19), (ii) and (iii), (),.y #p(X)= oy M(X) = M(Ey)=m(Ex) =m(RatX)=0. Q.E.D.

LEMMA 6. Let K be a field, A a subring of K and X a topological space. Then

(i) the mapping: C(tX, Loc(K|A))— C(X, Loc(K|A)) defined by risroay is a
bijection. Here C(X, Y) is the set of continuous mappings from X to Y.

(ii) Assume that X is irreducible. Let s=roay and let Oy (resp. O,y) be the
intersection sheaf of X (resp. tX) with respect to s (resp. r). Then Ox=05"'0,x, O,x=0ax,0x
and Rat(X, Oyx)=Rat(tX, 0,y).

Proor. (i) Since Loc(K|A) is a Ty-space, the mapping in question is injective.
For any continuous mapping s: X —»Loc(K|A), we put (Y)=¢&, for YetX. Then
r: tX—Loc(K|A) is continuous and s=roay.
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(1) is induced from Lemma 2 in [6], Lemmas 3 and 5.

CoROLLARY. (i) If (X, Ox) is a local ringed space and Oy is an intersection sheaf,
then (X, Oy) is also a local ringed space and O,y is an intersection sheaf.

(i) If (X, Oy) is an integral local ringed space satisfying the condition (8) in [5],
then (X, Oy) is an integral local ringed space satisfying the condition (8) in [5].

LEMMA 7. Let W be a subset of Loc(K |A). Take a continuous mapping

r: tW-Loc(K ]A) such that roay is the inclusion mapping from W to Loc(K[A). If we
put X=Imr, then

(i) WcX and r: tW—X is a homeomorphism. Moreover the mapping: X —tW
defined by RH{—E}— N W is the inverse mapping of r.

(i) Assume that W is irreducible. Let Oy, (resp. Ox) be the intersection sheaf of W
(resp. X) with respect to the inclusion mapping. Then r: (W, Ow)—(X, Oy) is an
isomorphism of local ringed spaces, and the following diagram commutes.

Wc_z__,X

L

tW —— X
ti

The proof is complete from Lemmas 5 and 6.

REMARK. If W=X_, then r= 8y by (18).

§3. Using some elementary properties of Hilbert rings, we shall prove Theorems
1, 2 and 3.

For Hilbert rings, the next two lemmas are well-known (see [1]).
LEMMA 8. The following four conditions for a ring A are equivalent:
(@) A is a Hilbert ring.
(b) Fnm-SpecA =F, for any closed subsets F of Spec A.

(© If o: A->B is a ring homomorphism of finite type and mem-SpecB, then
@~ (m)em-SpecA.

(d) Forany feA,let o: A— A, denote the canonical mapping. Then ¢~ *(m)e m-Spec A
Jor any mem-SpecA,.

LEMMA 9. Let A be a ring and B a ring integral over A. Then A is Hilbert if and
only if B is Hilbert.

COROLLARY. Suppose that A and B are subrings of a field K which satisfy Zar(K |A) =
Zar(K ‘B). Then A is Hilbert if and only if B is Hilbert.

LEMMA 10. Let (W, Oy) be a local ringed space such that my,(W)=m-SpecOp(W).
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Then (W, Oy) satisfies the condition (3) if and only if Ow(W) is a Hilbert ring.
The proof is obvious from Lemma 8.

LEMMA 11. Let A be an integral domain, W=m-SpecA and 0W—A|W If Wis
irreducible, then Oy(W)= A and nyw(W)=m-SpecOyu(W).

PROOF. Since A is integral, the structure sheaf 4 on SpecA is the intersection
sheaf with respect to the mapping: Spec4— Loc(QA4 |A) defined by P+ Ap. Thus Oy is
also an intersection sheaf and hence Oy(W)=|), .,y Am=A. Since ny: W—SpecA is
the inclusion mapping, we obtain 7y (#)=m-SpecA. Q.E.D.

Now the proof of Theorem 1 is complete from Lemmas 8, 10 and 11.

LeEMMA 12. Let K be a field, A a subring of K and W=Loc(K IA)C,. Then
W={A4,, | mem-Spec4}.

The proof is easy.

COROLLARY. If W is irreducible, then On(W)=A and mw(W)=m-SpecOw(W).
Here Oy is the intersection sheaf of W with respect to the inclusion mapping.

PRrROOF OF THEOREM 2. (i) First, we show the “only if” part. Note that X=Imr
by Lemma 7. For any Pe SpecA, there exists Y e #f(m-Spec 4) such that 4p,= Ume A4
Then P=("),,.,m. Thus A4 is Hilbert. For any P Spec 4, there exists Re Zan(K |A) such
that R dominates Ap. Since Loc(K |[4)={A4p | PeSpec A}, we can take Qe SpecA such
that R=A,. Then P=Q and hence 4p=ReZar(K|A). Thus A is a Priifer ring with
quotient field K. Then we check the “if”” part. Since Loc(K |4)=Zar(K |A4)~SpecA and
Bspec 4 - H{m-Spec A)—Spec 4 is an isomorphism of local ringed spaces, fxy=r: tW-—X is
also an isomorphism of local ringed spaces.

(ii) is derived from Lemmas 8, 10 and the corollary to Lemma 12. Q.E.D.

LEMMA 13. Let K be a field, A a subring of K, X =Zar(K|A) and W=X_,. Suppose

that Oy is the intersection sheaf of X with respect to the inclusion mapping and Oy =0 x|w-
(i) If W is irreducible, then Ow(W)=0x(X) and nty(W)=m-SpecOw(W).
(ii) The following three conditions are equivalent.

(@) W=X.

(b) W is irreducible and K=RatW.

(c) For any intermediate ring B between A and K such that B is of finite type over A,
there exists me m-Spec B such that A " mem-SpecA.
(iii) The following two conditions are equivalent.

@) r:tW-X is an isomorphism of local ringed spaces.

(¢) If aring B is an intermediate ring between A and K such that B is of finite type over
A and mem-Spec B, then A " mem-SpecA.

ProoOF. (i) is induced from Lemma 7 and Proposition 8 in [4].
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(i) The equivalence between (a) and (b) is verified from Lemma 5. (a) = (c): let
V= Zar(K|B) for any B. Then Vn W+#(J. Take ReV n W and let m= B m(R).
Since A/Anmc B/mc=R/m(R) are integral extensions by Lemma 7 in [4], we
obtain mem-SpecB and A Nnmem-SpecA. (c)=>(a): it suffices to prove that
Zar(K |B)m W# & for any B. There exists mem-SpecB such that 4 N mem-SpecA.
By a weak form of Hilbert’s zero-point theorem, B/m is integral over A/A N m.
On the other hand, since the mapping Py p: Zar(K |B)c,—+m-SpecB is onto, there
exists ReZar(K]B)c, such that m=B nm(R). Then R/m(R) is integral over A/4A N m.
By Lemma 7 in [4], we have Re W. Therefore Zar(K |B) NnW#J.

(i) (@)=(c): given B and m, there exists R,eZar(K |B) such that
m=B nm(R,), since Py is surjective. We let E =m}‘. By the corollary to Lemma
4, we obtain En W=E>5R,, and hence Zar(K|B)n En W# . If ReZar(K|B)n
En W, then m=B n m(R) and R/m(R) is integral over A/4 " m. Thus A " mem-SpecA.
(¢") = (a): it suffices to prove r(tW)=X by Lemma 7. The inclusion r(tW)c X is easy.
Conversely, for any R, € X, we put Y={R,} N W. Let V= Zar(K|B) for any intermediate
ring B between 4 and K such that B is of finite type over 4. If R,e V, then B< R,,. By
Proposition 8 in [4], there exists ReZar(K[B)cl such that Rc R,. By Lemma 7 in [4],
R/m(R) is integral over B/B n m(R), and so B N m(R) e m-Spec B. By the assumption (c),
we have 4 nm(R)em-SpecA. By a weak form of Hilbert’s zero-point theorem,
B/Bnm(R) is integral over A/4 n m(R). Therefore Re W and hence V' n Y# . This
implies Roe Y and {R,} =Y. Since YetW and R,=r(Y), we obtain X=r(:W). Q.E.D.

ProoroF THEOREM 3. Theequivalence between (a) and (c) is verified from Lemmas
8 and 13. The equivalence between (b) and (c) is induced from Lemmas 9, 10 and 13.

§4. Here we characterize the local ringed spaces Zar(K IA)cl explicitly, and prove
Theorem 4.

For an integral domain 4 and a local ringed space (W, Oy), we introduce the
following six conditions:

(20) W satisfies the separable condition T, .

(21) (W, Oy) is an integral local ringed space satisfying
the condition (8) in [5].

22) (W, Oy) 1s a local ringed space over Spec4 and the
structure morphism is dominant.

ReEMARK. By (21) and (22), RatW is a field and 4 —, Op(W) < Oy, =
Rat W for any xe W.

23) The topology of W is generated by {dom(x) | a€ Rat W}.
(24) For any xe W, the stalk Oy, , is a valuation ring of Rat W
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and Oy ./m(Oy ,) is an integral extension over 4/4 N m(Ow ).

(25) If R is a valuation ring of Rat W which contains A4, then
there exists x€ W such that Oy < R.

LemMma 14. (i) Let K be a field, A a subring of K and W=Zar(K|A)y. If
W=Zar(K|A), then (W, Oy) satisfies the conditions (20), (21), (22), (23), (24), (25)
and K=RatW.

(i) Conversely, suppose that an integral domain A and a local ringed space (W, Oy)
satisfy the conditions (20), (21), (22), (23), (24) and (25). If we put K=RatW, then
K is a field containing A that satisfies Zar(K[A)c,=Zar(K|A) and (W, (DW):Zar(K|A)c,.

PrROOF. (i) is induced from Lemma 7, Proposition 8 in [4] and Lemma 5.

(i) By Lemmas 6, 7 in [5], Lemma 3 in [6] and (21), W is irreducible, K=Rat W
is a field and O, is the intersection sheaf of W with respect to ¥Yy. By (22), 4 is a
subring of K. Note that (20), (23) induce that ¥y is an into-homeomorphism, and (24),
(25) imply that ¥, (W)=Zar(K|A),. Thus W~Zar(K|A),. By Lemma 5, we obtain
Zar(KTA)c, ={K}=Zar(K |A). Q.E.D.

Here we consider the following two categories for an integral ring A.

@', (A): the category of local ringed spaces (X, Oy) satisfying the conditions (29), (30),
(32), (33), (35) and (36) in [5] and morphisms f: X— Y of local ringed spaces
over SpecA satisfying the condition (2).

@'(A): the full subcategory of local ringed spaces over SpecA consisting of local
ringed spaces (W, Oy) which satisfy the conditions (20), (21), (22), (23), (24)
and (25).

By Theorem 1 in [5], the objects of €,(4) coincide with those of €',(4). Moreover,

LEMMA 15. Let A be an integral Hilbert ring. Then

(i) the functor t: €'5(A)—>%'(A) gives an equivalence of categories.

(i) A local ringed space (W, Oy) is an object of € ,(A) if and only if (W, Oy) satisfies
the conditions (20), (21), (22), (23), (24) and (25). Therefore the category €{(A) is a
subcategory of €'(A) obtained by assuming morphisms to be dominant (i=1, 2).

PrROOF. (i) is induced from Theorem 1 in [5], Lemmas 1, 14 and Theorem 3.
(ii) is obvious from Theorem 1 in [5] and Lemma 14.

REMARK. Let % ,(A) be the category of projective fields over 4, in which morphisms
are places that fix all elements of 4. Then ¥,(4) and €(A) are anti-equivalent (see [5],
Lemma 11).

PROOF OF THEOREM 4. (i) is verified from Theorem 1 in [5], Lemmas 2 and 15.
In order to show (ii), we first notice by Theorem 2 in [5];




(26)
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Zar(K |k)~proj.lim X ,

where X runs over all integral schemes proper over Speck with rational function field
K. By Examples, (ii) and Theorem 3, all objects and morphisms in (26) belong to the

category ¢, and X become complete algebraic varieties V. Since ¥, and %, are
equivalent, we obtain

[1]
[2]
[3]
[4]
[5]

[6]

Zar(K |k), ~proj.lim V. Q.E.D.
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