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Abstract. In [5], the author has proved extended sharp extrapolation theorem on $L^{p}$ spaces with
$\sum$-method ([1]), which asserted $\sum_{1<p<q}((p-1)^{-\alpha}L^{p})^{p/q}=(L\log^{\alpha}L+L^{q})^{1/q}$ . In the present paper, on that
result, we shall consider the case $q\approx 1$ .

1. Introduction and result.

Let $(\Omega, \mu)$ be a $\sigma- finite$ measure space. In extrapolation theory on $L^{p}$-spaces, we
treat the operator which satisfies the following assumptions.

ASSUMPTION. Let $ 1<q<\infty$ and fix it.
(1) Tisasub-additive operator on L $(\Omega, \mu)$ forl $<\forall p<q$ , i.e. $|T(f+g)|\leq|Tf|+$

$|Tg|$ a.e. for any $f,$ $g\in L^{p}(\Omega, \mu)$ .
(2) For any $f\in L^{p}(\Omega, \mu)$ ,

(1.1) $[\int_{\Omega}|Tf(x)|^{p}d\mu(x)]^{1/p}\leq\frac{A}{(p-1)^{\alpha}}[\int_{\Omega}|f(x)|^{p}d\mu(x)]^{1/p}$

Here, positive constants $A$ and $\alpha$ are independent of $p$ and $f$

In real analysis, we can find many operators satisfying such conditions (\S 3). In
[5], for such operator, the author has proved the following extrapolation theorem:

THEOREM A. Let $T$ satisfy the assumption above. Then, for any $f\in L(\log L)^{\alpha}+$

$L^{q}(\Omega, \mu)$ ,

(1.2) $\int_{|Tf|\leq 1}|Tf(x)|^{q}d\mu(x)+\int_{|Tf|>1}|Tf(x)|d\mu(x)$

$\leq\frac{C_{A}}{(q-1)^{\alpha}}[\int_{|f|\leq 1}|f(x)|^{q}d\mu(x)+\int_{|f|>1}|f(x)|(1+\log|f(x)|)^{\alpha}d\mu(x)]$ .
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As a corollary of this result, we can get S. Yano’s classical extrapolation theorem:

THEOREM $B$ ([9]). Let $(\Omega, \mu)$ be a finite measure space. Then, for the operator $T$

satisfying the assumption above and the function $f\in L\log^{\alpha}L$ ,

(1.3) $\int_{\Omega}|Tf(x)|d\mu(x)\leq c_{q,a,A}[\int_{\Omega}|f(x)|(1+\log^{+}|f(x)|)^{\alpha}d\mu(x)+\mu(\Omega)]$ .

The original proof of Theorem $B$ depends upon the property

$L^{1}(\Omega)\supset L^{p}(\Omega)\supset L^{q}(\Omega)$ for any $1<p<q$ .

After the proof of Theorem $B,$ $\sum_{0<0<1}A_{\theta}$ , the $\sum$-extrapolation space of strong
compatible family of (quasi-)Banach spaces $\{A_{\theta}\}_{0<\theta<1}$ , was defined as

$\sum_{0<\theta<1}A_{\theta}=the$ closure of the linear hull of $\bigcup_{0<\theta<1}A_{\theta}$

with the (quasi-)norm

$\Vert a\Vert_{Z}=\inf\{\sum\Vert a_{n}\Vert_{\theta_{n}} : a=\sum a_{n}, a_{n}\in A_{\theta_{n}}\}$ .

It was proved that this space is the ”widest” space (see [1, Proposition 2.3]).
For $\alpha\geq 0$ , the author proved $\sum_{1<p<q}((p-1)^{-\alpha}L^{p}(\Omega))^{p/q}$ is the spaoe ofall measurable

function $f$ satisfying

$[\int_{f|\leq 1}|f(x)|^{q}d\mu(x)+\int_{f|>1}|f(x)|(1+\log|f(x)|)^{\alpha}d\mu(x)]^{1/q}<\infty$

and Theorem A was proved from it. Here, each $((p-1)^{-\alpha}L^{p}(\Omega))^{p/q}$ is the space of all p-th
integrable functions on $(\Omega, \mu)$ with quasi-norm

$((p-1)^{-\alpha}\Vert f\Vert_{L^{p}\langle\Omega,\mu)})^{p/q}=[\frac{1}{(p-1)^{p\alpha}}\int_{\Omega}|f(x)|^{p}d\mu(x)]^{1/q}$

However, the original purpose of these studies is the approach to $L^{1}(\Omega)$ . As is known,
we can never get (1.2) for $q=1$ . For example, we shall consider the Hilbert transform
$H$. Let $\chi(x)=1$ for $0\leq x\leq 1$ , and $\chi(x)=0$ elsewhere. Then it is easy to show $H\chi\in L^{p}(R)$

for $p>1but\not\in L^{1}(R)$ . So, instead of the case $q=1$ , we shall investigate the following
function classes.

DEFINITION (cf. [3]). Let $\alpha,$ $\beta\geq 0$ . $f\in \mathscr{L}_{\beta,\alpha}^{*}$ if and only if $f$ is a measurable func-
tion on $\Omega$ such that

$\int_{f|\leq 1}\frac{|f(x)|}{(1-\log|f(x)|)^{\beta}}d\mu(x)+\int_{f|>1}|f(x)|(1+\log|f(x)|)^{\alpha}d\mu(x)<\infty$ .

Once, the author tried to get some estimation on these classes ([3, Theorem 2]).
In this paper, we shall prove the following result, which is the sharpened one.
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THEOREM. Let $(\Omega, \mu)$ be a $\sigma- finite$ measure space and let $T$ be an operator satisfying
the assumption above. If $f\in \mathscr{L}_{\epsilon,\alpha}^{*}$ , then $Tf\in \mathscr{L}_{\alpha+\epsilon,0}^{*}$ for arbitrary $\epsilon>0$ . Moreover,

(1.4) $\int_{|Tf|\leq 1}\frac{|Tf(x)|}{(1-\log|Tf(x)|)^{\alpha+\epsilon}}d\mu(x)+\int_{|Tf|>1}|Tf(x)|d\mu(x)$

$\leq c_{q,\alpha,\epsilon,A}[\int_{|f|\leq 1}\frac{|f(x)|}{(1-\log|f(x)|)^{\epsilon}}d\mu(x)+\int_{f|>1}|f(x)|(1+\log|f(x)|)^{\alpha}d\mu(x)]$ .

Here, the positive constant $C_{q,\alpha,\epsilon,A}$ depends only on $q,$ $\alpha,$
$\epsilon$ and $A$ .

Moreover, we can treat the spaces $\mathscr{L}_{\beta,\alpha}^{*}$ as Orlicz spaces. Put

(1.5) $\Phi_{\beta,\alpha}(t)=\left\{\begin{array}{ll}\frac{|t|}{(\beta+1)(1-\log|t|)^{\beta}} & (0\leq|t|\leq 1)\\\frac{t(1+\log|t|)^{\alpha}}{\alpha+1}+\frac{\alpha-\beta}{(\alpha+1)(\beta+1)} & |t|>1)\end{array}\right.$

and

$\Phi_{\beta.\alpha}(L)=\{f$ : $\int_{\Omega}\Phi_{\beta,\alpha}(f(x))d\mu(x)<\infty\}$

for all $\alpha,$ $\beta\geq 0$ . Then, it is easy to show $\Phi_{\beta,\alpha}(L)=\mathscr{Z}_{\beta,\alpha}^{*}$ and each $\Phi_{\beta,\alpha}(L)$ is an Orlicz
space with the Luxemberg norm

(1.6) $\Vert f\Vert_{\Phi_{\beta,\alpha}\langle L)}=\inf\{\lambda>0$ : $\int_{\Omega}\Phi_{\beta,\alpha}(\frac{f(x)}{\lambda})d\mu(x)\leq 1\}$ .

Then we can get

COROLLARY. Let $(\Omega, \mu)$ be a $\sigma- finite$ measure space and let Tbe an operator satisfying
the assumption above. If $f\in\Phi_{\epsilon,\alpha}(L)$ , then $Tf\in\Phi_{\alpha+\epsilon,O}(L)$ for arbitrary $\epsilon>0$ . Moreover,

(1.7) $\Vert Tf|_{\Phi_{\alpha+\epsilon.O}(L)}\leq C\Vert f\Vert_{\Phi_{\epsilon,\alpha}\langle L)}$ .
Here the positive constant $C$ is independent of $f$

This corollary can be proved similarly to [4, Theorem 1 and 2] and we here omit it.

2. Proof of the theorem.

In this section, we shall prove our theorem. First, we shall prove the following
lemma.

LEMMA. Let $f\in \mathscr{L}_{\beta,\alpha}^{*}$ and $\beta>0$ . Then,
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(2.1) $\sum_{n=1}^{\infty}\frac{1}{n^{1+\beta}}\int_{f|\leq 1}|f(x)|^{1+\langle q}$

‘ $1$ )
$/nd\mu(x)\approx q,\beta\int_{f|\leq 1}\frac{|f(x)|}{(1-\log|f(x)|)^{\beta}}d\mu(x)$ .

Here, $X^{q}\approx^{\beta}Y$’ means that there exist two positive constants $c_{1},$ $c_{2}$ which depend only on
$q$ and $\beta$ such that $c_{1}Y\leq X\leq c_{2}$ Y.

$PR\infty F$ . It suffices to prove

(2.2) $\sum_{n=1}^{\infty}\frac{1}{n^{1+\beta}}a^{\langle q-1)/n}\approx\frac{l}{(1-\log a)^{\beta}}q,\beta$

for any $0<a\leq 1$ . First, we consider the case $0<a<e^{-1}$ . For $n=1,2,3,$ $\cdots$ ,

$\frac{1}{2^{1+\beta}}\frac{a^{\langle q-1)/n}}{n^{1+\beta}}\leq\int_{n}^{n+1}\frac{a^{(q-1)/t}}{t^{1+\beta}}dt\leq 2^{1+\beta}\frac{a^{\langle q-1)/(n+1)}}{(n+1)^{1+\beta}}$ .

So,

$\sum_{n=1}^{\infty}\frac{a^{\langle q-1)/n}}{n^{1+\beta}}\approx\beta\int_{1}^{\infty}\frac{a^{(q-1)/t}}{t^{1+\beta}}dt=(q-1)^{-\beta}(\int_{0}^{-\langle q-1)\log a}x^{\beta-1}e^{-x}dx)\frac{l}{(-\log a)^{\beta}}$ .

For simplicity, we denote

$\Gamma(\beta;t)=\int_{0}^{t}x^{\rho-1}e^{-x}dx$

for any $ 0<t\leq\infty$ . As is known, $\Gamma(\beta;\infty)=\Gamma(\beta)$ . Then, we have

(2.3) $\frac{(q-1)^{-\beta}\Gamma(\beta;q-1)}{(1-\log a)^{\beta}}\leq\frac{(q-1)^{-\beta}\Gamma(\beta,-(q-1)\log a)}{(-\log a)^{\beta}}\leq\frac{(q-1)^{-\beta}2^{\beta}\Gamma(\beta)}{(1-\log a)^{\beta}}$ .

If $e^{-1}<a\leq 1$ , we have

(2.4) $e^{1-q}\sum_{n=1}^{\infty}\frac{1}{n^{1+\beta}}\leq\sum_{n=1}^{\infty}\frac{1}{n^{1+\beta}}a^{\{q-1)/n}\leq\sum_{n=1}^{\infty}\frac{1}{n^{1+\beta}}\approx 1+\frac{1}{\beta}$ ,

$\frac{1}{2}<\frac{l}{(1-\log a)^{\beta}}\leq 1$ .

Now, we conclude (2.2).

Now, we prove our theorem. From Theorem $A$ , we have

(2.5) $\int_{|Tf|\leq 1}|Tf(x)|^{p}d\mu(x)+\int_{|Tf|>1}|Tf(x)|d\mu(x)$

$\leq c(\frac{1}{p-1})^{\alpha}[\int_{|f|\leq 1}|f(x)|^{p}d\mu(x)+\int_{|f|>1}|f(x)|(1+\log|f(x)|)^{a}d\mu(x)]$ ,
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for any $1<p\leq q$ . Here the constant $C$ depends only on $A$ . Put $p=1+(q-1)/n,$ $n\in N$.
Multiplying both sides of (2.5) by $n^{-\langle\alpha+1+\epsilon)}$ and summing them up with respect to $n$ ,
we get

(2.6) $\sum_{n=1}^{\infty}\frac{1}{n^{\alpha+1+\epsilon}}\int_{|T\int|\leq 1}|Tf(x)|^{1+\langle q-1)/n}d\mu(x)+\int_{Tf|>1}|Tf(x)|d\mu(x)$

$\leq c_{q,\alpha,\epsilon,A}[\sum_{n=1}^{\infty}\frac{1}{n^{1+\epsilon}}\int_{f|\leq 1}|f(x)|^{1+\langle q-1)/n}d\mu(x)+\int_{f|>1}|f(x)|(1+\log|f(x)|)^{\alpha}d\mu(x)]$ ,

where the positive constant $C$ depends upon only $q,$ $\alpha,$
$\beta$ and $A$ . By using the lemma above,

the first term of RHS. of (2.6) $q,\epsilon\approx\int_{f|\leq 1}\frac{|f(x)|}{(1-\log|f(x)|)^{\epsilon}}d\mu(x)$ ,

the first term of LHS. of $(2.6)\approx q,\alpha,\epsilon\int_{Tf|\leq 1}\frac{|Tf(x)|}{(1-\log|Tf(x)|)^{\alpha+\epsilon}}d\mu(x)$ .

Now, we have completed the proof.

REMARK 1. We can never get this theorem for $\epsilon=0$ . For example, $ H\chi$ , defined
in \S 1, is not a member of $\mathscr{L}_{1,O}^{*}(R)$ .

REMARK 2. Assume $q\geq 2$ . Multiplying the both sides of (2.5) by
$n^{-1-\alpha}(\log(1+n))^{-\langle 1+\delta)},$ $\delta>0$ , we can prove a better estimate

$\int_{Tf|\leq 1}\frac{|Tf(x)|}{(1-\log|Tf(x)|)^{\alpha}(1+{\rm Log}{\rm Log}|Tf(x)|)^{1+\delta}}d\mu(x)+\int_{Tf|>1}|Tf(x)|d\mu(x)$

$\leq c_{q,\alpha,\delta,A}[\int_{J|\leq 1}\frac{|f(x)|}{(1+{\rm Log}{\rm Log}|f(x)|)^{1+\delta}}d\mu(x)+\int_{|f|>1}|f(x)|(1+\log|f(x)|)^{\alpha}d\mu(x)]$ .

Here, LogLogy $=\log$(1-log $y$) for any $0<y\leq 1$ .
By using other suitable sequence $x_{n},$ $\{x_{n}\}\in l^{1}$ , we can get similar results.

REMARK 3. T. Miyamoto ([2]) has proved that “If the operator $T$ is ofweak-type
$(1, 1)$ and $(q, q)$ for some $q>1$ , then $T$ satisfies (1.4) for $\alpha=1’$ . But our theorem includes
his result because the Marcinkiewicz interpolation theorem says “If the operator $T$ is
of weak-type $(1, 1)$ and $(q, q)$ for some $q>1$ , then $T$ satisfies (1.1) for $\alpha=1’$ .

3. Applications.

In this section, we state some applications of our theorem.

EXAMPLE 1 (Maximal function). Let $\mathscr{B}_{n}$ denote the collection of all rectangles in
$R^{n}$ whose sides are parallel to the coordinate axes for $n\geq 2$ and let $\mathscr{B}_{1}$ denote the
collection of a finite open interval in $R^{1}$ . For any $f\in L_{loc}^{1}(R^{n})$ , we consider the maximal
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function

$*\parallel f(x)=\sup_{R\ni\Omega,R\ni x^{n}}\frac{1}{|R|}|\int_{R}f(x-y)dy|$ .

Here, $|R|$ denotes the Lebesgue measure of the set $R$ . Then, as is known, the operator
$\mathscr{M}$ is of weak-type $(1, 1)$ for $n=1$ . But for $n\geq 2,$ $\ovalbox{\tt\small REJECT}$ is not of weak-type $(1, 1)$ (see [7,

X \S 2.3]). Of course, even ifn $\geq 2,$ $\mathscr{M}$ is of type $(p, p)$ forp $>1$ . Moreover,

$\Vert \mathscr{M}f\Vert_{L^{p}\langle R^{n})}\leq\frac{A^{n}}{(p-1)^{n}}\Vert f\Vert_{L^{p}\langle R^{n})}$

(see Remark 3 and [7, II \S 5.20]). Therefore, instead of the $L^{1}$ -boundedness, we have

$\Vert^{y}f\Vert_{\Phi_{n+\epsilon.O}\langle L)}\leq C\Vert f\Vert_{\Phi_{\epsilon.n}\langle L)}$

for any $\epsilon>0$ (see (1.6)). Here, the positive constant $C$ is independent of $f$

EXAMPLE 2 (Differential operators). Suppose $f$ is ofclass $C^{2}(R^{n})$ and has compact
support. Let $\Delta f=\sum_{j=1}^{n}\partial^{2}f/\partial x_{j}^{2}$ . Then we have

$\Vert\frac{\partial^{2}f}{\partial x_{j}\partial x_{k}}\Vert_{\Phi_{2+\epsilon.O}(L)}\leq C\Vert\Delta f\Vert_{\Phi_{\epsilon.2}\langle L)}$

for any $\epsilon>0$ . Hence, the positive constant $C$ is independent of $f$

In fact, by using the Riesz transform of the function $f$,

$Rf=\frac{\Gamma((n+1)/2)}{\pi^{(n+1)/2}}\lim_{\delta\rightarrow 0}\int_{y|>\delta}\frac{y_{j}}{|y|^{n+1}}f(x-y)dy$ , $j=1,2,3,$ $\cdots,$ $n$ ,

we have

$\frac{\partial^{2}f}{\partial x_{j}\partial x_{k}}=-R_{j}R_{k}\Delta f$

(see [6, III \S 1.3]). As is known, each $R_{j}$ is of weak-type $(1, 1)$ and of strong type $(2, 2)$ .
So, as remarked above, $T=R_{j}R_{k}$ satisfies our assumption for $\alpha=2$ . Hence we can apply
our theorem.
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