Tokyo J. MATH.
VoL. 18, No. 2, 1995

Zeta Function and Perron-Frobenius Operator
of Piecewise Linear Transformations on R*

Makoto MORI

National Defense Academy
(Communicated by M. Sugiura)

§1. Introduction.

In [7], we considered a piecewise linear transformation F on R* into itself.
Roughly speaking, we determined the eigenvalues of the Perron-Frobenius operator P
corresponding to the transformation F by the zeros of the Fredholm determinant
det(/— @,(2)) (the definition of the Fredholm matrix ®,(z) will be given in the next section).

We denote by J°, J and AJ =J\J° be the inner, the closure and the boundary
of a set J. Set

& =lim inf ess inf i log|det D(F™")(x)| ,

n-* o xel n
. 1

A=lim sup sup—log#{we ¥ : |w|=n,{w)nAJ# T},
n— o J n

where D(F”) is the jacobian matrix of F”, sup, is the supremum over all possible convex
polyhedrons J, # is a set of words, and {w) is a parallelopiped which corresponds to
a word we#  (see §2 for precise definitions). We say that F is expanding if

P | .
lim inf — ess inf log min | the eigenvalue of D(F")}x)|>0 .

n—+o N xel
Our theorem in [7] is:

THEOREM A. Assume that F is expanding and &> A.

(i) Then for any £>0, there exists an integer n, and for n=n, and |zj<e*™ 275,
2z~ belongs to the spectrum of the Perron-Frobenius operator P restricted to # if and
only if

det(I— ®,(z)) =0 .

(i) The eigenfunctions of P on L* associated with eigenvalues modulus 1 belong to %.
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Here a family of functions £ is defined by:

DEFINITION. Let # be the set of functions fe L' for which there exists {C,},,cy
such that fiy(x)=), .y Cwlw(x) converges to fin L' and that

[0 0]
Y e Y IC,l<wo
n=1 |wi=n

for any A'>A.
Set for fe # and A'> A

1 f o =inf ie‘“ Y G,

|wj=n

where inf is taken over all {C,}, ., Which satisfy the above condition.

By the norms || - ||;., Z becomes a locally convex linear space. This is an extension
of BV, the set of functions with bounded variations, in one-dimensional cases, since
for fe BV there exists {C,}, ey such that ) * 3  _ |C,|<oo forany 0<r<1.Note
that £ > BV in one dimensional case.

We will explain the transformation which we will consider in this article. Let
vy, * °, U, be independent vectors in R*. Let o/ be a finite set, and for each element
ae .o/, which we call an alphabet, there exists a parallelopiped {a), that is, for each
ae .o/ there correspond a vector p® and constants o, - - -, «f >0, and each {a) satisfies

k
{a)*® ={p"+ > xofy,;: 0<xi<1} ’

i=1
k
i=1

ad>nb)=g  (a#Db).

The piecewise linear transformation F, which we will consider in this article, is a mapping
from I'=|),. <a) into itself, for which there exist matrices M* and vectors ¢* (a€ .«¢)
and the restriction F® of F to {a) satisfies

Fi(x)=M*%x—p“)+4°,
and det M*+#0 for each ae o/. Moreover, we assume
M®%,;={v;,

for some constants A?, that is, v,’s are eigenvectors.
In this article, we will consider the zeta function

c(z)=exp(i “ oy |detD(F")(p)|‘1).

n=1 N p:p=Fn(p)
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We will prove as in one-dimensional cases ([5], [6]):

THEOREM B. Assume that F is expanding and £> A. Then the zeta function {(z)
satisfies {(z)=det(I — D,(z)) " .

Combining the results, we can show that the eigenvalues of the Perron-Frobenius
operator restricted to 4 in the domain | z| <e®~* are determined by the singularities of
the zeta function.

To make the notations simple, we consider a transformation F which has no
periodic points on | J,_,A<a). In [7], we considered a wider class of piecewise linear
transformation, for which each {a) is a polyhedron and we do not assume that each
v; 1s an eigenvector (1 <i<k), that is, F* may have a rotation. As we will discuss in §3,
to consider the zeta function, this general class seems too large.

2. Preliminaries.

We will summarize the notations. A finite sequence of alphabets w=a, - - - a, is
called a word. We denote the set of words by #” and for a word w=a, - - - a,, we denote
1. |w|=n (the length of w; for the empty word ¢, we put |e|=0),
Wy = {ﬂ:; 7 Ka) ?f w#e,
1 if w=g,
wlk]=a, for 1 <k<n,
wlk,l]=a,---a, for 1<k<I<n,
F¥=F°% .- F (F? =identity map),
6. nw)=[]’_, IdetM=|~1.
We denote #, the set of words with length n and <w) # .
We define ajaj - - - (af € o), the expansion of xe I, F'~!(x)e {(aF), where

Fi()= { =9
FF-(x) i>1.

REMARK. For each ae .o/, the mapping F® can be extended to R* and we can
define (F*)~! from I into R*. Therefore, for any x €1, we can define (F%)~(x)=ax e R*.
In a same way, for any word w, we can define wxeR" If wxe<w), then, of course,
F'™(wx)=x, that is, the expans10n of wx equals wajaj - - -. For this case, we say that
WX exists.

In this article, we only consider parallelopiped J for which there exist vector p’
and «f, - -+, of >0 and

whw N

i=1

k
J°={p’+ Y xodv; O<xi<l} X

We considered in [7] the signed symbolic dynamics with the set of faces D = ’;;; D,.
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For each face de D, there correspond a set of integers 1</, <" ' <j,<k, a finite
sequence B; of 0 or 1 for i#j,, - - -, j, and for a parallelopiped J, a face d of J is

{PJ"' Z X0 v; + Z Bia{vi:O<xi<1ai=j1a“',jp}'

i=j1,Jp i#j1,p

Put for i#jy, ", Jj,

n{={p’+ﬁia{vi+ Y xadv;: ijR,j?éi} ,
j#i

and we say that the face @ of J is generated by planes 7] (i#j,, - - -, j,). Then R* is
divided into several regions by the planes n} with i#j,, - - - j,, one of them contains J°
in its inside. We call this region by the interior region generated by a face 0 of J, and
we denote its boundary by J° and we will simply call it a screen of J. We define
o(J% x)= +1, if xe R* belongs to the interior region generated by a face ¢ of J and
otherwise we put a(J?, x)= —1 (Figure 1).

(@)= +1/2

o(J% x)=—1 ;o

FIGURE 1

For a word w, we can naturally define o(F*J°, x)=0(J% wx). As we mentioned
before, we will prove Theorem B only for the case which has no periodic points which
pass | J,.,A<a). Hence we need not take care of xeJ°.

For a word w, we denote w? instead of {w)?, and we denote

A={a’: aest,0eD}.
NotaTions. (1) For alphabets a and b, we say that a screen J of a paral-
lelopiped J crosses ab if J=<{a) and F¥J)n<b)# & (cf. Figure 2). Set

{{xe<b): o(F*(J), x)= +1}} if J crosses ab,

b,J>=
<ab, 37 {{ g} otherwise ,

A{ab, .7>=A< N K)

Ke<lab,T>

=A{xe(b): o(FY(J), x)=+1} .
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A screen K? (Ke<{ab,J)») with a face deD such that K°#b% for any b% e.<f is

called a new screen generated by F%J) in <b)>, and we denote by New{ab,J> the
set of new screens of {ab, J>. Put

Aoab, Ty =(A<ab, TY\ AbY) N F(T),
and A,<ab, J) is the union of K\F*J) such that K is a new screen generated by
F%(J) in <b) and (R\ FJ))nA<ab, T># &.

A,{ab,J>= U R\(Ao<ab, T>UA{ab, T ).
ReNewlab, T>

We also put Ay{a, J>=J.

1A Cab, T t ACab, T
. Alab, J> ,
F(J) b e e o
A,lab,J>  Ay<ab,J> A,{ab, J>
new screens
FIGURE 2

(2) For a word w=a,; --a, (n>2) and an alphabet b, we call a screen J
of a parallelopiped J crosses wb if

JC<a1> ] .
FAew[L, i1, T))n<ay D #F  (1<i<n—1),
FR)n<bY# D,

for some KeNew(w,J), where New{w,J> is the set of new screens generated
by F*"~1J) in <a,>. New screens are already defined for |w|=2 in (1). For
KeNew(w,J», a screen L? is called a new screen generated by F*(J) in <b) if
L°#b% for any b% € .o where Le{a,b, K, that is,

L={xe<b): a(F*«(K), x)=+1},

and de D. We denote by New{wb, J)> the set of new screens L? which is generated
by Ke New{w, J>. Set

<Wb2 ‘T>= U <anb3 K> s
Re Newiw,T>
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that is, the union is taken over all new screens K generated by F*'"~(J) in
{a,>. We call a new screen K°e New{wb, J> generated by F*(J) in {b) is

(0) of type 0, if K={") ¢ s, 75L5
(1) of type 1 if K? satisfies d N (F*(A,<{w, D))\ A{bD)# & and not of type 0,
(2) of type 2 otherwise.

Set

A<wb,7>=A( N K>,

Kedwb, J>
Ao<wb,7>=A( N K)\A<b>,
Kedwb, J>

A {wb,T> is the union of K\A,{(wb,J)» such that K is a new screen of type 0
generated by F*(J) in <b) and (R\ F*(J))nA{wb, J> # ¥, and

A,{wb, .7>=A( U 12) \ (Agdwb, T>UA (Wb, T ).
Re Newdlwb, T
Set
{1 k is even ,
S = .
0 k is odd,
and for de D;, we also set for 0<i<k
s(0)=s;=(—1)"/2.
We also use the notation
s(J)=s(d)=s; if deD;.

For a parallelopiped J in J<<{a), put ¢*(FJ,b)=+1, if o(FJ,x)=+1 holds for
all xe<b) or if J crosses ab and b is a screen of some Ke<ab,J), otherwise
o*(FJ, b)=—1.

DEFINITION. We denote by FZ the set of new screens of type 0 or 1 generated

by F%a® in some <b) (a,be s/, e D), that is, Fe=|], e Uscpc» New<ab, a°>.
For n>2, let F"o/ be the set of new screens of type 0 or 1 generated by F4(J) in
some <b> (a, be o, Je F*~ ', J=<{a)), which does not belong to | J}_] F*sZ.

Set
¢ib)= [—D+s(d')a*(Fa, 5)]’1(“)

and for ael =, F"of
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zp4b) if bedd
&@, b)= 1 z2s(@)n(a) if be Ul F "o/ is a new screen generated by Fa,
0 otherwise ,

and we define the Fredholm matrix &(z) an infinite dimensional matrix on Ur ol
for which the (4, b) component equals #a, b).

We also need to define finite dimensional matrices @,(z). Thus we will prepare
several notations.

Set B,(wb, J) be the set of K°e F*<7 such that J crosses wb, and k? is of type 1

generated by some L e New{w, J>. Note that if |w|<k, then B,{wb,J>=, especmlly
Bo(wb, J> = for any we # and be.o/. Let

Cn,1<Wba 'I> = U:zl Bk<Wbs '7> ’

D, ({wb, T>=\),.,Bwb, J> .
For [>1, set

Cn,l+ 1<Wb3 ‘7> = U Cn,l<w[m9 I w I]ba j/> ’

J e€Dyn, 1<wil,m),T>
m>2

Dn,l+1<Wb9 j) = U - Dn,l<w[ma , Wl]b, '7’> s

J €Dy, 1 {wl1,m1,T>
mz2

Ciwb, I>=) C,iiw, 7>,

1>1

D wb,J>= ) D, <w,T>.
1>1
Now we will fix n>0 and construct the Fredholm matrices which have coefficients
(Uk=o FsZ. We need not renew screens which belongs to C,{wb,J ). Let

New, {w, J>=Newlw, J> u D w,J>,
and we call a screen of type (n, 0) if it is of type 0 of New,(w,J) or it belongs to

D,{w, J», and of type (n, 1) if it belongs to C, (w, I>.

Set ¢(J, L)=¢(J, L) for a screen Je UrZg F*sZ (J=<a) for some ac.of), and for
JeFrod
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¢.J, )=

(2 1(L)+ Y > 2wl |wi—1DERLY)  if Lled,

weW ReNewn(w,J>

t{pe(n,O)
) w|>2
Y 2s()z " gw[ 1, |w|—17) if L’e();_, Fd,
| New!.?‘lv,zfs) sL?
type(n,1)

and a Fredholm matrix ®,(z) is the ( J;_, F k of matrix whose (d, b) coefficient is ¢ (@, b).
Using the Fredholm matrices @,(z), we get Theorem A (cf. [7]).

DEFINITION. Let J and K be parallelopipeds.

(1) K?is inside of J, if K? is generated by (k— 1)-dimensional planes 7%, - - - n¥
and 7nf is between =} and =;’, where 7} and =}’ are the planes which are tangent to the
parallelopiped J and parallel to n¥ (Figure 3).

(2) Set for a word w=a, - - - a,,

FrUm= 10— Fom=s(- - Fi(ad) n<ay) - ) A <)
and we define (cf. Figures 4 and 5)

S[K? in J]_{l if K?is inside of J ,
0 otherwise ,
5[Ka' on F¥1m=1ly0] _{1 if the face 0’ of K intersects F*11:m~1ly?
0 otherwise ,
S[K” on F"‘"A(w)]—{l if the face &' of K intersects F™~ 'A{w) ,
0 otherwise .
K?° K°
i J J
|
Case (a) Case (b)
FIGURE 3
<wd
Fw[l.m— l]wi? K(?’ Ka'
K? is on F*i1m=1l,0 K? is on F™ 1A(w)

FiGURE 4 FIGURE §
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The next lemma is very simple but a key in [7] to construct a renewal equation:
Lemma 2.1. (1) For a parallelopiped J and a screen K, we get

s+ 2. S(Q)a*(FJ?, IZ)={1 if K is inside of F(J),

oeD

2.1

0 otherwise . ( )

(2) Let w be a word, J a screen of a parallelopiped J={a)(acof). For a

screen L which is generated by some KeNew{w,J) in <b) (besf), we denote by
G(L) the set of Ke New{w, J> which generate L. Then we get

- +1/2 if L isof type 0 or type 1,

ReG(D) 0 if Lisoftype?.

We will schematically give a proof for the case k=2 (cf. [7] Lemma 2.1 and Lemma
3.4 for precise proofs). A screen K is inside of F(J) either case (a) or (b) of Figure
3. Thus it is not so difficult to show (2.1) for both cases. If a face 0 of b is between
F(A) and F(B) of Figure 6 (type 0), then it is generated by the image of screens
A, B and AB. The screens 4 and B give +1/2 and the screen AB gives —1/2,
therefore (2.2) equals +1/2. If a face @ of b is between F(4) and F(X) (type 1), it
is generated by the image of the screen 4. Therefore (2.2) also equals +1/2. If a
face 0 of b is between F(Y) and F(A) (type 2), then it is generated by the images of
screens B and 4B. Therefore (2.2) equals 0. This proves (2).

X F(X)
= F
type 1
Y F(Y)
A B type 2 F(A) type 0  F(B)
FIGURE 6

To avoid confusion, we consider the copies D® (0 <i < o0) of the set of faces D. Set
Fof=s/={a’: ac o/, 0e DV},

and we denote a new screen b’e FoZ (9eD'V), which is generated by some F%a® in
(b) (ae o, 0 e D). Note that there may not exist b’ for some de D). A set of new
screens in (b)Y which are generated by some F%? (0eD'V) is denoted by b? with
0’ e D?®. Now recall that the screen b% (¢’ e D@) is divided into 3 parts, Ay, A,
and A,. We denote by ¢? (0” e D®) if ¢® € New{bc, b?"} is of type 0 of some b? (0’ e D?).
Note that new screens ¢ e New<bc, b*> of type 1 belong to Fsf that is ¢ €DV,
We need not to consider the new screens which is of type 2 (cf. Lemma 2.1 (2)).
Thus we can inductively define b° (b e o, 0 € D™) which is generated in {b) by the image
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of Ay and A, of some F°a” (ac .o, @ e D"~ V). We denote for n>2 by F"s/ the set of
b” such that be.oZ, & e D™, and that b” € New{ab, a®) generated by some a’e F* 1o/
in <b). For a,beo/ and 9,8 e| ;2 ,D?, we denote y(ab, 9, 0')=(a’, b Wm(@)~*, and
for a word w=a, - -a,

Y(w, 04, 0,)= Z ﬁ Y(aa; 4 1, 0;, 04 1)

02, 0n-1 i=1

Where a,,,+1=al, 6,,+1=51.

3. The Proof of Theorem B.

We get as a formal expression

log[det(I— &(z))~ '] =log[exp{ —trlog(/— P(z))}]
N | > 1
=Y cuwdef= ¥ Y (s
k=1 ae = Fra k=1 k )

2 1
= X > — ) > ! D(2)5,5,., »

aer Frd k=1 K by pye (= P 020008 (Y2, DO =
Let for a word w=a, - - - a,€ ¥,, we introduce the rotation operator
éw=a2 A a,,al .
By this operator we consider an equivalence relation
w~w if and only if there exists some k such that *w=w",

and we denote the factor of #, by Loop(n). Then, using this notation and taking
0,+1=0, and w[n+1]=w[1], we get

log[det(/— ®(2)) ']

DY ) ) YywLjl, wlj+11, 95 054 1)n(a;)

1 we Loop(n) 1,*,0p€ U?:oDm Jj=

Il
Ms

I
M

DY Y W(wwl1],0, Dn(w) . 3.1

1 we Loop(n) de U':=0D(‘)

Note that, since w{1]®*=w[n+1]°"+!, there exists some i such that w[i]% e .o/u F<.
Hence, we only need to calculate y(w, 0, 0').

LemMMA 3.1. For a word we#,, (im=3), we get:
(1) If 0e D™ and & € D for some n, then
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Y(w, 0, 8)=0[w[m]? in F™"~2{w[2, m—11>]
| s — .
[E— +s(0)a*(F™~ 'w[1]°, w[m]? )] . ‘
(2) If 9e D™ for some n and 0'e D"*™~ Y, then ‘
Y(w, 0, 0')=2s(0)6[w[m]® on F¥11m~U(w[1,m—1]9].
(3) If 0e D™ for some n and &' e D® (I<m—1), then |
Y(w, 0, 0)=58[w[m]? on F™ 2ALw[2, m—1])]
J Sk *(pm—1 2 o ‘
[ %D +s(0)o*(F™~ *w[1]°, w[m] )] .
(4) Otherwise,
Ww, 8, 3)=0 .

PROOF. We Will prove this by induction.
(1) For 0eD™ and & e D® and we ¥#,,, ,, we get

y(w, 0, )= Y Y(wll,2],0, 0" Ww[2,m+1], 0", 8)

8"’e DOy D(n+1)

0''e D)

|
=¥ [-;;—+s(6)a*(Fw[l]a, w[l]a")]étw[mma' in F"~2¢w[3, m])] \

. [:—D"’ @) (F™ w21, wim+ l]a')]

o""eDin+

+ ). 2s(8)8[w[2]° on Fw[1]°]6[w[m+1]% in F™~2(w[3, m])] ‘
: [—;—I’;—Jrs(a")a*wm- tw[2]"", wim+ 1]6‘)]

=% Stwlm+11% in F* 2(w[3, m]>]
#D ’ ‘
: [s,, +2 500 (F" w20, wim+ 1]6')]
+5(0)0[wm+ 117 in F™~2(w[3, m])]{ Y X FW[LT, w[2]) |

0’ e D(O)

. [;—;+s(6”)a*(F'"_ WL wlm e+ 117) ] \
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+ ), 26[w[2]% on Fw[1]]

oD+ 1)

'[:—;+s(6”)6*(F"" 1Ww[2]%", w[m + 1]*"’)]} R

Therefore by Lemma 2.1 (1) for F"~! instead of F, we get
‘ the first term of rhs. of (3.2)
= 5[w[m+17 in F™~2¢w[3, m]>16[wm+ 177 in F"~Xw[2]D]

_ Sk o : m- 1
= S[wlm+11% in F"~ w2, m])],

and

the second term of rhs. of (3.2)=s(0)6[w[m+1]% in F™~2{w[3, m]>]

- G(FW[17T°, w[2]){ —y* [:—; + (@) F™ 'W[2]?", w[m+ 1]0')]

+ 22**[%“(@")0*@“- w[2), wim+ 1]6’)]} ; (3-3)

where for a, be o/ and a face de D

+1 if o*(Fa® b%”)= +1 with some & e D'? ,
—1 otherwise ,

G(Fa’, b)= {

and the sum Y * expresses the sum over 8" for which w[2]°" is a screen of
<{w[2]), and Y} ** expresses the sum over ¢” for which w[2]®" is a screen of
L={Vgeomr.zy,winyy K if w[1]° crosses w[2], and L=<w[2]} if w[1]° does not cross
w[2]. Then again by Lemma 2.1 (1)

(3.3) + the third term of (3.2) =s(8)6[w[m+ 117 in F™~2(w[3, m]>16(Fw[11°, w[2])
«{—6[w[m+11% in F™~1(w[2]>]+26[wlm+ 11" in F™~{w([1, 2], w[13°>]}
=s(0)0[w[m+1]% in F™~ Y{w[2, m])Je*(F"w[1]°, w[m+1]7).
Therefore substituting them to (3.2), we get
Y(w, 0, &)=06[w[m+1]% in F"~ (w[2, m])]

. _E"_ *( rm 7] 4
[#D + s(O)a*(F™w[1]°, w[m+ 1] )].

This proves (1).




PERRON-FROBENIUS OPERATOR 413

(2) For deD™ and & eD"*™, let we#,,,,. Then

Y(w,0,0)=_ Y YWl 2],0, 0" Wwl2,m+1],08",9)

&''eDn+1)

= Z 25(0)6[w[2]%" on Fw[1]%]2s(8")é[w[m+1]% on F*1-m~1yw[2]°)].

8’ eDn+ 1)
Therefore by Lemma 2.1 (2), we get

Y(w, 0, 0)=2s(0)0[wlm+11% on F*™(w[1]%)] .
This proves (2).
(3) For e D™ and & e D¥ for I<m and a word we¥#,,, .,

Y(w, 0,0 = > YW1, 2], 0, 0" W(w[2, m+1], 0", 0)

8"’ e DOYUDIn+ 1)

=¥ [;—;)H(a)a*ww[na, w[2]a”)]5[WEm+1]a' on F"=2A¢w[3,m])]

8’ e D(O)
. [%— +5(0")yo*(F™ *w[2]°", w[m+ 1]"'):|

+ Y 25(3)5[w[2]° on Fw[1]]6[w[m+ 11" on F™~2A{w[3, m]>]

0 eDn+ 1)

' [E%h(a")a*(F'“‘ W2 wim + ”al)]

=2 olwlm+117 on F"2ACw(3, m+11)]

. [sk + > s(@")e*F™ w217, wlm+ 1]"')]

9’ e D(0)

0''e DO

+5(0)0[w[m+17% on F™~2A<{w[3, m])]{ > o(Fw[11% w[2]%)

. [:—;‘)+ (@) (F™ W21, wim+ 1]6’)]

+ Y 25[w[2]° on Fw[1]%]

o’ eDm+ 1)

: [%Jrs(a")a*(m- Lw[2]7, wim+ 1]6')]} .

Therefore, in a similar argument as in (1), we get by Lemma 2.1 (1),
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Yy(w, 0, 0)=8[w[m+1]% on F™" *Aw[2, m+1])]

| Sk *(m F) o
[#D +s(0)o*(F™w[1]°, wim+1] ):l .

This proves the case (3). The rest of the cases never occurs, thus the proof of the lemma
is completed.

Now we will prove Theorem B:

THEOREM B. Assume that F is expanding and £ —A>0. Then the zeta function {(z)
has a meromorphic extension to the domain | z | < €~ *, and satisfies {(z) = det(I— d(z)) L.

ProoOF. Note that

logldet(/— @)1= 3 22 ¥ ¥  yww[llo,dmmw).  G.D)

=1 we Loop(n) de U:'=0D(")

We will calculate ) ,_ Ur_oP® Y(ww[1], 9, Om(w) for each n>1 and we Loop(n) using
Lemma 3.1. -
(1) For n=1, y(ww[1], 3, 8)=0 unless d e D®. Therefore,

> Yww[11,0, dmw)= Y. [%+S(5)6*(F wl1]’, W[l]"’)]n(W)

oe - oP? e D
- [sk +3 s(@)o*(Fw[1T, w[ﬂa’J )

_ {n(w) if there exists a fixed point corresponding to a word w,
0 otherwise .

(2) Now assume that n>2. Then

; Y(ww(1], 3, In(w)

= Y yww[1,2,0mw)+ > T www[1], 3, dn(w)

de D@ l=1 de DM

= Y S[w[1)’ in F*~{w[2, n]>] [%+s(6)a*(F”w[l]", w[l]a)]n(w)

de DO

+ i Y S[w[1]° on F*"~1Aw[2, n]>]

=1 0eD®
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Note that there exists a canonical correspondence between D and D®. The necessary and
sufficient condition for (w[2, m]w[1]) # ¢ is that either 6[w[1]% in F"~*A{w[2, n]>] =
1 for 9e D' or there exists &' e D for some />1 which corresponds to & such that
S[w[1]? on F"~'A{w[2, n]>]=1. Therefore

aZD Y(ww[l1], 9, On(w)

oeD

= Y. S[<wl2, nIw[11> # ] [%+S(5)6*(F"W[1]a, WElla)]n(W)

_{n(w) if there exists a periodic orbit corresponding to w,
0 otherwise ,

where

1 i w#EF,

0 otherwise .

o[w) # ] ={

Therefore,

[ee]
det(] — d(z)) " t=exp Y, > n(w)é[3periodic orbit corresponding to w]

n=1 weLoop(n)

n

®© _
=exp Y, — ) |detDF"Xp)|™'={(2).
n=1 N p:Fr(p)=p
On the other hand, for any m, the coefficient of z* of tr®(z)™ coincide with that of
tr®,(z)" for 0<k<mn, and {(z) is analytic in [z|<1. We get

{(2)=lim (/- ,(2))"" .

n— oo

This completes the proof.

CONJECTURE. The zeta function has meromorphic extension to e*~*.
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