Zeta Function and Perron-Frobenius Operator of Piecewise Linear Transformations on R^k

Makoto MORI

National Defense Academy
(Communicated by M. Sugiura)

§1. Introduction.

In [7], we considered a piecewise linear transformation F on \mathbb{R}^k into itself. Roughly speaking, we determined the eigenvalues of the Perron-Frobenius operator P corresponding to the transformation F by the zeros of the Fredholm determinant $\det(I - \Phi_n(z))$ (the definition of the Fredholm matrix $\Phi_n(z)$ will be given in the next section).

We denote by J^o , J^{cl} and $\Delta J = J^{cl} \setminus J^o$ be the inner, the closure and the boundary of a set J. Set

$$\xi = \lim_{n \to \infty} \inf_{x \in I} \frac{1}{n} \log |\det D(F^n)(x)|,$$

$$\lambda = \limsup_{n \to \infty} \sup_{J} \frac{1}{n} \log \# \{ w \in \mathscr{W} : |w| = n, \langle w \rangle \cap \Delta J \neq \emptyset \},$$

where $D(F^n)$ is the jacobian matrix of F^n , \sup_J is the supremum over all possible convex polyhedrons J, W is a set of words, and $\langle w \rangle$ is a parallelopiped which corresponds to a word $w \in W$ (see §2 for precise definitions). We say that F is expanding if

$$\lim_{n\to\infty}\inf\frac{1}{n}\operatorname{ess\ inf\ log\ min\ }|\ \text{the\ eigenvalue\ of\ }D(F^n)(x)|>0\ .$$

Our theorem in [7] is:

THEOREM A. Assume that F is expanding and $\xi > \lambda$.

(i) Then for any $\varepsilon > 0$, there exists an integer n_0 and for $n \ge n_0$ and $|z| < e^{\xi - \lambda - \varepsilon}$, z^{-1} belongs to the spectrum of the Perron-Frobenius operator P restricted to \mathcal{B} if and only if

$$\det(I-\Phi_n(z))=0.$$

(ii) The eigenfunctions of P on L^1 associated with eigenvalues modulus 1 belong to \mathcal{B} .

Here a family of functions \mathcal{B} is defined by:

DEFINITION. Let \mathscr{B} be the set of functions $f \in L^1$ for which there exists $\{C_w\}_{w \in \mathscr{W}}$ such that $f_N(x) = \sum_{|w| \leq N} C_w 1_w(x)$ converges to f in L^1 and that

$$\sum_{n=1}^{\infty} e^{-\lambda' n} \sum_{|w|=n} |C_w| < \infty$$

for any $\lambda' > \lambda$.

Set for $f \in \mathcal{B}$ and $\lambda' > \lambda$

$$||f||_{\lambda'} = \inf \sum_{n=1}^{\infty} e^{-\lambda' n} \sum_{|w|=n} |C_w|,$$

where inf is taken over all $\{C_w\}_{w \in \mathcal{W}}$ which satisfy the above condition.

By the norms $\|\cdot\|_{\lambda'}$, \mathscr{B} becomes a locally convex linear space. This is an extension of BV, the set of functions with bounded variations, in one-dimensional cases, since for $f \in BV$ there exists $\{C_w\}_{w \in \mathscr{W}}$ such that $\sum_{n=1}^{\infty} r^n \sum_{|w|=n} |C_w| < \infty$ for any 0 < r < 1. Note that $\mathscr{B} \supset BV$ in one dimensional case.

We will explain the transformation which we will consider in this article. Let v_1, \dots, v_k be independent vectors in \mathbb{R}^k . Let \mathscr{A} be a finite set, and for each element $a \in \mathscr{A}$, which we call an alphabet, there exists a parallelopiped $\langle a \rangle$, that is, for each $a \in \mathscr{A}$ there correspond a vector p^a and constants $\alpha_1^a, \dots, \alpha_k^a > 0$, and each $\langle a \rangle$ satisfies

$$\langle a \rangle^o = \left\{ p^a + \sum_{i=1}^k x_i \alpha_i^a v_i : 0 < x_i < 1 \right\},$$

$$\langle a \rangle^{cl} = \left\{ p^a + \sum_{i=1}^k x_i \alpha_i^a v_i : 0 \le x_i \le 1 \right\},$$

$$\langle a \rangle \cap \langle b \rangle = \emptyset \qquad (a \ne b).$$

The piecewise linear transformation F, which we will consider in this article, is a mapping from $I = \bigcup_{a \in \mathscr{A}} \langle a \rangle$ into itself, for which there exist matrices M^a and vectors q^a $(a \in \mathscr{A})$ and the restriction F^a of F to $\langle a \rangle$ satisfies

$$F^{a}(x) = M^{a}(x - p^{a}) + q^{a}$$

and det $M^a \neq 0$ for each $a \in \mathcal{A}$. Moreover, we assume

$$M^a v_i = \lambda_i^a v_i$$
,

for some constants λ_i^a , that is, v_i 's are eigenvectors.

In this article, we will consider the zeta function

$$\zeta(z) = \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{p: p=F^n(p)} |\det D(F^n)(p)|^{-1}\right).$$

We will prove as in one-dimensional cases ([5], [6]):

THEOREM B. Assume that F is expanding and $\xi > \lambda$. Then the zeta function $\zeta(z)$ satisfies $\zeta(z) = \det(I - \Phi_n(z))^{-1}$.

Combining the results, we can show that the eigenvalues of the Perron-Frobenius operator restricted to \mathscr{B} in the domain $|z| < e^{\xi - \lambda}$ are determined by the singularities of the zeta function.

To make the notations simple, we consider a transformation F which has no periodic points on $\bigcup_{a \in \mathcal{A}} \Delta \langle a \rangle$. In [7], we considered a wider class of piecewise linear transformation, for which each $\langle a \rangle$ is a polyhedron and we do not assume that each v_i is an eigenvector $(1 \le i \le k)$, that is, F^a may have a rotation. As we will discuss in §3, to consider the zeta function, this general class seems too large.

2. Preliminaries.

We will summarize the notations. A finite sequence of alphabets $w = a_1 \cdots a_n$ is called a word. We denote the set of words by \mathcal{W} and for a word $w = a_1 \cdots a_n$, we denote

1.
$$|w| = n$$
 (the length of w; for the empty word ε , we put $|\varepsilon| = 0$),
2. $\langle w \rangle = \begin{cases} \bigcap_{i=1}^{n} F^{-i+1}(\langle a_i \rangle) & \text{if } w \neq \varepsilon, \\ I & \text{if } w = \varepsilon, \end{cases}$

- 3. $w[k] = a_k$ for $1 \le k \le n$,
- 4. $w[k, l] = a_k \cdots a_l$ for $1 \le k \le l \le n$,
- 5. $F^{w} = F^{a_n} \cdots F^{a_1}$, $(F^{\varnothing} = identity map)$,
- 6. $\eta(w) = \prod_{i=1}^{n} |\det M^{a_i}|^{-1}$.

We denote \mathcal{W}_n the set of words with length n and $\langle w \rangle \neq \emptyset$.

We define $a_1^x a_2^x \cdots (a_i^x \in \mathcal{A})$, the expansion of $x \in I$, $F^{i-1}(x) \in \langle a_i^x \rangle$, where

$$F^{i}(x) = \begin{cases} x & i = 0, \\ F(F^{i-1}(x)) & i \ge 1. \end{cases}$$

REMARK. For each $a \in \mathcal{A}$, the mapping F^a can be extended to \mathbb{R}^k and we can define $(F^a)^{-1}$ from I into \mathbb{R}^k . Therefore, for any $x \in I$, we can define $(F^a)^{-1}(x) = ax \in \mathbb{R}^k$. In a same way, for any word w, we can define $wx \in \mathbb{R}^k$. If $wx \in \langle w \rangle$, then, of course, $F^{|w|}(wx) = x$, that is, the expansion of wx equals $wa_1^x a_2^x \cdots$. For this case, we say that wx exists.

In this article, we only consider parallelopiped J for which there exist vector p^{J} and $\alpha_1^J, \dots, \alpha_k^J > 0$ and

$$J^{o} = \left\{ p^{J} + \sum_{i=1}^{k} x_{i} \alpha_{i}^{J} v_{i} : 0 < x_{i} < 1 \right\}.$$

We considered in [7] the signed symbolic dynamics with the set of faces $D = \bigcup_{p=0}^{k-1} D_p$.

For each face $\partial \in D_p$, there correspond a set of integers $1 \le j_1 < \cdots < j_p \le k$, a finite sequence β_i of 0 or 1 for $i \ne j_1, \cdots, j_p$, and for a parallelopiped J, a face ∂ of J is

$$\left\{ p^{J} + \sum_{i=j_{1},\dots,j_{p}} x_{i}\alpha_{i}^{J}v_{i} + \sum_{i\neq j_{1},\dots,j_{p}} \beta_{i}\alpha_{i}^{J}v_{i} \colon 0 < x_{i} < 1, i = j_{1},\dots,j_{p} \right\}.$$

Put for $i \neq j_1, \dots, j_p$

$$\pi_i^J = \left\{ p^J + \beta_i \alpha_i^J v_i + \sum_{j \neq i} x_j \alpha_j^J v_j \colon x_j \in \mathbf{R}, j \neq i \right\},\,$$

and we say that the face ∂ of J is generated by planes π_i^J ($i \neq j_1, \dots, j_p$). Then R^k is divided into several regions by the planes π_i^J with $i \neq j_1, \dots, j_p$, one of them contains J^o in its inside. We call this region by the interior region generated by a face ∂ of J, and we denote its boundary by J^∂ and we will simply call it a screen of J. We define $\sigma(J^\partial, x) = +1$, if $x \in R^k$ belongs to the interior region generated by a face ∂ of J and otherwise we put $\sigma(J^\partial, x) = -1$ (Figure 1).

FIGURE 1

For a word w, we can naturally define $\sigma(F^wJ^{\partial}, x) = \sigma(J^{\partial}, wx)$. As we mentioned before, we will prove Theorem B only for the case which has no periodic points which pass $\bigcup_{a \in \mathscr{A}} \Delta \langle a \rangle$. Hence we need not take care of $x \in J^{\partial}$.

For a word w, we denote w^{∂} instead of $\langle w \rangle^{\partial}$, and we denote

$$\widetilde{\mathscr{A}} = \{a^{\partial}: a \in \mathscr{A}, \partial \in D\} .$$

NOTATIONS. (1) For alphabets a and b, we say that a screen \tilde{J} of a parallelopiped J crosses ab if $J \subset \langle a \rangle$ and $F^a(\tilde{J}) \cap \langle b \rangle \neq \emptyset$ (cf. Figure 2). Set

$$\langle ab, \tilde{J} \rangle = \begin{cases} \{ \{x \in \langle b \rangle : \sigma(F^a(\tilde{J}), x) = +1 \} \} & \text{if } \tilde{J} \text{ crosses } ab \text{,} \\ \{\emptyset\} & \text{otherwise ,} \end{cases}$$

$$\Delta \langle ab, \tilde{J} \rangle = \Delta \begin{pmatrix} \bigcap_{K \in \langle ab, \tilde{J} \rangle} K \end{pmatrix}$$

$$= \Delta \{x \in \langle b \rangle : \sigma(F^a(\tilde{J}), x) = +1 \} .$$

A screen K^{∂} $(K \in \langle ab, \tilde{J} \rangle)$ with a face $\partial \in D$ such that $K^{\partial} \neq b^{\partial'}$ for any $b^{\partial'} \in \tilde{\mathcal{A}}$ is called a new screen generated by $F^{a}(\tilde{J})$ in $\langle b \rangle$, and we denote by $New\langle ab, \tilde{J} \rangle$ the set of new screens of $\langle ab, \tilde{J} \rangle$. Put

$$\Delta_0\langle ab, \widetilde{J} \rangle = (\Delta\langle ab, \widetilde{J} \rangle \setminus \Delta\langle b \rangle) \cap F^a(\widetilde{J})$$

and $\Delta_1 \langle ab, \tilde{J} \rangle$ is the union of $\tilde{K} \backslash F^a(\tilde{J})$ such that \tilde{K} is a new screen generated by $F^a(\tilde{J})$ in $\langle b \rangle$ and $(\tilde{K} \backslash F^a(\tilde{J})) \cap \Delta \langle ab, \tilde{J} \rangle \neq \emptyset$.

$$\Delta_2\langle ab,\widetilde{J}\rangle\!=\!\bigcup_{\widetilde{K}\,\in\,New\langle ab,\,\widetilde{J}\rangle}\!\widetilde{K}\,\backslash(\Delta_0\langle ab,\widetilde{J}\rangle\!\cup\!\Delta_1\langle ab,\widetilde{J}\rangle)\,.$$

We also put $\Delta_0 \langle a, \tilde{J} \rangle = \tilde{J}$.

FIGURE 2

(2) For a word $w = a_1 \cdots a_n$ $(n \ge 2)$ and an alphabet b, we call a screen \tilde{J} of a parallelopiped J crosses wb if

$$\begin{split} J &\subset \langle a_1 \rangle \;, \\ F^{a_i} &(\Delta_0 \langle w[1,i], \tilde{J} \rangle) \cap \langle a_{i+1} \rangle \neq \emptyset \qquad (1 \leq i \leq n-1) \;, \\ F^{a_n} &(\tilde{K}) \cap \langle b \rangle \neq \emptyset \;, \end{split}$$

for some $\widetilde{K} \in New\langle w, \widetilde{J} \rangle$, where $New\langle w, \widetilde{J} \rangle$ is the set of new screens generated by $F^{w[1,n-1]}(\widetilde{J})$ in $\langle a_n \rangle$. New screens are already defined for |w|=2 in (1). For $\widetilde{K} \in New\langle w, \widetilde{J} \rangle$, a screen L^{∂} is called a new screen generated by $F^w(\widetilde{J})$ in $\langle b \rangle$ if $L^{\partial} \neq b^{\partial'}$ for any $b^{\partial'} \in \widetilde{\mathcal{A}}$, where $L \in \langle a_n b, \widetilde{K} \rangle$, that is,

$$L = \{x \in \langle b \rangle : \sigma(F^{a_n}(\tilde{K}), x) = +1\},$$

and $\partial \in D$. We denote by $New\langle \omega b, \tilde{J} \rangle$ the set of new screens L^{∂} which is generated by $\tilde{K} \in New\langle w, \tilde{J} \rangle$. Set

$$\langle wb, \tilde{J} \rangle = \bigcup_{\tilde{K} \in New(w, \tilde{J})} \langle a_nb, \tilde{K} \rangle,$$

that is, the union is taken over all new screens \tilde{K} generated by $F^{w[1,n-1]}(\tilde{J})$ in $\langle a_n \rangle$. We call a new screen $K^{\partial} \in New \langle wb, \tilde{J} \rangle$ generated by $F^w(\tilde{J})$ in $\langle b \rangle$ is

(0) of type 0, if $K = \bigcap_{L \in \langle wb, J \rangle} L$,

(1) of type 1 if K^{∂} satisfies $\partial \cap (F^{a_n}(\Delta_1 \langle w, \tilde{J} \rangle) \setminus \Delta \langle b \rangle) \neq \emptyset$ and not of type 0,

(2) of type 2 otherwise. Set

$$\Delta \langle wb, \tilde{J} \rangle = \Delta \left(\bigcap_{K \in \langle wb, \tilde{J} \rangle} K \right),$$

$$\Delta_0 \langle wb, \tilde{J} \rangle = \Delta \left(\bigcap_{K \in \langle wb, \tilde{J} \rangle} K \right) \setminus \Delta \langle b \rangle,$$

 $\Delta_1 \langle wb, \tilde{J} \rangle$ is the union of $\tilde{K} \backslash \Delta_0 \langle wb, \tilde{J} \rangle$ such that \tilde{K} is a new screen of type 0 generated by $F^w(\tilde{J})$ in $\langle b \rangle$ and $(\tilde{K} \backslash F^w(\tilde{J})) \cap \Delta \langle wb, \tilde{J} \rangle \neq \emptyset$, and

$$\Delta_2\langle wb, \widetilde{J} \rangle = \Delta \left(\bigcup_{\widetilde{K} \in New \langle wb, \widetilde{J} \rangle} \widetilde{K} \right) \setminus (\Delta_0\langle wb, \widetilde{J} \rangle \cup \Delta_1\langle wb, \widetilde{J} \rangle).$$

Set

$$s_k = \begin{cases} 1 & k \text{ is even,} \\ 0 & k \text{ is odd,} \end{cases}$$

and for $\partial \in D_i$, we also set for $0 \le i \le k$

$$s(\partial) = s_i = (-1)^i/2$$
.

We also use the notation

$$s(J^{\partial}) = s(\partial) = s_i$$
 if $\partial \in D_i$.

For a parallelopiped J in $J \subset \langle a \rangle$, put $\sigma^*(F\widetilde{J}, \widetilde{b}) = +1$, if $\sigma(F\widetilde{J}, x) = +1$ holds for all $x \in \langle b \rangle$ or if \widetilde{J} crosses ab and \widetilde{b} is a screen of some $K \in \langle ab, \widetilde{J} \rangle$, otherwise $\sigma^*(F\widetilde{J}, \widetilde{b}) = -1$.

DEFINITION. We denote by $F\widetilde{\mathscr{A}}$ the set of new screens of type 0 or 1 generated by $F^a(a^{\partial})$ in some $\langle b \rangle$ $(a, b \in \mathscr{A}, \partial \in D^{\langle a \rangle})$, that is, $F\widetilde{\mathscr{A}} = \bigcup_{a,b \in \mathscr{A}} \bigcup_{\partial \in D^{\langle a \rangle}} New \langle ab, a^{\partial} \rangle$. For $n \geq 2$, let $F^n\widetilde{\mathscr{A}}$ be the set of new screens of type 0 or 1 generated by $F^a(\widetilde{J})$ in some $\langle b \rangle$ $(a, b \in \mathscr{A}, \widetilde{J} \in F^{n-1}\widetilde{\mathscr{A}}, J \subset \langle a \rangle)$, which does not belong to $\bigcup_{k=1}^{n-1} F^k\widetilde{\mathscr{A}}$.

Set

$$\widetilde{\phi}_{1}^{\tilde{a}}(\widetilde{b}) = \left[\frac{s_{k}}{\sharp D} + s(\widetilde{a})\sigma^{*}(F\widetilde{a},\widetilde{b})\right]\eta(a),$$

and for $\tilde{a} \in \bigcup_{n=0}^{\infty} F^n \tilde{\mathscr{A}}$

$$\phi(\tilde{a}, \tilde{b}) = \begin{cases} z \tilde{\phi}_1^{\tilde{a}}(\tilde{b}) & \text{if } \tilde{b} \in \tilde{\mathcal{A}}, \\ z 2s(\tilde{a}) \eta(a) & \text{if } \tilde{b} \in \bigcup_{n=0}^{\infty} F^n \tilde{\mathcal{A}} \text{ is a new screen generated by } F \tilde{a}, \\ 0 & \text{otherwise}, \end{cases}$$

and we define the Fredholm matrix $\Phi(z)$ an infinite dimensional matrix on $\bigcup_{n=0}^{\infty} F^n \mathscr{A}$ for which the (\tilde{a}, \tilde{b}) component equals $\phi(\tilde{a}, \tilde{b})$.

We also need to define finite dimensional matrices $\Phi_n(z)$. Thus we will prepare several notations.

Set $B_k \langle wb, \tilde{J} \rangle$ be the set of $K^{\partial} \in F^k \tilde{\mathscr{A}}$ such that \tilde{J} crosses wb, and k^{∂} is of type 1 generated by some $\tilde{L} \in New(w, \tilde{J})$. Note that if $|w| \le k$, then $B_k(wb, \tilde{J}) = \emptyset$, especially $B_0\langle wb, \tilde{J}\rangle = \emptyset$ for any $w \in \mathcal{W}$ and $b \in \mathcal{A}$. Let

$$C_{n,1}\langle wb, \tilde{J} \rangle = \bigcup_{k=1}^{n} B_{k}\langle wb, \tilde{J} \rangle ,$$

$$D_{n,1}\langle wb, \tilde{J} \rangle = \bigcup_{k>n} B_{k}\langle wb, \tilde{J} \rangle .$$

For $l \ge 1$, set

$$C_{n,l+1}\langle wb, \tilde{J} \rangle = \bigcup_{\substack{\tilde{J}' \in D_{n,1} \langle w[1,m], \tilde{J} \rangle \\ m \geq 2}} C_{n,l} \langle w[m, |w|]b, \tilde{J}' \rangle,$$

$$D_{n,l+1}\langle wb, \tilde{J} \rangle = \bigcup_{\substack{\tilde{J}' \in D_{n,1} \langle w[1,m], \tilde{J} \rangle \\ m \geq 2}} D_{n,l} \langle w[m, |w|]b, \tilde{J}' \rangle,$$

$$C_{n}\langle wb, \tilde{J} \rangle = \bigcup_{l \geq 1} C_{n,l} \langle w, \tilde{J} \rangle,$$

$$D_{n}\langle wb, \tilde{J} \rangle = \bigcup_{l \geq 1} D_{n,l} \langle w, \tilde{J} \rangle.$$

Now we will fix $n \ge 0$ and construct the Fredholm matrices which have coefficients $\bigcup_{k=0}^n F^k \tilde{\mathcal{A}}$. We need not renew screens which belongs to $C_n \langle wb, \tilde{J} \rangle$. Let

$$New_n \langle w, \tilde{J} \rangle = New \langle w, \tilde{J} \rangle \cup D_n \langle w, \tilde{J} \rangle$$

and we call a screen of type (n, 0) if it is of type 0 of $New_n(w, \tilde{J})$ or it belongs to

 $D_n\langle w, \tilde{J} \rangle$, and of type (n, 1) if it belongs to $C_n\langle w, \tilde{J} \rangle$. Set $\phi_n(\tilde{J}, \tilde{L}) = \phi(\tilde{J}, \tilde{L})$ for a screen $\tilde{J} \in \bigcup_{k=0}^{n-1} F^k \tilde{\mathscr{A}} (J \subset \langle a \rangle)$ for some $a \in \mathscr{A}$, and for $\widetilde{J} \in F^n \widetilde{\mathscr{A}}$

$$\phi_n(\widetilde{J},\widetilde{L}) =$$

$$\begin{cases} z \widetilde{\phi}_{*}^{\widetilde{J}}(L^{\partial}) + \sum_{w \in \mathscr{W}} \sum_{\substack{\widetilde{K} \in New_{n}(w, \widetilde{J}) \\ \text{type}(n,0) \\ |w| \geq 2}} 2s(\widetilde{J}) z^{|w|-1} \eta(w[1,|w|-1]) \widetilde{\phi}_{*}^{\widetilde{K}}(L^{\partial}) & \text{if } L^{\partial} \in \widetilde{\mathscr{A}}, \\ \sum_{\substack{|w| \geq 3 \\ New_{n}(w, \widetilde{J}) \ni L^{\partial} \\ \text{type}(n,1)}} 2s(\widetilde{J}) z^{|w|-1} \eta(w[1,|w|-1]) & \text{if } L^{\partial} \in \bigcup_{k=1}^{n} F^{k} \widetilde{\mathscr{A}}, \end{cases}$$

and a Fredholm matrix $\Phi_n(z)$ is the $\bigcup_{k=0}^n F^k \widetilde{\mathscr{A}}$ matrix whose (\tilde{a}, \tilde{b}) coefficient is $\phi_n(\tilde{a}, \tilde{b})$. Using the Fredholm matrices $\Phi_n(z)$, we get Theorem A (cf. [7]).

DEFINITION. Let J and K be parallelopipeds.

- (1) K^{∂} is inside of J, if K^{∂} is generated by (k-1)-dimensional planes π_1^K, \dots, π_l^K and π_i^K is between π_i^J and $\pi_i^{\prime J}$, where π_i^J and $\pi_i^{\prime J}$ are the planes which are tangent to the parallelopiped J and parallel to π_i^K (Figure 3).
 - (2) Set for a word $w = a_1 \cdots a_m$

$$F^{w[1,m-1]}w^{\partial} = F^{a_{m-1}}(\cdots F^{a_1}(a_1^{\partial}) \cap \langle a_2 \rangle \cdots) \cap \langle a_m \rangle,$$

and we define (cf. Figures 4 and 5)

$$\delta[K^{\theta} \text{ in } J] = \begin{cases} 1 & \text{if } K^{\theta} \text{ is inside of } J, \\ 0 & \text{otherwise,} \end{cases}$$

$$\delta[K^{\delta} \text{ on } F^{w[1,m-1]}w^{\delta}] = \begin{cases} 0 \\ \delta[K^{\delta'} \text{ on } F^{m-1}\Delta\langle w \rangle] = \begin{cases} 1 \\ 0 \end{cases}$$

 $\delta[K^{\theta'} \text{ on } F^{w[1,m-1]}w^{\theta}] = \begin{cases} 1 & \text{if the face } \theta' \text{ of } K \text{ intersects } F^{w[1,m-1]}w^{\theta}, \\ 0 & \text{otherwise,} \end{cases}$

 $\delta[K^{\partial'} \text{ on } F^{m-1}\Delta\langle w\rangle] = \begin{cases} 1 & \text{if the face } \partial' \text{ of } K \text{ intersects } F^{m-1}\Delta\langle w\rangle, \\ 0 & \text{otherwise} \end{cases}$ otherwise.

FIGURE 3

The next lemma is very simple but a key in [7] to construct a renewal equation:

Lemma 2.1. (1) For a parallelopiped J and a screen \tilde{K} , we get

$$s_{k} + \sum_{\vartheta \in D} s(\vartheta) \sigma^{*}(FJ^{\vartheta}, \widetilde{K}) = \begin{cases} 1 & \text{if } \widetilde{K} \text{ is inside of } F(J), \\ 0 & \text{otherwise}. \end{cases}$$
 (2.1)

(2) Let w be a word, \tilde{J} a screen of a parallelopiped $J \subset \langle a \rangle (a \in \mathcal{A})$. For a screen \tilde{L} which is generated by some $\tilde{K} \in New \langle w, \tilde{J} \rangle$ in $\langle b \rangle$ $(b \in \mathcal{A})$, we denote by $G(\tilde{L})$ the set of $\tilde{K} \in New \langle w, \tilde{J} \rangle$ which generate \tilde{L} . Then we get

$$\sum_{\tilde{K} \in G(\tilde{L})} s(\tilde{K}) = \begin{cases} +1/2 & \text{if } \tilde{L} \text{ is of type 0 or type 1,} \\ 0 & \text{if } \tilde{L} \text{ is of type 2.} \end{cases}$$
 (2.2)

We will schematically give a proof for the case k=2 (cf. [7] Lemma 2.1 and Lemma 3.4 for precise proofs). A screen \tilde{K} is inside of F(J) either case (a) or (b) of Figure 3. Thus it is not so difficult to show (2.1) for both cases. If a face ∂ of b is between F(A) and F(B) of Figure 6 (type 0), then it is generated by the image of screens A, B and AB. The screens A and B give +1/2 and the screen AB gives -1/2, therefore (2.2) equals +1/2. If a face ∂ of b is between F(A) and F(X) (type 1), it is generated by the image of the screen A. Therefore (2.2) also equals +1/2. If a face ∂ of b is between F(Y) and F(A) (type 2), then it is generated by the images of screens B and AB. Therefore (2.2) equals 0. This proves (2).

To avoid confusion, we consider the copies $D^{(i)}(0 \le i < \infty)$ of the set of faces D. Set

$$F^0 \tilde{\mathcal{A}} = \tilde{\mathcal{A}} = \{a^{\partial} : a \in \mathcal{A}, \partial \in D^{(0)}\}$$
,

and we denote a new screen $b^{\partial} \in F\widetilde{\mathscr{A}}$ $(\partial \in D^{(1)})$, which is generated by some $F^aa^{\partial'}$ in $\langle b \rangle$ $(a \in \mathscr{A}, \partial' \in D^{(0)})$. Note that there may not exist b^{∂} for some $\partial \in D^{(1)}$. A set of new screens in $\langle b \rangle$ which are generated by some F^aa^{∂} $(\partial \in D^{(1)})$ is denoted by $b^{\partial'}$ with $\partial' \in D^{(2)}$. Now recall that the screen $b^{\partial'}$ $(\partial' \in D^{(2)})$ is divided into 3 parts, Δ_0 , Δ_1 and Δ_2 . We denote by $c^{\partial''}$ $(\partial'' \in D^{(3)})$ if $c^{\partial''} \in New \langle bc, b^{\partial'} \rangle$ is of type 0 of some $b^{\partial'}$ $(\partial' \in D^{(2)})$. Note that new screens $c^{\partial''} \in New \langle bc, b^{\partial'} \rangle$ of type 1 belong to $F\widetilde{\mathscr{A}}$, that is $\partial'' \in D^{(1)}$. We need not to consider the new screens which is of type 2 (cf. Lemma 2.1 (2)). Thus we can inductively define b^{∂} $(b \in \mathscr{A}, \partial \in D^{(n)})$ which is generated in $\langle b \rangle$ by the image

of Δ_0 and Δ_1 of some $F^a a^{\partial'}$ $(a \in \mathscr{A}, \partial' \in D^{(n-1)})$. We denote for $n \ge 2$ by $F^n \mathscr{A}$ the set of $b^{\partial'}$ such that $b \in \mathscr{A}, \partial' \in D^{(n)}$, and that $b^{\partial'} \in New \langle ab, a^{\partial} \rangle$ generated by some $a^{\partial} \in F^{n-1} \mathscr{A}$ in $\langle b \rangle$. For $a, b \in \mathscr{A}$ and ∂ , $\partial' \in \bigcup_{i=0}^{\infty} D^{(i)}$, we denote $\psi(ab, \partial, \partial') = \phi(a^{\partial}, b^{\partial'}) \eta(a)^{-1}$, and for a word $w = a_1 \cdots a_n$

$$\psi(w, \partial_1, \partial_n) = \sum_{\partial_2, \dots, \partial_{n-1}} \prod_{i=1}^n \psi(a_i a_{i+1}, \partial_i, \partial_{i+1}),$$

where $a_{n+1} = a_1$, $\partial_{n+1} = \partial_1$.

3. The Proof of Theorem B.

We get as a formal expression

$$\begin{split} \log[\det(I-\Phi(z))^{-1}] &= \log[\exp\{-\operatorname{tr}\log(I-\Phi(z))\}] \\ &= \sum_{k=1}^{\infty} \frac{1}{k} \operatorname{tr} \Phi(z)^{k} = \sum_{\tilde{a} \in \bigcup_{k=0}^{\infty} \tilde{F}^{k}, \tilde{\mathscr{A}}} \sum_{k=1}^{\infty} \frac{1}{k} (\Phi(z)^{k})_{\tilde{a}, \tilde{a}} \\ &= \sum_{\tilde{a} \in \bigcup_{k=0}^{\infty} \tilde{F}^{k}, \tilde{\mathscr{A}}} \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \sum_{b_{2}, \dots, b_{k} \in \bigcup_{k=0}^{\infty} \tilde{F}^{k}, \tilde{\mathscr{A}}} \sum_{\partial_{2}, \dots, \partial_{k} \in \bigcup_{k=0}^{\infty} D^{(k)}} \prod_{j=1}^{k} \Phi(z)_{\tilde{b}_{j}, \tilde{b}_{j+1}}, \end{split}$$

where $\tilde{b}_j = b_j^{\theta_j}$ ($2 \le j \le k$), $\tilde{b}_1 = \tilde{b}_{k+1} = \tilde{a}$.

Let for a word $w = a_1 \cdot \cdot \cdot a_n \in \mathcal{W}_n$, we introduce the rotation operator

$$\hat{\theta} w = a_2 \cdots a_n a_1$$
.

By this operator we consider an equivalence relation

 $w \sim w'$ if and only if there exists some k such that $\hat{\theta}^k w = w'$,

and we denote the factor of W_n by Loop(n). Then, using this notation and taking $\partial_{n+1} = \partial_1$ and w[n+1] = w[1], we get

$$\log[\det(I-\Phi(z))^{-1}]$$

$$= \sum_{n=1}^{\infty} z^n \sum_{w \in Loop(n)} \sum_{\partial_1, \dots, \partial_n \in \bigcup_{i=0}^n D^{(i)}} \prod_{j=1}^n \psi(w[j], w[j+1], \partial_j, \partial_{j+1}) \eta(a_j)$$

$$= \sum_{n=1}^{\infty} z^n \sum_{w \in Loop(n)} \sum_{\partial \in \bigcup_{i=0}^n D^{(i)}} \psi(ww[1], \partial, \partial) \eta(w).$$
(3.1)

Note that, since $w[1]^{\partial_1} = w[n+1]^{\partial_{n+1}}$, there exists some *i* such that $w[i]^{\partial_i} \in \widetilde{\mathcal{A}} \cup F\widetilde{\mathcal{A}}$. Hence, we only need to calculate $\psi(w, \partial, \partial')$.

LEMMA 3.1. For a word $w \in \mathcal{W}_m$ $(m \ge 3)$, we get:

(1) If $\partial \in D^{(n)}$ and $\partial' \in D^{(0)}$ for some n, then

$$\psi(w, \partial, \partial') = \delta[w[m]^{\partial'} \text{ in } F^{m-2} \langle w[2, m-1] \rangle]$$

$$\cdot \left[\frac{s_k}{\#D} + s(\partial)\sigma^*(F^{m-1}w[1]^{\partial}, w[m]^{\partial'}) \right].$$

(2) If $\partial \in D^{(n)}$ for some n and $\partial' \in D^{(n+m-1)}$, then $\psi(w, \partial, \partial') = 2s(\partial)\delta[w[m]^{\partial'} \text{ on } F^{w[1,m-1]}(w[1, m-1]^{\partial})].$

(3) If
$$\partial \in D^{(n)}$$
 for some n and $\partial' \in D^{(l)}$ $(l < m-1)$, then
$$\psi(w, \partial, \partial') = \delta[w[m]^{\partial'} \text{ on } F^{m-2} \Delta \langle w[2, m-1] \rangle]$$

$$\cdot \left[\frac{s_k}{\sharp D} + s(\partial) \sigma^* (F^{m-1} w[1]^{\partial}, w[m]^{\partial'}) \right].$$

(4) Otherwise,

$$\psi(w, \partial, \partial') = 0$$
.

PROOF. We will prove this by induction.

(1) For $\partial \in D^{(n)}$ and $\partial' \in D^{(0)}$ and $w \in \mathcal{W}_{m+1}$, we get

$$\begin{split} \psi(w,\partial,\partial') &= \sum_{\partial'' \in D^{(0)} \cup D^{(n+1)}} \psi(w[1,2],\partial,\partial'') \psi(w[2,m+1],\partial'',\partial') \\ &= \sum_{\partial'' \in D^{(0)}} \left[\frac{S_k}{\#D} + s(\partial)\sigma^*(Fw[1]^{\partial},w[1]^{\partial''}) \right] \delta[w[m+1]^{\partial'} \text{ in } F^{m-2} \langle w[3,m] \rangle] \\ & \cdot \left[\frac{S_k}{\#D} + s(\partial'')\sigma^*(F^{m-1}w[2]^{\partial''},w[m+1]^{\partial'}) \right] \\ &+ \sum_{\partial'' \in D^{(n+1)}} 2s(\partial)\delta[w[2]^{\partial''} \text{ on } Fw[1]^{\partial}] \delta[w[m+1]^{\partial'} \text{ in } F^{m-2} \langle w[3,m] \rangle] \\ & \cdot \left[\frac{S_k}{\#D} + s(\partial'')\sigma^*(F^{m-1}w[2]^{\partial''},w[m+1]^{\partial'}) \right] \\ &= \frac{S_k}{\#D} \delta[w[m+1]^{\partial'} \text{ in } F^{m-2} \langle w[3,m] \rangle] \\ & \cdot \left[s_k + \sum_{\partial''} s(\partial'')\sigma^*(F^{m-1}w[2]^{\partial''},w[m+1]^{\partial'}) \right] \\ &+ s(\partial)\delta[w[m+1]^{\partial'} \text{ in } F^{m-2} \langle w[3,m] \rangle] \left\{ \sum_{\partial'' \in D^{(0)}} \sigma^*(Fw[1]^{\partial},w[2]^{\partial''}) \\ & \cdot \left[\frac{S_k}{\#D} + s(\partial'')\sigma^*(F^{m-1}w[2]^{\partial''},w[m+1]^{\partial'}) \right] \end{split}$$

$$+ \sum_{\partial'' \in D^{(n+1)}} 2\delta[w[2]^{\partial''} \text{ on } Fw[1]^{\partial}]$$

$$\cdot \left[\frac{s_k}{\sharp D} + s(\partial'')\sigma^*(F^{m-1}w[2]^{\partial''}, w[m+1]^{\partial'}) \right] . \tag{3.2}$$

Therefore by Lemma 2.1 (1) for F^{m-1} instead of F, we get

the first term of rhs. of (3.2)

$$= \delta[w[m+1]^{\partial'} \text{ in } F^{m-2} \langle w[3,m] \rangle] \delta[w[m+1]^{\partial'} \text{ in } F^{m-1} \langle w[2] \rangle]$$

$$= \frac{s_k}{\# D} \delta[w[m+1]^{\partial'} \text{ in } F^{m-1} \langle w[2,m] \rangle],$$

and

the second term of rhs. of $(3.2) = s(\partial)\delta[w[m+1]^{\partial'}$ in $F^{m-2}\langle w[3, m]\rangle$

$$\hat{\sigma}(Fw[1]^{\partial}, w[2]) \left\{ -\sum^{*} \left[\frac{s_{k}}{*D} + s(\partial'')\sigma^{*}(F^{m-1}w[2]^{\partial''}, w[m+1]^{\partial'}) \right] + 2\sum^{**} \left[\frac{s_{k}}{*D} + s(\partial'')\sigma^{*}(F^{m-1}w[2]^{\partial''}, w[m+1]^{\partial'}) \right] \right\},$$

$$(3.3)$$

where for $a, b \in \mathcal{A}$ and a face $\partial \in D$

$$\hat{\sigma}(Fa^{\partial}, b) = \begin{cases} +1 & \text{if } \sigma^*(Fa^{\partial}, b^{\partial'}) = +1 \text{ with some } \partial' \in D^{(0)}, \\ -1 & \text{otherwise}, \end{cases}$$

and the sum \sum^* expresses the sum over ∂'' for which $w[2]^{\partial''}$ is a screen of $\langle w[2] \rangle$, and \sum^{**} expresses the sum over ∂'' for which $w[2]^{\partial''}$ is a screen of $L = \bigcap_{K \in \langle w[1,2], w[1]^{\partial} \rangle} K$ if $w[1]^{\partial}$ crosses w[2], and $L = \langle w[2] \rangle$ if $w[1]^{\partial}$ does not cross w[2]. Then again by Lemma 2.1 (1)

$$(3.3) + \text{ the third term of } (3.2) = s(\partial)\delta[w[m+1]^{\partial'} \text{ in } F^{m-2}\langle w[3,m]\rangle]\hat{\sigma}(Fw[1]^{\partial}, w[2])$$

$$\cdot \{-\delta[w[m+1]^{\partial'} \text{ in } F^{m-1}\langle w[2]\rangle] + 2\delta[w[m+1]^{\partial'} \text{ in } F^{m-1}\langle w[1,2], w[1]^{\partial}\rangle]\}$$

$$= s(\partial)\delta[w[m+1]^{\partial'} \text{ in } F^{m-1}\langle w[2,m]\rangle]\sigma^*(F^mw[1]^{\partial}, w[m+1]^{\partial'}).$$

Therefore substituting them to (3.2), we get

$$\psi(w, \partial, \partial') = \delta[w[m+1]^{\partial'} \text{ in } F^{m-1} \langle w[2, m] \rangle]$$

$$\cdot \left[\frac{s_k}{*D} + s(\partial)\sigma^*(F^m w[1]^{\partial}, w[m+1]^{\partial'}) \right].$$

This proves (1).

(2) For
$$\partial \in D^{(n)}$$
 and $\partial' \in D^{(n+m)}$, let $w \in \mathcal{W}_{m+1}$. Then

$$\psi(w, \partial, \partial') = \sum_{\partial'' \in D^{(n+1)}} \psi(w[1, 2], \partial, \partial'') \psi(w[2, m+1], \partial'', \partial')$$

$$= \sum_{\partial'' \in D^{(n+1)}} 2s(\partial) \delta[w[2]^{\partial''} \text{ on } Fw[1]^{\partial}] 2s(\partial'') \delta[w[m+1]^{\partial'} \text{ on } F^{w[1, m-1]}(w[2]^{\partial''})].$$

Therefore by Lemma 2.1 (2), we get

$$\psi(w, \partial, \partial') = 2s(\partial)\delta[w[m+1]^{\partial'} \text{ on } F^{w[1,m]}(w[1]^{\partial})].$$

This proves (2).

(3) For $\partial \in D^{(n)}$ and $\partial' \in D^{(l)}$ for l < m and a word $w \in \mathcal{W}_{m+1}$,

$$\begin{split} \psi(w,\partial,\partial') &= \sum_{\partial'' \in D^{(0)} \cup D^{(n+1)}} \psi(w[1,2],\partial,\partial'') \psi(w[2,m+1],\partial'',\partial') \\ &= \sum_{\partial'' \in D^{(0)}} \left[\frac{s_k}{\#D} + s(\partial)\sigma^*(Fw[1]^{\partial},w[2]^{\partial''}) \right] \delta[w[m+1]^{\partial'} \text{ on } F^{m-2}\Delta\langle w[3,m] \rangle] \\ & \cdot \left[\frac{s_k}{\#D} + s(\partial'')\sigma^*(F^{m-1}w[2]^{\partial''},w[m+1]^{\partial'}) \right] \\ &+ \sum_{\partial'' \in D^{(n+1)}} 2s(\partial)\delta[w[2]^{\partial''} \text{ on } Fw[1]^{\partial}]\delta[w[m+1]^{\partial'} \text{ on } F^{m-2}\Delta\langle w[3,m] \rangle] \\ & \cdot \left[\frac{s_k}{\#D} + s(\partial'')\sigma^*(F^{m-1}w[2]^{\partial''},w[m+1]^{\partial'}) \right] \\ &= \frac{s_k}{\#D}\delta[w[m+1]^{\partial'} \text{ on } F^{m-2}\Delta\langle w[3,m+1] \rangle] \\ & \cdot \left[s_k + \sum_{\partial'' \in D^{(0)}} s(\partial'')\sigma^*(F^{m-1}w[2]^{\partial''},w[m+1]^{\partial'}) \right] \\ &+ s(\partial)\delta[w[m+1]^{\partial'} \text{ on } F^{m-2}\Delta\langle w[3,m] \rangle] \left\{ \sum_{\partial'' \in D^{(0)}} \sigma(Fw[1]^{\partial},w[2]^{\partial''}) \\ & \cdot \left[\frac{s_k}{\#D} + s(\partial'')\sigma^*(F^{m-1}w[2]^{\partial''},w[m+1]^{\partial'}) \right] \\ &+ \sum_{\partial'' \in D^{(n+1)}} 2\delta[w[2]^{\partial''} \text{ on } Fw[1]^{\partial}] \\ & \cdot \left[\frac{s_k}{\#D} + s(\partial'')\sigma^*(F^{m-1}w[2]^{\partial''},w[m+1]^{\partial'}) \right] \right\}. \end{split}$$

Therefore, in a similar argument as in (1), we get by Lemma 2.1 (1),

$$\psi(w, \partial, \partial') = \delta[w[m+1]^{\partial'} \text{ on } F^{m-1} \Delta \langle w[2, m+1] \rangle]$$

$$\cdot \left[\frac{s_k}{\sharp D} + s(\partial) \sigma^* (F^m w[1]^{\partial}, w[m+1]^{\partial'}) \right].$$

This proves the case (3). The rest of the cases never occurs, thus the proof of the lemma is completed.

Now we will prove Theorem B:

THEOREM B. Assume that F is expanding and $\xi - \lambda > 0$. Then the zeta function $\zeta(z)$ has a meromorphic extension to the domain $|z| < e^{\xi - \lambda}$, and satisfies $\zeta(z) = \det(I - \Phi(z))^{-1}$.

PROOF. Note that

$$\log[\det(I-\Phi(z))^{-1}] = \sum_{n=1}^{\infty} z^n \sum_{w \in Loop(n)} \sum_{\partial \in \bigcup_{i=0}^n D^{(i)}} \psi(ww[1], \partial, \partial) \eta(w).$$
 (3.1)

We will calculate $\sum_{\theta \in \bigcup_{i=0}^{n} D^{(i)}} \psi(ww[1], \partial, \partial) \eta(w)$ for each $n \ge 1$ and $w \in Loop(n)$ using Lemma 3.1.

(1) For n=1, $\psi(ww[1], \partial, \partial)=0$ unless $\partial \in D^{(0)}$. Therefore,

$$\sum_{\partial \in \bigcup_{i=0}^{n} D^{(i)}} \psi(ww[1], \partial, \partial) \eta(w) = \sum_{\partial \in D^{(0)}} \left[\frac{s_k}{*D} + s(\partial) \sigma^*(Fw[1]^{\partial}, w[1]^{\partial}) \right] \eta(w)$$

$$= \left[s_k + \sum_{\partial} s(\partial) \sigma^*(Fw[1]^{\partial}, w[1]^{\partial}) \right] \eta(w)$$

$$= \begin{cases} \eta(w) & \text{if there exists a fixed point corresponding to a word } w, \\ 0 & \text{otherwise}. \end{cases}$$

(2) Now assume that $n \ge 2$. Then

$$\sum_{a} \psi(ww[1], \, \partial, \, \partial) \eta(w)$$

$$= \sum_{\partial \in D^{(0)}} \psi(ww[1], \partial, \partial) \eta(w) + \sum_{l=1}^{\infty} \sum_{\partial \in D^{(1)}} \psi(ww[1], \partial, \partial) \eta(w)$$

$$= \sum_{\partial \in D^{(0)}} \delta[w[1]^{\partial} \text{ in } F^{n-1} \langle w[2, n] \rangle] \left[\frac{s_k}{\# D} + s(\partial) \sigma^* (F^n w[1]^{\partial}, w[1]^{\partial}) \right] \eta(w)$$

$$+ \sum_{l=1}^{\infty} \sum_{\partial \in D^{(1)}} \delta[w[1]^{\partial} \text{ on } F^{n-1} \Delta \langle w[2, n] \rangle]$$

$$\cdot \left[\frac{s_k}{\# D} + s(\partial) \sigma^* (F^n w[1]^{\partial}, w[1]^{\partial}) \right] \eta(w).$$

Note that there exists a canonical correspondence between D and $D^{(l)}$. The necessary and sufficient condition for $\langle w[2, m]w[1] \rangle \neq \emptyset$ is that either $\delta[w[1]^{\partial}$ in $F^{n-1}\Delta\langle w[2, n] \rangle] = 1$ for $\partial \in D^{(0)}$ or there exists $\partial' \in D^{(l)}$ for some $l \ge 1$ which corresponds to ∂ such that $\delta[w[1]^{\partial'}$ on $F^{n-1}\Delta\langle w[2, n] \rangle] = 1$. Therefore

$$\sum_{\partial \in D} \psi(ww[1], \partial, \partial) \eta(w)$$

$$= \sum_{\partial \in D} \delta[\langle w[2, n]w[1] \rangle \neq \varnothing] \left[\frac{s_k}{\sharp D} + s(\partial) \sigma^*(F^n w[1]^{\partial}, w[1]^{\partial}) \right] \eta(w)$$

$$= \begin{cases} \eta(w) & \text{if there exists a periodic orbit corresponding to } w, \\ 0 & \text{otherwise}. \end{cases}$$

where

$$\delta[\langle w \rangle \neq \varnothing] = \begin{cases} 1 & \text{if } \langle w \rangle \neq \varnothing, \\ 0 & \text{otherwise}. \end{cases}$$

Therefore,

$$\det(I - \Phi(z))^{-1} = \exp \sum_{n=1}^{\infty} \sum_{w \in Loop(n)} \eta(w) \delta[\exists \text{periodic orbit corresponding to } w]$$
$$= \exp \sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{p: F^n(p) = p} |\det D(F^n)(p)|^{-1} = \zeta(z).$$

On the other hand, for any m, the coefficient of z^k of $\operatorname{tr} \Phi(z)^m$ coincide with that of $\operatorname{tr} \Phi_n(z)^m$ for $0 \le k \le n$, and $\zeta(z)$ is analytic in |z| < 1. We get

$$\zeta(z) = \lim_{n \to \infty} (I - \Phi_n(z))^{-1} .$$

This completes the proof.

Conjecture. The zeta function has meromorphic extension to $e^{\xi-\lambda}$.

References

- [1] V. BALADI and G. KELLER, Zeta functions and transfer operators for piecewise monotone transformations, Commun. Math. Phys. 127 (1990), 459-478.
- [2] F. HOFBAUER and G. KELLER, Zeta functions and transfer-operators for piecewise linear transformations, J. Reine Angew. Math. 352 (1984), 100–113.
- [4] M. Mori, On the decay of correlation for piecewise monotonic mappings I, Tokyo J. Math. 8 (1985), 389–414; II, Tokyo J. Math. 9 (1986), 135–161.
- [5] ——, Fredholm determinant for piecewise linear transformations, Osaka J. Math. 27 (1990), 81–116.
- [6] ——, Fredholm determinant for piecewise monotonic transformations, Osaka J. Math. **29** (1992), 497–529.

[7] —, Fredholm determinant for higher dimensional piecewise linear transformations, preprint.

Present Address:

DEPARTMENT OF MATHEMATICS, NATIONAL DEFENSE ACADEMY, YOKOSUKA, 239 JAPAN.