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Introduction.

Harmonic analysis on hyperbolic spaces X= U(p, q; F)/(U(1; F)x U(p—1, g; F))
(F=R, C, H) has been studied by many people. Faraut [ 1], Limic, Niederle, and Raczka
[12], Molchanov [14], Rossmann [15], and Strichartz [23] proved the Plancherel
formula on hyperbolic spaces. One method of proof is to use the explicit expression of
K-finite eigenfunctions of the Laplacian. Schlichtkrull [18], Sekiguchi [19], and Shitikov
[22] studied the Poisson transformation for hyperbolic spaces. Schlichtkrull and Shitikov
used the explicit expressions of K-finite eigenfunctions of the Laplacian, and of K-finite
functions in degenerate principal series representations.

In this paper we generalize these results for a homogeneous vector bundle on X
associated with an irreducible representation é of U(1; F). The basic tools are K-finite
functions.

The first result (Theorem 5.2) is the Plancherel formula on the associated vector
bundle. We decompose every f in a dense subspace of L%(X, d), the space of L2-sections
of the associated vector bundle, in terms of eigenfunctions of the Laplacian. We
describe the Plancherel measure explicitly in terms of the c-function ((4.10), (4.11))
for the associated degenerate series representation.

The second result of this paper is the determination of the closed U(p, q; F)-invariant
subspaces of the eigenspaces of the Laplacian on the associated vector bundle (Theorem
6.2), and of the image and the kernel of the Poisson transformation (Theorem 6.4).
The result is also new in the Riemannian case, p=1.

The degenerate principal series representations, which correspond to the boundaries
of hyperbolic spaces, have been studied by MolChanov [13], Klimyk and Gruber
[4, 5, 6, 7], Vilenkin and Klimyk [25], and Howe and Tan [3], by using the explicit
K-decompositions. The Poisson transformation gives an intertwining operator from a
degenerate principal series representation to an eigenspace of the Laplacian. We use
their results to construct K-finite eigenfunctions of the Laplacian and invariant subspaces
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of the eigenspace representation.

The methods and results of this paper are certainly not all new. It has been pointed
out by Kobayashi [8, 10], Vilenkin and Klimyk [25], and Howe and Tan [3, concluding
remark] that by the isomorphism

Uldp, dq; R)/U(dp—1, dq; R)~U(p, q; F)/U(p—1, q; F),

where d=dimgF, harmonic analysis on the associated vector bundle follows from
harmonic analysis on real hyperboloid U(dp, dq; R)/U(dp—1, dq; R), and from the
decomposition of the degenerate series representations associated with the real
hyperboloid under the projective action of U(1, F). From this point of view, the key
result is Lemma 4.1, which enables one to reduce the Poisson and Fourier trans-
formations, and intertwining operator for F=C or H to those for F=R. Vilenkin
and Klimyk [25] proved the Plancherel theorem for the associated vector bundle in
this line; their description of the Plancherel measure is formally different from the one
given here.

The results for F=C were announced in [20, 21].

I would like to thank Professor Oshima and Kobayashi for helpful discussion and
comments.

1. Notation.

Let R, C and H denote the fields of real, complex and quaternion numbers,
respectively, and let F be one of these fields. Let Z denote the ring of integers and N
the set of nonnegative integers.

Let [, ] be the Hermitian form on F?*1 given by

(11) [xa J’]=y_1x1 + - +.}—)pxp_.}_)p+1xp+1_ e _.}_}p+qxp+q

for x=(x;, x5, ", X,4g) and y=(¥y, ¥2, - *, Yp+,) in FP*? and put | x|=,/[x, x]. Let
G =U(p, q; F) be the group of all (p + q) x (p + q) matrices with coefficients in F preserving
the Hermitian form [, ]. In the standard notation, G=O(p, q), U(p, q), and Sp(p, q) for
F=R, C,and Hrespectively. Let ~ denote the equivalence relation of F?*?defined by

(1.2) x~y <> y=xu for some ue U(1; F) .

Assume p and q are positive integers. The group G = U(p, g; F) acts on the projective
space P, ,-(F) and the stabilizer of the vector x®=(1,0, - - -, 0) is the group H=
U(1; F) x U(p—1, g; F). The homogeneous space X = X(p, q; F)=G/H is the projective
image of the space

(1.3) Z=Z(p,q; F)={xeFP*% [x,x]=1}.

The space X is a pseudo-Riemannian symmetric space.
Let K be the maximal compact subgroup U(p; F) x U(g; F) of G. Let g and T be the
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Lie algebras of G and K respectively, and g={f+ p the Iwasawa decomposition. Let E; ;
denote the (p+g) x (p+ ¢q) matrices with (i, j)-th entry 1 and all other entries being 0.
Let Lep be the matrix E,,,;+E, ,,, and a,=exptL for te R. Let n be the sum of
eigenspaces of adL in g with positive eigenvalues. Let 4={a,; te R}, N=expn, and
M =Z4(L) be subgroups of G. The group M consists of the matrices diag(u, h, u), where
ue U(1; F) and he U(p—1, g—1; F). Then P=MAN is a maximal parabolic subgroup

of G. Let p=34d(p+q)—1, where d is the dimension of F over R (d=1, 2 or 4).
Let

(1.4) X = S(F?) x S(F9
={zeFP™ iz, P4z =12y P+ 2y, 1P =1)
~U(p; F)/U(p—1; F)x U(g; F)/U(g—1; F) .

The boundary of X'is the homogeneous space B=G/P~ K/K n M, which can be identified
with X/ ~.

Let dk, dm, du, and do denote the invariant measures on K, M, U(1; F), and X with
total measure 1 respectively.

We use the following convention throughout this paper: If F=R, let /=0 or 1; if
F=C, let leZ; and if F=H, let /e N. We define the irreducible representation 6, of
U(1; F) as follows: If F=R or C, let §,(u)=u' for ue U(1; F); and if F=H, let §, be the
(/+ 1)-dimensional irreducible representation of U(1; H)=Sp(1)~SU(2). Let y, denote
the character of §,.

2. The most degenerate series representations of U(p, g; F).

We denote the irreducible representation of M that is given by mt——»é,(u) for
m=diag(u, h,u) (ue U(1; F), he U(p—1; F) x U(g—1; F)) by 8, and its character by ;.
Let 0, be the irreducible representation of P given by

2.1 man—s ,(m)e® meM, teR, neN.

The representation n, , of U(p, q; F) induced by the character o, , is realized in the space

2.2 & :.(G/P)= {f eC*(G); f(g)=(dims,)~* f Sflgm)y,(m)dm  and
. M

f(gan)=e%~Pfig) for all ge G, te R, and neN} X

As a K-module, &, ,(G/P) can be identified with

(2.3) &)= {feC“’(Z) ; flo)=(dimé)~* J

U(1,F)

flowy,(w)du for all an} .




386 NOBUKAZU SHIMENO

Let A, be the Laplacian on S(F")~S% 1. Forje N, let /(R be the eigenspace
(2.9) HIR")={feC>(S*™1); Apf=—j(j+dr—2)f} .

The representation of O(dr) on H#’(R) is irreducible. We have the following
decomposition of C*(ZX) into irreducible representations of O(dp) x O(dyq):

2.5) C*(2)= 2;0 H™(RP)Q H#"(RY) .

We define ;
@.6) EPAE)=6,(2) n A(RI) @ HRY) ‘
and
(2.7 E;={(m,n)e N* ; £™"(2)*{0}} .

The set E, is given as follows (cf. [3, Diagram 2.17, 4.16, 5.12, 5.14]):

(2.8) F=R.

@) g=1, E;={(m,n); m+n=Ilmod 2, n=0 or 1}.

() p=1, E;={(m,n); m+n=Ilmod 2, m=0 or 1}.

© p,g>1, E;={(m,n); m+n=I]mod 2}.
(29) F=C, H.

@) g=1, Ei={mn); m+n=Ilmod 2, m—n>—|l|,m+n=>|l|}.

) p=1, E={mn);m+n=imod 2, n—m=>—|Il|,m+n=>|l|}.

© p,.g>1, E;={(m,n); m+n=Ilmod 2, m+n=>|l|}.

The space # ™(R%) ® #"(R%) is invariant under K, but in general not irreducible.
We refer [3] for the decomposition of #™(R)® #"(R%) into irreducible repre-
sentations of K.

3. [Eigenfunctions of the Laplacian.

In this section we describe the radial part of the Laplacian after Faraut [1] and
the K-decomposition of the eigenspaces after Schlichtkrull [18]. The K-finite
eigenfunctions on the vector bundle can be written by the Gaussian hypergeometric
functions. It is convenient for us to use notation of the Jacobi functions that is introduced
by Flensted-Jensen and Koornwinder (cf. [2, Appendix], [11]) instead of that for the
hypergeometric functions. We summarize the definition and some results of the Jacobi |
functions in the appendix. |

We put

3.1 é’,(X)={fe C>(Z) ; f(x)=(dimg,)~ ! S (xu)y,(u)du for all er} .

U(1,F)

The space &,(X) can be identified with the space of the C ®-sections of the homogeneous
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vector bundle on X associated with the representation §,®1 of H=U(l; F) x
U(p—1; g; F). Hereafter we denote the representation §,® 1 of H by 4,.

Let A denote the Laplace-Beltrami operator on Z(p, q; F)~Z(dp, dg; R). The
operator A maps &,(X) into itself, and the algebra of G-invariant differential operators
on &,(X) is generated by A. For Ae C we define

(3.2) EX)={fe&(X); Af =(A*—p?)f}.
The map X x (0, c0)—Z given by
3.3) (0, 1) (o cosht, - - -, o,cosht, g, sinht, - - -, 6,,,sinh?)

is a diffeomorphism onto Z\{0}. We shall frequently use the spherical coordinates
(0,t)e 2 x (0, o0) on Z\{0}.
In the spherical coordinates, the Laplacian is given by

(3.4) A——l—[—() ] L At A,

A(r) cosh?¢ sinh? ¢

where A(t)=(2sinh?)2~1(2cosh¢)?/2~1 (cf. [1, VII (2)]). The normalized invariant
measure dx on Z is given by

j S (x)dx=j f flo, t)A(t)dtdo .
z zJO ‘
Let £77(X) denote the space of the functions in &, ;(X) that are K-finite of type (m, n)€ E,.
For f=h(0)F(t)e &T7(X), the differential equation Af =(1%>—p?)f is given by

1 mm+dp—2) n(n+dq—2)
(3.9 [ A(t) J[( P=2)

A(t) cosh?¢ sinh?¢

If we put @ =(sinh?)™"(coshz)™™F, then equation (3.5) can be written as the Jacobi
differential equation

:IF:(lz—pz)F.

(3.6) ( :;:2 +((dg/2+n—1)sinht+(dp/2 +m— l)cbsht) gt—)(p =(A2—(p+m+n)e

and the unique solution of (3.6) that is regular at 0 and ¢(0)=1 is given by the Jacobi

function @42 +n~1.4p/2+m=1)(1) For he &"(Z) we define a C *-function @, ,(h) on Z\{0}
by

37 @10, )=o) TV EIALY

(_dq/2+n—1,dp/2+m—1)(t) .

Tn+dg2) %

THEOREM 3.1. Let AeC, le Z, and (m,n)€ E,. For he &""(X) the function @, ,(h)
extends to an element of &%57(X), which is given by (3.7) for e X, t€[0, 00). Moreover
the map @, ;. £7""(Z)—E77(X) is a K-isomorphism.
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ProOF. The proof is the same as the proof of [18, Theorem 4.2]. O

4, The Poisson transformations.

Let P, (g) be the distribution on G defined by

xi(m)e”A+en if g7te({1}xU(p—1,q; F))maN, meM, teR,
0 otherwise .

4.1) Pl,l(g)z {

Notice that P, , is a section of the homogeneous vector bundle over X associated with
the representation 4, of H and it can be considered as a function on Z=2Z(p, q; F). In
the coordinate of Z, P, , is given by
% x
(4.2) P;1(x)=1[0° x] |_)'_le(_[?_]—> , Xe€Z,
| [6°, x]|
where ¢°=(1,0, - - -, 0, 1).
For 9 €&, ,(G/P)~&,(X), we define the Poisson integral of ¢ by

Pia(k™ 'x)pk)dk r=1
K

(4.3) Pa19(x)= .

IrG(—A—p+d+|1)) Jx
for xe Z. The integral converges at least for Re(4+ p) <0 and admits a meromorphic

continuation in 4.
The following lemma is a generalization of [1, Lemma 5.4].

Pk~ x)pk)dk , p>1

LEMMA 4.1. For ReA>0, we have

(4.4) |x|lx,( x )= 1 | Re(xu) |(sgn Re(xw)) x,()du,  for xeF*,
|x1/) a1 Jua;r

where

(4.5) a(l, )=dims, rdr) rE@Aa+nra@+2)

Jr TGA+d+)GA+2-1)

Proor. By reason of homogeneity, there exists constant a(4, /) such that (4.4) is
satisfied.

If F=R, then U(1; F)={1, —1} and it is clear that a(4, [)=1.

If F=C, then we have



HARMONIC ANALYSIS 389

a(A, )= | Re(u) [*(sgn Re(w))'u'du
U(1)
1 /2 . ‘
=— 1. (cosO)e 40
T J—n2 ‘
| 1 I'G(A+1)IG(A+2)

~ 7 TAG+2+)GG+2—=1) ‘
The last equality follows from the formula in [17, P290].
Let F=H. By the identification U(1; H)=Sp(1)~SU(2), we have

a(d, )= | Re(u) |*(sgn Re(w))' y,(w)du
Sp(1) ‘

= J‘  tr(2)/2 |*(sgn tr(w)) x,(w)du
SU(2)

where we donote the character of the (/+ 1)-dimensional irreducible representation of
SU(2) by y;. Since the integrand is constant on classes of conjugate elements, we have

by an integral formula and the character formula for SU(2) (cf. [24, Chapter II,
Proposition 2.5, Proposition 3.4]),

2 (" in(/+ 1)z
a(A, l)=%J\ |cost|‘(sgncost)’asm(—.—}_—)-sinztdt
T Jo s

4 /2
=*J‘ (cost)*sin(/+ 1)¢sinzdt .
T Jo

It can be shown by an addition formula for trigonometric functions and integration by ‘
parts that

A+2

a(4, l)=7’1a(1—1,1—1)+———l;la(1+1,1—1). |

Since , _ ‘

T 1 3
4,0=—B—(4+1),=—},
a(4, 0) 5 ( > (A+1) > )
where B(p, q) is the beta-function, we can show by induction on / that

_I+1 TGA+1)rE(A+2) \
a(4, )= Jr TGA=1+2)TGA+1+4) -

The following proposition enables us to reduce the Poisson integrals for F=C or
H to those for F=R.
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PROPOSITION 4.2. 'If p>1, then

Jr rG(=A—p+2—|1)
dim6,I'(d/2) TG(—A—p+1)(E(—A—p+2))

(4.6) 2:.10(x)=

X f | Re([o, x1)| ~*~*(sgnRe([o, x1))'p(0)do
z
for oe&)(2). If p=1, then P, ¢ is given by the right-hand side of (4.6) multiplied by
I'G(=A—p+d+|1)).

PrOOF. By Lemma 4.1, we have

f f | Re([o, x]u)|~*~*(sgn Re([, x]w)) 1, (1) p(0)dudo
2JUQ;F)

S R f |Re([o, x])|~*~#(sgn Re([o, x])) p(0)do ,
a(—i—p, 1) J;

hence the proposition follows. O

It follows from Proposition 4.2 and [1, IV(3)] that 2, ;¢ is in& 2.1(X). We call the
G-equivariant map

Pt gl,l(G/P)—’gl,l(X)

the Poisson transformation.
The following lemma is a generalization of [18, Lemma 7.2]. The proof can be
done in the same way, so we omit it.

LEMMA 4.3. For (m,n)e E, and ¢ € £]""(X) we have
4.7) P1,0=PA mn)d, (¢),
where B(A, m, n) is given by

(—1)rem—m=1D I(dp/2)I'(dq/2)
dim, I'd/2)

IrGA+p+n+m))
FGG+p+I)(—3(A+p—dp—m+n)
for p> 1, and the right-hand side of (4.8) multiplied by I'(3(—A—p+d+|1)) for p=1.
THEOREM 4.4. Let ¢ be a K-finite function in &, ,(G/P). If ReA>0, then we have

(4.8) B4, m, n)=

4.9) | lim e® =2, ,p(a)=c(A)ole)

t— o

where the constant c,(1) is given by
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(4.10)
1 2°7* Idp/)l(dgf2) ) o

D= Gims, = T@2)  TGGtpty "z WHe—dp+2-1l).

Sfor p>1 and
1 - )
4. ()= o2

@I =g, ¥ ) e T raa T —d i)
Jor p=1. ,

PROOF. This theorem follows from (4.7), (4.8), (A.5), and (A.6). O

REMARK 4.5. If p>1, then the integral in (4.6) depends moromorphically on A
with simple poles for A+ p>0 and A+ p=/+1 mod 2, and if p=1 it is entire in A (cf.
[15, Lemma 5]). Therefore 2, ,¢ depends holomorphically on A.

In the case of functions on the hyperbolic spaces, Schlichtkrull [18, Theorem 7.4,
Corollary 7.5] showed that the eigenspace representation and the corresponding
degenerate series representation are equivalent in the Grothendieck group. We have an
analogous result in the case of the vector bundles on the hyperbolic spaces.

Let ¢,,=&,(X) denote the closure of the image of 2 11 For g e &,(X) we define

d
P (P(x)=71v‘ Py 19(X) .

v=2

If 2,,0=0, then 2, ,pe&, (X) (cf. [18, P212]). Let
ﬁi&,l: ker?; - &,,(X) # 1,
denote the composition of %, and the projection from & 11(X) to &, (X)) 7 1.

THEOREM 4.6. Let Ae C and le Z. The map #, , is G-equivariant. If ReA1>0, then
it is an isomorphism from ker?, ; onto &; (X)/ £ .-

PrOOF. By Theorem 3.1 and Lemma 4.3 we can prove the theorem in the same
way as the proof of [18, Theorem 7.4], so we omit it. O

COROLLARY 4.7. Every irreducible subquotient of & 1.1(X) is infinitesimally equiv-
alent with an irreducible subquotient of & 1.1(G/P), and vice versa.

5. The Plancherel formula.

If p>1, we define the Fourier transformation & a1 6(X)>&,,(G/P) by

1 = =1
(5.1 Zuf9)= rGG=p+d+ii]) Lf(X)P-A,z(g x)dx, geG.
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By (4.2), it can be seen easily that

Z 1 A—p [x O-] )
62 FulO= ey ), (jfe gy s, o

If p=1, we define the Fourier transformation by the integral (5.1) without the normalizing
factor 1/T3(A—p+d+|1])).

The Fourier transformation is G-equivariant. The Fourier transformatlon for
K-finite functions can be written by the Jacobi transform ([11], see Appendix):

PROPOSITION 5.1. Let (m,n)e E,. Let fe&,(X) be a function that is of the form
f =(sinht)(cosht)"Ft)h(c), where F(t) is an even function on R and he &;""(X). Then the
Fourier transform of f is given by

—2m+m P(=4,m,n)
I'(n+dq/2)

where a=n+dq/2—1 and B=m+dp[2—1 and F_ is the Jacobi transform of F.

(5.3) F auf(0)=2 F4(iA)h(o) ,

Proor. ([1, VII(2)]) It suffices to show (5.3) for A that is contained in an irreducible
component of &"(Y). Since each K-type in &,(X) is multiplicity one, it follows from
K-equivariance of # , , that there exists constant c such that # , , f(6) = ch(c). We have

f FX)P_, (x)dx= f r F(t)h(k - 6°)P_, (ka,)(sinh 1)"(cosh ty" A(t)dt dk
X KJO

=~ 2m+n) J ) ( J hk - aO)P_A,,(ka,)dk)li(t)Aa,ﬂ(t)dt :
K

o

We refer (A.2) for the definition of the function A, 4(¢). If we put k-6°=0=(q,, - - -,

0,+4), W€ have
hk - 6°)P _; \(ka,)dk

JK
[ ka. - x°. 6°

S R IR et (e dat S
vK |[kat.xoa 60]'
r - h _ . h

= h(a)lalcosht—ap+qsinht|"”x,( 01 COShI—0p+q SN )da
Jz |o,cosht—a,, , sinhz|

=I'G(A—p+d+|IINZ-1.1h)a) -

Now the proposition follows from Lemma 4.3. O
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THEOREM 5.2. Let f€ éa,(X ) be K-finite and compact supported.
(1) p=1L

(54 f(x)=% jw (g)u,t ° 9i1,zf)(x)| c,(id)| ~2d}

-y (%,,o%,,f)(x)kes[
O<S<”|_-{~,l+d—2
s=p

2) F=R,p>1 and q odd.

—1—; A =s:| .
c(A)e(—4)

(5.5) f(x)=2L f‘” (Pis1° F i1 )X)| e(id) |~ 2dA
T Jo

—i ) (@s,,ofs,,f)(x)Res[

s>0
s=p+l+1mod2

o A=S] ,
ei(Dei(—2)

(3) p>1. F=R, qeven, or F=C or H.

1 [o 0]
(5-6) f(x)=*2;f (gju,l ° g:i}.,lf)(x)l Cl(il) ' ~2dA
0
. 0" l - —
o, :%;:, oy Fsa o Tl ) Res[ cBel—7)° A’S]
; d 1 - ] —
R e ) L el |

S= p+lmo

Here Res denotes the residue and c_,[ - ; A=s] denotes the coefficient of (A—s)~? in the
Laurent development at s.

PROOF. This theorem follows from (2.8), (2.9), Lemma 4.3, Proposition 5.1, and
the inversion formula for the Jacobi transform (A.9). O

REMARK 5.3. If p=1, then the set of discrete spectra in the theorem above is
empty for F=R, and not empty for F=C or H and || sufficiently large. For F=C the
formula (5.4) was given by Flensted-Jensen [2].

REMARK 5.4. We describe relations between Knapp-Stein’s intertwining operator
and the Fourier and the Poisson transformations. If p> 1, we define

1

n_ M A—p [0-90-,] )
.7 Auee)= TGG—p+dtlll) Ll[a,a]l x;(~——-l [o. o] ¢(o)do ,

for p e £,(Z), and if p=1 we define the operator 4, by the integral (5.7) without the
normalizing factor 1/I'(3(A— p +d+|![)). The operator 4, gives an intertwining operator
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from & _; (G/P) to &, (G/P). If Re4 >0, then by [1, V (3)] we have

(5-8) Aok c%)= ,lim e~ Pka)? ;. plka) .

It follows easily from Lemma 4.3, Theorem 4.4, and (A.6) that
(5.9 Ao F a=c()F,,,
(5.10) Al,l OA_;_,1=CI(X)CI(—)»)id .

6. Invariant subspaces of the eigenspace representations.

In this section we describe the closed G-invariant subspaces of the eigenspace
representations and the images of the Poisson transformations on the vector bundles
on the hyperbolic spaces. Schlichtkrull [ 18] and Shitikov [22] studied the closed invariant
subspaces of the eigenspace representations and the images of the Poisson trans-
formations on the hyperbolic spaces. We use the similar method with that of [22].

For (m, n)e N? let Af *(m, n) be the following four linear functions:

Af*(m,n)=A—p—m—n,

(6 1) AI—(m,n)=}'_p—m+n+dq_2’
' A; *(m,n)=A—p+m—n+dp—2,

A; (m,n)=A—p+m+n+dp+dq—4.
Among the functions 45 * we have the relations
(6.2) AF "+ A; " =A7 " +A4; 7,
(6.3) AP 4 A =AF "+ A =—2.

We call the line 4¥*(m, n)=0 (»*= + 1) a barrier if it intersects E,. The invariant
subspaces of the degenerate series representations and those of the eigenspace rep-
resentations can be described by the barriers.

If the line A¥*(m, n)=0 is a barrier, let '} be the closure of the space {he &7""(2);
(m,n)e E, with A¥*(m,n)>0} and &$F=&%F(X) the closure of the space {®,(h);
he &™(X) for (m, n)e E, with A%¥*(m, n)>0}.

THEOREM 6.1 (Mol¢hanov [13], Klimyk-Gruber [6, 7], Vilenkin-Klimyk [25], and
Howe-Tan [3]). The spaces Vi are closed G-invariant subspaces of &, ,(G/P). If F#C
or p, q> 1, then any closed G-invariant subspaces of & ; (G/P) can be obtained from these
spaces by means of the operations of intersection and arithmetic sum. In particular, if
A—p is not an integer, then &, (G/P) is irreducible.

THEOREM 6.2. Let Rel>0. The spaces £, 81, are closed G-invariant subspaces
of &;(X). If F#C or p,q>1, then any closed G-invariant subspaces of &, (X) can be
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obtained from these spaces by means of the operations of intersection and arithmetic sum.
In particular, if 1— p is not an integer, then & ; (X) is irreducible.

The eigenspace &, (X) has a unique irreducible nonzero subrepresentation except
when p>1, dq is even, and Ae|l|+p+2N, where both £~} and &3," are irreducible
subspaces.

ProOF. For (m, n)e E,, the action of p on &,(Z) possibly can take us to any of the
four points (m+ 1, n+ 1). Whether we can get to one of the points (m+1,n+1) from
(m, n) depends on whether the transition coefficient 4§ *(m, n) is nonzero (cf. [3, Lemma
2.3, Lemma 4.1, Theorem 4.2, Corollary 4.3, Lemma 5.3, Lemma 5.4, Theorem 5.5]).

We determine the transition coefficients for the action of p on the K-finite
eigenfunctions, by using this result, and the G-equivariance of the maps £, ; and #, .,
and Theorem 4.5. The transition coefficients for &, ,(X) are given by

B, mEl,n+1) 1

A**(m, n), - F_Af*m,nATi(m,n),
(m, n), B, m. ) 5 Ai (m,n)Az 3 (m, n)
1. n—
ax=(mm, PEMELIZD g
B(4, m, n)
hence the theorem follows. Il

REMARK 6.3. We can prove Theorem 6.2 by generalizing the method of
Schlichtkrull [18]. Each K-types has multiplicity one in &,(Z) and contains a unique
one-dimensional space of vectors which transform by &, under the action of M from
the left. We can compute the action of L on these vectors as in [18, Section 4, 5]. We
have Theorem 6.3 by determining which coefficients vanish. Previously we proved
Theorem 6.2 for F=C in this line (cf. [21]).

THEOREM 6.4. Let AeC.
(1) Assume p>1.
(i) Fu =617, andker?,, =V, for A+p+|lle —2N.
(i) F,,=6"F and ker?,, =V for (a): A+pel+1+2Z and dp is odd, or
(b): A+pel+2Z, +p+]|1|>0, and dp is even.
(i) £,,=¢;,(X) and ker?,; ,={0} in all other cases than (i) and (i1).
If we assume Rel>0 in addition to (a) or (b), then 8-, L*(X, 6,), the L2-space
on the associated homogeneous vector bundle.
(2) Assume p=1 and F=R.
(i) Fuau=€ i andker?,, =V, for A+p+le —2N.
(i) Fu=E-7andker?,, =V  for A+p+1—Ile—2N.
(i) F,,=8;.,X) and kerP?, ,={0} for A+p¢ —N.
(3) Letp=1and F=C or H.
(1) Fu=6 i andker?,, =V,  for A+p+|lle —2N.
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(i) F=6Z7, and kerP,, =V~ for A+p+|l|€e2Z and —|l|+2<i+p<
|| +d—2.

(i) £, =&.,(X) and ker®, ,=1{0} for A+p—d—|I|+2¢ —2N.

I O<A<—p+|ll+d—2 and A+ p+|1|€2Z, then &=}, L¥(X, 5,).

PrROOF. By Lemma 4.3, 2, ,(67"(2))={0} if and only if
(@ Ai (mn)e2N (and A+p—d—|1|+2<0if p=1), or
(b) A+p+|lle—2Nand A7 ~(m,n)>0 (and A+p+|I|<0if p=1).

Therefore the theorem follows from Theorem 6.1 and Theorem 6.2. O

REMARK 6.5. If g=1 and A<p—d—|I| in (1)(ii) of the theorem above, then
Fai=6-71=8&,,(X). Moreover, if g=1 and 0<i<p—d—|I|, A—pel—dg+2Z, then
the discrete series representation &-3,=¢&), ,(X) is isomorphic to the complementary
series representation &, ;(G/P).

REMARK 6.6. Let p>1 and F=C or H. Discrete series representations
-7 1= L*(X, ,) for the range of the parameter lep+|/ |—dq+2N are those of the
type studied by Schlichtkrull [16], where he constructed a part of discrete series
representations for homogeneous vector bundles on general semisimple symmetric
spaces. Kobayashi [9] studied algebraic structures of a part of the discrete series
representations for U(p, q; F)/U(p—m, g; F).

REMARK 6.7. Assume Rel>0. The representations &, 4{(G/P) and &, ,(X) have
the same composition factors. From Theorem 6.1, Theorem 6.4, and Remark 5.4, we
can read off relations between the images and the kernels of the Poisson transformations
2 11,4 the intertwining operator A, ;, and the boundary value map from & 11(X) to
&:.(G/P).

For example, we illustrate the barriers and the Hasse diagrams for the case F=C,
H and A€|l|+p+2N in the Diagram 6.8. The arrows on each barrier point in the
direction of the submodule defined by the barrier. 8 a1 denotes the boundary map, which
is given by B, ,f(x)=lim,_, ,e*~?¥f(xa,) for fe&, (X) that is K-finite and for ReA> 0.
Notice that there are no K-types in the regions between 4; * and A* ], between A} *
and AZ, and between 4; ~ and AZ].

REMARK 6.9. We can determine all invariant subspaces of the eigenspace and the
image of the Poisson transformation in the case F=C, and p=1 or ¢g=1. The difference
is that the barriers A4¥ * must be taken not on E, but on {(m,n)e ZxN; m+n=I
mod2, n—m=>=1l,m+n> —1} for the case p=1 and ¢>1, and we interchange the roles
of m and n for the case g=1 and p>1. We refer [3, Section 4.5] for the parametriza-
tion of K-types in &(2) for these cases.

We have the following corollary for the restrictions of the discrete series
representations with respect to the inclusions U(p, q) = O(2p, 2q) and Sp(p, q) = U(2p, 29).
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4 ‘ }\
A -+
A7 * *
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KerQZAJ = Imﬁ}"(
e
Af- Ba A-f
Fa=Kerf,,
-—m —  m

X

&,.(G/P) &.(X)

Ker#?_,,=Kerd,,
Legends:

* discrete series

® irreducible and unitary constituent
(discrete series for U(p, q)/U(p, g—1))

O non-unitary constituent

¢ finite-dimensional constituent

A-7 A7

1]

— M

1] ’
& _,AG/P)

DIAGRAM 6.8

COROLLARY 6.10. (Vilenkin-Klimyk [25, Theorem 1,2 ]) Let p>2.
(1) Let e=0 or 1 and A>0, A—p=2 mod2. Then as a U(p, q)-module, the space
&~ 7 (X(2p, 2g; R)) decomposes into a direct sum

(6.5) E-1 X2, 2q; R)~ ). €27 ,(X(p,q; C)

lee+2Z

of mutually inequivalent irreducible representations.
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(2) Let leZ and A>0, A=p+] mod2. Then as a Sp(p, q)-module, the space
& Z 1 1(X(2p, 2q; C)) decomposes into a direct sum

(6.6) E1AX2p.2q; C)= Y &7 X(p, q; H))

ke|l]+2N
of mutually inequivalent irreducible representations.

REMARK 6.11. Kobayashi [8] showed Corollary 6.10 (2) for P=q=1, where the
right-hand side of (6.6) consists of discrete series for the group Sp(1, 1). For p,g>1,
Kobayashi [10, Theorem 6.1] announced a proof of the classification of the discrete
series for U(p, q; F)/U(p—1, ¢;F) in terms of the derived functor modules and a proof
of Corollary 6.10 by a different method from that of ours and Vilenkin-Klimyk [25].

Appendix. The Jacobi functions.

In this section we review some results on the Jacobi functions, which are introduced
by Flensted-Jensen and Koornwinder. We refer [2, Appendix] and [11] for details.

Let «, B and s be complex numbers and ¢ a real number. The Jacobi Sfunctions are
defined by

(A.1) o&P(t)=,F \(3(a+B+1—is), 4@+ B+ 1+is); a+ 1; —sinh? 1),
where , F, is the Gaussian hypergeometric function. Let Pap=0+p+1 and
(A.2) A, 4(t)=(2sinh7)®>**}(2cosh¢)?f+1 t>0.

Let L, 5 be the differential operator that is given by

(A.3) L,g= A,,j,(t) % (AM %) , t>0.

The function ¢*#(r) is the unique even function » on R such that (0)=1 and
Ad (Lypg+s2+pZpv=0.

The asymptotic behavior of ¢*# as 1— o is given by

(A.5) lim =2~ 9ip @A) =c, (s),

t—* o0
where

20=8~ 1o + 1)I(is)

(A.6) Co p(8) =

FG(is+pe ) Glis+a—p+1)
Define the Jacobi transform fi f wp DY
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(A7) Saps)= ro SO &P(O)A, p1)dt

for f€2.,,..(R) (the space of even C ®-functions with compact support on R) and complex
number s.

Since ¢ *P =P, we may assume Ims>0. Then the function ¢™P)r) is square
integrable with respect to the measure A, 4(t)dt on R, if and only if s lies in the set

(A.8) D, s={i(| Bl—a—1-2j);jeN,|B|—a—1-2j>0}.

The set D, g coincides with the set of the poles of the function s (c,,4(s)) ~ ! for Ims>0.
If a> —1 and BeR, then the Jacobi transform is inverted by the formula

1 e o]
(A.9) S (t)=-2; J S apS)p &A1) o pls)| ™ ds

—i ) f aﬁp(S)fpﬁ“’”’(t)I’}fsS((ca,ﬂ(u)ca,p(—u))‘1)-

s€Dy,p
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