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Introduction.

Normal surfaces X, of degree d in the complex projective 3-space P> have simple
birational structure if dis small: X; and X, are rational, and Xj is birationally equivalent
to a ruled surface (for further details, see [B-W], [H-W]), since in general Ky, ~
Ox (d—4). Moreover X, is birationally equivalent to either a ruled or a K3 surface
([(Um1]).

To the contrary, various X, may occur if d>5. If the singularity of X, is mild,
then X, is birationally equivalent to a surface of general type, while X, may be birationally
equivalent to a ruled surface if it has severe singularity. Moreover there are examples
of X5 which are birationally equivalent to K3 surfaces, Enriques surfaces or general
elliptic surfaces ([I], [Yan], [St], [K], [Um2], [Um3], [Um4]). This leads us to the

“question whether there exists an X, which is birationally an abelian or a hyperelliptic

surface or not. The purpose of this note is to answer this question in the case of d=S5.
We prove:

MAIN THEOREM. No normal quintic surface in P> is birationally equivalent to an
abelian or a hyperelliptic surface.

Our proof of the theorem goes as follows. First we note that if a normal quintic
surface X=X is birationally an abelian or a hyperelliptic surface, then its minimal
resolution X is an at most 5-fold blowing-up u: X — X of the non-singular minimal
model X. On the other hand, the pull-back of Ky to X minus Ky is an effective divisor
D, which reflects the property of the singularity of X fairly well. Such property of D
and the condition of u*ﬁ as a divisor on an abelian or hyperelliptic surface finally lead
us in every case to a contradiction.

COoNJECTURE. No normal hypersurface in P2 is birationally equivalent to an abelian
surface.

Also for hyperelliptic surfaces we raise:
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PROBLEM. Are there normal hypersurfaces in P?® which are birationally
hyperelliptic surfaces?

§1. Preliminaries.

In this section we summarize some results from local theory of surface singularity,
which we will use later.

Let (Y, y) be a numerically Gorenstein normal surface singularity, n: ¥ — Y its
minimal resolution and A the exceptional set: A=n"1(y). Then there is an effective
divisor D with supp D & 4 such that w 3= 0 y(— D). Let p, or p, stand for the arithmetic
or the geometric genus of (Y, y) respectively. By definition ([W]),

p,= sup p D), p,=dimR'n 0Oy.
supg(;')o cA

It is known (cf. [A]) that the following conditions are equivalent:
(1) D+#0 (i) suppD = A4 (iii) p,>0 (iv) p,>0.

Lemma 1.1 (Y. Koyama). p,< —D?/8+1. In particular, if D>*> —17, then p,<]1.
PrOOF. See [UmS].

REMARK 1.2. If D?*= —8and p,=2, then D/2 is an integral and the unique divisor
on A whose arithmetic genus is equal to 2.

In what follows (except for Corollary 1.5) we assume moreover that p,=1, i.e. our
singularity (Y, y) is elliptic ((W]). Then Yau (for the minimal good resolution) and
Tomari (for any resolution) defined the elliptic sequence {Z,, - - -, Z;} as follows: Let
E denote the minimal elliptic cycle of Laufer [L], i.e., E is the minimal effective divisor
such that supp ES 4 and p,(E)=1. For Z, we take the fundamental cycle. Suppose that
we have defined Z, - - -, Z,. If Z,E<O0, we define {Z,, - - -, Z,} as the elliptic sequence:
I=k. Assume Z,E=0. Then let B, ,, denote the connected component containing E of
the sum of the components A4; of A4 satisfying Z,4,=0. We define Z,,, to be the
fundamental cycle of By , ;. Since supp Z, 2supp Z, .. ,, the elliptic sequence {Z,, - - -, Z,}
is defined as a finite sequence. The following results for the minimal resolution will play
an important role later.

THeoREM 1.3 ([T], [Yaul). () D=Y,_, Z. (i) Z,=E. (ii) p,<l.
From this theorem, we obtain the following
COROLLARY 14. p < —D2%

COROLLARY 1.5. Let (Y, y) be a numerically Gorenstein normal surface singularity
of geometric genus p,, and m: ¥ — Y its minimal resolution. Assume that the exceptional
set m~ '(y) consists of a chain of curves Ag=E, A,, - -, A,,(m>1) with p(E)=1, P(A)=0
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(1<i<m). Then we have
(i) E*=-1,
() m=p,—1 and A?= -2 for 1<i<p,—2.

ProOF. The fundamental cycle Z; coincides with =~ !(y) with reduced structure,
hence p,(Z,)=1, and so (Y, y) is an elliptic singularity ((W]). Then E is the minimal
elliptic cycle. Theorem 1.3 implies that for every i, Z; contains more than p,—i
components. In particular, for i=1, we get m>p,—1; for i=2, Z,E=0 and Z,4,=0
(1<i<p,—2), which proves E?=—1 and 4?= -2 (1<i<p,—2).

§2. Properties of divisors on the resolution.

Let X be a normal quintic surface in P®. Let n: X - X denote the minimal resolu-
tion of X, H a general hyperplane section of X and H its pull-back on X. Then there
exists a unique effective divisor D on X such that Kg= H— D. This divisor D is sup-
ported on the exceptional sets of m which correspond to singularities with positive

geometric genus. Let u: X=X, -

"> X, 1 ooy, . -—lfL»X():X' be the sequence of blow-
downs obtaining a non-singular minimal model X of X, 4, the induced morphism X — X;
(0<i<n), and E; (1<i<n) the total transform on X of the exceptional curve of the
blow-up u;. In what follows we fix our notations as above and assume moreover that
X is either an abelian or a hyperelliptic surface.

LEMMA 2.1. D?=—n—5 and 1<n<5. Moreover, if n=>5 and if T is a rational
curve on X, then either

(i) HI' =1 (I is not exceptional for ), DI' =2, I'*= —1, or

(i) AT =0 (I is exceptional for n), DI =0, I'*= —2.

PrOOF. Since X has a numerically trivial canonical bundle, —n=K%=(H—D)*=
5+ D2, and hence D?= —n—>5. Since each E; contains at least one (—1)-curve and
X is the minimal resolution, we have HE;>0, and so 5=H? ﬁ(ﬁ D)=HKz=
Z HE;>n. n>1 since H— D#0. Note that any rational curve on X is a component
of E; for some i since X contains no rational curve. Assume n=>5. Then HE;=1 (1<i<5).
Hence, for each i, there exists a unique component I'; in E;, with multiplicity 1, such
that AT';=1, and other components of E; are exceptional for 7 and so have non-positive
intersection number with D. Since I'; is a (—1)-curve, — 1=Kzl ';=(H— D)I';, hence
Dr;=2. By —1=KgE,=K3I';+ Kg(E;,—I')= —1+ D(E;—T,), we see that any com-
ponent I' in E;—I'; satisfies DI'=0 and so I'*= —2.

LEMMA 2.2. For each i (1<i<n), the center of the blow-up u; lies on the singular
locus of (ui_ 1), D

PrOOF. Since — 1=KyE,= HE,— DE;and HE;>0, we have DE;>2, which implies
the Lemma.
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LemMMma 2.3. dimR'n, 0z=>5.
Proor. From the exact sequence accociated with the Leray spectral sequence:
0— H'(X, Ox) > H'(X, 0) > R'n,03 > H¥(X, Ox) > H¥(X, 05) >0
we have dim R'%, 0 z=4+q(X)—p,(X)=5.

COROLLARY 2.4. Let D=D,+ - - - + D, be the decomposition of D into its connected
components. Then

Y h%05)=5.
i=1

PrOOF. Let y; denote the singular point on X, which is obtained by contracting
D,. Let Y,= X be a Stein neighbourhood of y,, ¥;=n"*(Y,) and =n,=mn,y,. Note that
wy,~0y(—D,). Then we have h°(05)=dim R'(n;), 0y, so that the Corollary follows
from Lemma 2.3. In fact, consider the natural exact sequence:

HYOy(— D)) »H'(03)—»H'(05)—0.

We see that the first term vanishes by Grauert-Riemenschneider’s theorem. The second
term is isomorphic to R'(n;),0 3, and the third is dual to H°(0p).

LEMMA 2.5. Let D be a connected divisor on X with negative intersection matrix.
If all irreducible components of D are rational curves, then the contraction of D is at
worst rational singularity.

PrROOF. Since X contains no rational curve, the support of D is contained in a
divisor which is contracted to a non-singular point (by u). Hence the geometric genus
of the contraction of D vanishes.

LEMMA 2.6. Let C and C' be irreducible curves on an abelian surface [resp. a
hyperelliptic surface] S. Then

(i) C? is an even non-negative integer,

(ii) C2%=0 if and only if C is a non-singular elliptic curve,

(iii) if the desingularization of C is an elliptic curve, then C itself is smooth,

(iv) if CC'=0, then C2=C?2=0 and C and C' are algebraically equivalent [resp.
if CC'=0, then C2=C"?2=0 and C=qC’ for some positive g€ Q],

(v) if C and C' are elliptic curves, then they intersect transversally.

PROOF. Since S has trivial or numerically trivial canonical sheaf, p,(C)= C?/2+ 1.
Moreover S contains no rational curves, whence (i) and (ii). For (iii)—(v), we first assume
that S is an abelian surface. Then (iii) is a special case of [Ue, Theorem 10.3]. (iv) If
CC’ =0, then neither C nor C’ is ample, and so C2=C'2=0. Moreover C' is a fiber of
the quotient morphism S — S/C. Hence C and C’ are algebraically equivalent. Finally,
if two elliptic curves C and C’ intersect, then the morphism C’— S/C is finite and
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unramified, and hence (v). Suppose next that S is a hyperelliptic surface. Then there is
a finite unramified covering f: §— S where S is an abelian surface. Notice that any
unramified cover of an elliptic curve is a disjoint union of elliptic curves. Hence (v) is
clear. (iii) Let € — C denote the desingularization of C. Then § xsC is the resolution
of f~Y(C). Since §'x3C is a disjoint union of non-singular elliptic curves, we see that
S XO) itself is non-singular, and hence so is C. (iv) The former part is proved in the
same way as in the abelian case. Moreover, C*=C'?=0 and CC’'=0 mean that [C]
and [C’] are not linearly independent in NS(S) ® Q.

§3. Reduction to the case with only elliptic singularities.

We use the notations in §2, and assume that X is either an abelian or a hyperelliptic
surface. In this section we will prove that there exists on X no singularity with arithmetic
genus greater than 1. We first notice by Lemma 2.5 that every connected component
of D contains a non-rational curve.

(3.1) Assume that there exists in D an irreducible curve D, with p(D,)>2. Let
D denote the connected component of D containing D, and D’ the sum of the other
components: D=D+D’. By Lemma 1.1 and 2.1, we have —10<D?< —8 and the
arithmetic genus of the singularity corresponding to D is equal to 2. Hence, by Lemma
2.6 (iii), D, is a non-singular curve of genus 2 and the other components of D, if exist,
are all non-singular rational curves. Since 0 > D’? > — 2, all singular points corresponding
to D’ are elliptic singularities.

Case 3.1.1. D?= —8: Remark 1.2 says that D=2D, and D?= —2. The exact
sequence

0-0p,(—Dy)>Osp,—Op,—0
shows
h%(Op) = ho((onl( —Dy)+ ho((Onl) = ho(a)Dl) +1=3.

Hence, by Corollary 2.4 and its proof, it follows that D’ corresponds to either one
singular point with geometric genus equal to 2 or two singular points both of which
have geometric genus 1. Hence D’>= —2, n=35 (Corollary 1.4 and Lemma 2.1). By
Lemma 2.6, we have (1, D)*>0 and (u,D)(1,D’) >0 and so there is a chain of rational
curves I'y, - - -, I', on X such that I';¢ D (1<i<k) and I', D, >0, I',D'>0. Both I',; and
I', are not exceptional for n, and hence are (— 1)-curves by Lemma 2.1. For2<i<k—1,
I'; is either a (— 1)-curve or else an exceptional curve for 7, i.e., a (— 2)-curve. Therefore
it turns out that k= 1: there exists a (— 1)-curve I' such that DI' =(2D, + D’)[" >3, which
contradicts Lemma 2.1.

Case 3.1.2. D?*=—9:Let D=mD,+Y (Y#D,). Since 2=p,(D,)=(D?— D, D)/2
+1,
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D,D=D?-2<-3. 1)
Therefore
—9=D?*=mD D+ YD<mD,D=m(D?—-2)< —3m, )
and so
1<m<3.

If m=1, then D,D=D2?+D,Y >D?, which contradicts (1).
If m=2, then, by (1), —3>D,D=2D?+D,Y and so D?< —2. Hence D?= —2 by
(2). Hence, using (1), we have

D,Y=D,D—2D?=D?-2-2D2=0.
This implies Y=0 and so D?=(2D,)?= —8, a contradiction.

Assume m=3. Then D?= —1 by (2) and hence D,Y=D,D—3D?=0 by (1), i.e.
Y =0: D=3D,. Therefore

h%(0p) < ho(wn,( —2D,))+h%0,p,)= ho(wb,) +h°(0p,(—Dy))+ h°(0p,)<4.
Hence we have D'#0, n=35, and are led to a contradiction as in Case 3.1.1.

Case 3.1.3. D?=—10: Inthiscase D=D and n=5. We set D=mD, + Y as before,
where DY =0 and Y consists of (—2)-curves by Lemma 2.1. Note that (1) in the previous
case holds as well. Hence we have

—10=D%*=mD,D=m(D?*-2)< —3m, |

therefore m=1 or 2.

If m=1, then D,D=—10 and D?= —8, which is impossible because D,D=
D3+ D,Y>D?.

If m=2,then D, D= —5and D?= —3,hence D=2D, + Y and D,Y = 1. This implies
that Y is a reduced irreducible (—2)-curve. But then we calculate

ho(@5)= ho(@D,(—D1 - Y))+h0(001+y)=ho(wp,)+ 1=3,

and so get a contradiction with Corollary 2.4.
Hence we have proved with Lemma 2.6 that every non-rational component of D
is a non-singular elliptic curve.

(3.2) Suppose that D has a connected component D which contains two distinct
non-singular elliptic curves D, and D,. Then D corresponds to a singularity with p,=2
(Lemma 1.1). We set D=D+D'.

Case 3.2.1. D?*= —8: We can show a contradiction in a similar way as in Case
3.1.1, by taking a chain of reduced curves in D connecting D, and D, instead of D,.
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Case 3.2.2. D?=—9:Set D=m,D,;+m,D,+Y, Y+D,, D,.
From

Di=DD=mD;+mD,D,+D;Y
we have
(1-m)D}=m;D,D,+D,Y )

where {i, j} ={1, 2}. Since D is connected, the right hand side of (3) is positive, and so
m;>2 (i=1, 2). Also we have

mlD%+m2D§=(m1D1 +m,D,)D=D*—-DY>D*=—9. 4)

Consider first the case of D,D,>0. Then D,D, =1 since p,=2.

We first show that D? < —2 (i=1, 2). Assume to the contrary, say D?= —1. Then
(3) is reduced to

m1—1=m2+D1Y, (5)

(1—=my)D3=m, +D,Y,
hence

(1—my)D3=m,+1+(D,+D,)Y. (6)
From (5), we get m; >m, + 1. (6) implies D3 < —2, but if DZ= —2, then m, >3, and so
m, >4, which contradicts (4). Therefore the unique possibility is DZ= —3, m,; =3, m, =2
and D, Y=D,Y=0, i.e. D=3D,+2D, with D= —1, D= —3. But then we have
h°(Op) <h®(Op (—2D, —2D,)) + h°(Op,(—2D; —D,))+h°(Op,(— D, —D,))
+h%(Op, +p,) <4.

Hence it follows D'#0 and n=35, and then a contradiction as in Case 3.1.1. Thus we
obtain D3, DZ< —2.

By (4) we have Di=D}=—2, m;=m,=2 and DY = —1. But then (3) implies
D,Y=D,Y=0 and hence Y=0, a contradiction.
Therefore we obtain D, D, =0, in particular D, Y>0, D,Y>0. Then, by (3),

(1-m)D?=D;¥Y  (i=1,2). Q)

If D,Y=1, then m; =2, D}=—1, and there exists a unique component Y, of ¥
such that Y, D, =1 and that the multiplicity of Y, in Y is 1. Therefore

—2=Y-Y,D=Y(—2D,—m,D,—(Y—Y,))
= —2_ Yl(m2D2+(Y—‘ Yl))< —2 .

Hence D, Y>2, D,Y>2.
Suppose D?= —1. Then, since (u,D)*=0 (Lemma 2.6 (ii), (iii)), there exists a
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unique component Y; of Y such that D;Y;=1 and every other component of Y is disjoint
from D;. Moreover, we see from (7) that the multiplicity of Y; in Y is m;—1, and that
m;>3since D;Y >2. We note that (u, D,)(u, D,)>0. Hence, if furthermore D =D} = — 1,
we get m, =m, >3 because in this situation Y; =Y, in the notation above. Therefore,
assuming D?>D? in general, we have by (4) and (7) that there are the following
possibilities:

D? D2 m m, DY
@) -1 -1 3 3 —3
(ii) -1 -1 4 4 —~1
(iii) -1 =2 3 2 —2
(iv) -1 =2 3 3 0
V) -1 -3 3 2 0
(vi) -1 =2 4 2 ~1
(vii) -1 =2 5 2 0
(viii) —2 =2 2 2 ~1

In (i) and (ii), there is a curve Y; of multiplicity m; —1>2 in Y with D, Y, =
D,Y,=1. Note that Y2 < —3, since if Y2= —2 then 0=DY, >2m, +(m, —1)(—2)=2.
Hence (ii) is impossible, and in (i) we have Y?= —3by DY= —3. But then —1=DY, >
2m, +(m; —1)(—3)=0. In (iv) and (v), all components of Y are (—2)-curves. There is
a component Y, with multiplicity m;—1=2 in Y and D,Y,=1. Hence
(D—3D,—2Y,)Y, =1, and so there is a unique component Y, with multiplicity 1 in Y
such that Y,Y,=1. This implies D=3D,+2Y,+ Y,, which is absurd. In (vi)—(viii),
where D3= —2 and m,=2, there is a curve Y, of multiplicity 2 in ¥ with D,Y,=1.
Since DY>—1,Y,isa (—2)—curvé. Hence there is a unique curve Y, in D—-2D,-2Y,
of multiplicity 2 in it with Y,Y,=1, Y; is a (—2)-curve if Y;<Y. Proceeding in this
way, we find in (vi) and (vii) an infinite sequence Y,, Y3, --- in Y; in (viii)
D=2(D,+ Y,+ ---+D,), contradicting D?= —9. Therefore it only remains the case
(iii). Since then also D3= —2 and m,=2, we can start from D, in the same way as
above and deduce D=3D,+2Y,+---+2Y,+2D,, where k>1, Y2=-3, Y}?="--
=Y2?=—-2and D,, Y,, -, Y, D, form a chain. Hence we obtain

ho((OD)gho((QDI(—2D1 —2Y,—---—2Y,—2D,))

+h0(@D1+Y1+---+Yk+Dz(—Dl Y- —Dz))'|'ho(@1),+1rl +---+yk+02)
<4

2

and so D'#0, n=S5, hence a contradiction as in Case 3.1.1.

Case 3.2.3. D?= —10: Note first that D=D and n=5. Set D=m, D, +m,D,+ Y
as in Case 3.2.2. Then we have as before
(l—mi)Di2=mjD1D2+DiYa {i,j}={1,2},
m,,my=>2,

@®
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and since Y consists of (—2)-curves by Lemma 2.1,
mD} +m,D}=(mD;+m,D,)D=D*—-DY=D*=—10. )
Suppose DD, >0. Then D,D,=1 since p,=2, and so (8) is rewritten as

(l_ml)D12=m]+DlY$ {is]}={152}a
ml, m222 .

(10)

If D}=—1, then m;=m,+1+D,Y by (10). In particular D2< —2. If furthermore
'D3< —3, then D}= —3, m; =4 and m,=2 by (9), which is not compatible with (10).
Hence D3 = —2, and we see with (9) and (10) that only (m,, m,)=(4, 3) is possible. The
case of D? < —2 is easier. Then, assuming D? > D2, there are two possibilities:

D3} D2 m, m, DY D,Y

@) -1 -2 4 3 0 0

(i) -2 -3 2 2 0 1
In (i) we get Y=0: D=4D, + 3D,. But then D can not be obtained from X by more
than 3 blow-ups (Lemma 2.2 and Lemma 2.6 (ii), (iii)). In (ii) Y is a reduced irreducible
(—2)-curve since D,Y=1 and m,=2. This implies

h°(05)= ho(@pl +p(—D1—D,—Y))+ ho((onl +Dy+Y) = ho(wm +p)+1=3,
which is impossible by Corollary 2.4.
This proves DD, =0 and so by (8)
(1—m)D?=D,Y (i=12).

Then we have, as in Case 3.2.2, m;>2; m;>3 if D?= —1; m, =m, if D?=D%=—1. We
may assume that D?> D3 and that m, <m, if D?=D32. Then, by (9), the possibilities
are as follows:

D? D3 m, m,
@) 1 -1 5 5
(ii) ~1 =2 4 3
(iii) —1 -2 6 2
(@iv) —1 -3 4 2
%) -2 -2 2 3
(vi) -2 -3 2 2

- For (i), (ii) and (iv), let Yo=D,, Y,, - - -, Y}, Y,4 =D, denote the chain of curves
in D connecting D, and D, (k>1), and [; the multiplicity of Y; in D. Since D3=—1,
[y=m,—1. Moreover, since Y; is a (—2)-curve for 1<;j<k, we have ,—1>1/,,, for
0<j<k, and so m; —k—1>m,. Hence (i) and (ii) are impossible. In (iv) we have k=1,
hence D=4D, +3Y, 4+ 2D,. But then there exists a (— 1)-curve I on X such that 'Y, >0
and so DI'=3, which contradicts Lemma 2.1. Replace D, and D, in (iii). Then for
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each of the remaining cases we notice that D?= —2andm;=2.Let Y,, Y, - - -, ¥, Yiyy
be as above. Then we have D=2D, +2Y,+ - +2Y,+2D,+ Y’, where Y’ consists of
(—2)-curves and is disjoint from D,, Y,, - - -, Y,. Hence only the case (vi) can occur.
Since D,D=—3, D,Y'=1, i.e., Y’ is reduced and irreducible. But then there exists a
(—D-curve I" on X such that Y'I'=1, hence DI is odd, contradicting Lemma 2.1.

(3.3). By what we have proved, every connected component D of D is the union
of an elliptic curve and some exceptional rational curves for u. Let F be a non-trivial
effective divisor on X with supp Fsupp D. Then F=u*F+3"_ a,E; where F=p,F
and q;€ Z (1 <i<n). Therefore

1 _ n _ n n
Pa(F)=7<I‘*F+ ) aiEi)(“*F+ Z aE+ Y, Ei>+1
i=1 i=1 i=1

1 _ 1 &

=—F’+1—— ) afa;+1).

2 2 igl ( )

Here F is a multiple of an elliptic curve and so F2=0 by Lemma 2.6. Moreover
a(a+1)>0 for any integer a. Hence p,(F)<1, and so the singularity corresponding to
D is elliptic.

§4. The case with elliptic singularities.

We continue to use the notations in §2 and assume that X is either an abelian or
a hyperelliptic surface. To complete our proof of the Theorem, we will deduce a
contradiction under the assumption that every connected component D of D cor-
responds to an elliptic singularity. Recall that then D consists of a non-singular elliptic
curve and possibly some rational curves.

(4.1) Assume that there exists a connected component D of D which contains a
rational curve. This is equivalent to that X has a singularity with p,>2. Set D=D+D
and let D; denote the unique elliptic curve in D. Then D, is the minimal elliptic cycle
of D. In general, we note that u,D is numerically equivalent to u,H, and hence is
connected and ample. In particular D’ #0.

Suppose first that the rational components of D are not connected. Then D2 < —2
and there are exactly two connected components of rational curves because the number
of blow-ups 7 is bounded by 5 (Lemma 2.1). If one of them has length >2, then the
equality holds, the other has length 1, and every rational curve in D is a (—2)-curve.
It follows that D can not be contracted to a numerically Gorenstein singularity (Theorem
1.3 (i1)). Hence we have that D=2D,+Y,+Y,, where Y; is a rational curve with
D,Y,=D,Y,=1, Y,Y,=0 and D?= —2, and that the corresponding singularity has a
geometric genus equal to 2 (Theorem 1.3 (i), (iii)). Hence the sum of the geometric
genera of singularities corresponding to D’ is equal to 3 (Lemma 2.3). Moreover, if
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Y2 < —3, then n=>5, which contradicts Lemma 2.1. Hence we have Y?=Y7=—2, and
so there exist rational curves I'y and I', such that Y,I';=6,;. If n=4, then I'y and I',
are (— 1)-curves. There is on X no rational curve other than Y,, Y,, I'; and I',, and
so D’ consists of three disjoint elliptic curves: D’=D,+ D3+ D,, each of which meets
either I', or I',. We may assume that D,I"; >0 and D,I"; >0. But then p,D, intersects
p,D; tangentially, contradicting Lemma 2.6 (v). If n=5, then I'y and I', are also
(—1)-curves by Lemma 2.1. There is another (— 1)-curve I'y which is disjoint from D,
ry and I',. Moreover D'=D,+D;+D, as before. Since 13Fj=2 and D,I;<1
(1<i<4,1<j<3) by Lemma 2.1 and 2.6 (iii), we can assume that the dual graph of
D, ---,D, Y, Y, I', I, I'yis as follows:

O O O O o—=O O O @)

p, ry b, I, Y D, Y, I, D,

But then we obtain (u,D,+p,D3)*>0, (u,D4)*=0 and (u,D;+p,D3)(pyDs)=0, a
contradiction to Hodge Index Theorem. It follows that there is a unique rational
component Y1 in D which intersects D,.

Suppose that there is a rational curve in D which intersects more than two other
components in D. From Lemma 2.1, we can deduce that the dual graph of D is one of
the following:

. 0—0—0 00— 0—0—0
(i) D, I Y2 (i) D l Ys
Y, Y,

In (ii) we have n=>5. Hence all rational components of D are (—2)-curves (Lemma 2.1),
and so there is a unique rational curve I', which is a (— 1)-curve, except the components
of D. I intersects Y, or Y,, and also every elliptic curve D; in D’. Therefore p, D, and
p,D; can not intersect transversally, which contradicts Lemma 2.6 (v). In (i), if n=4,
then there is a (— 1)-curve I', which plays a similar role as I' in (i), and we are led to
a contradiction. Assume n=>5. Then every rational component in D is a (—2)-curve,
hence again there is a unique (— 1)-curve I'; which intersects Y or Y,. If D'T'; >0, we
get a contradiction as in (ii). If D'T"; =0, then there is another (—1)-curve I', such that
D,I',>1, D'T',>0. But the multiplicity of D, in D is greater than 1 (Theorem 1.3), and
so we have DI', >2, hence br , >3, which contradicts Lemma 2.1. Therefore we conclude
that D consists of a chain D,, Y;, - - -, Y,, (m>1) of an elliptic curve D, and rational
curves Y,.

Let D=D, + - - -+ D, be the decomposition of D into its connected components
with D, = D. Let p; denote the geometrlc genus of the singularity corresponding to b,
D; the unique elliptic curve in D,. We note that D?= —1 if p;>2 (Corollary 1.5 (1)),
and that D?> —3 if p,=1, since then D,=D, is to be contracted to a simple elliptic
hypersurface singularity ([Sa]). Set C;=pu,D;, then C;isalsoa non-singular elliptic curve.
Recall that C, + - - - + C, is connected and ample. In particular s>2 and there exists i
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(2<i<s) such that C,C;>0. Since D = — 1, we see that C,C;=1. We may assume that
the point P, = C, - C; is the center of the first blow-up p,. By our assumption, the proper
transform Y, on X of u; '(P,) is a component of D, and so D?< —2, and hence p;,=1.
Suppose that some p; (2 <j<s) is greater than 1. Then we have C, C;=0,and so C,C;>0
for any i such that C,C;>0, since C, + C; is ample (or by Lemma 2.6 (iv)). Hence our
assumption that p;>2 implies D? < —4, which is impossible. Therefore we have pi=1
for 2<i<s, and so p; +s—1=5 (Lemma 2.3). We may assume that PieC;(1<i<sy)
and P, ¢ C; (s; +1<i<s) for some s, (2<s, <s). Since Cs, +1, ° *» C, are disjoint from
C,, they are also disjoint from each other. Hence C, nQ; C)) consists of greater

i=s;+1

than or equal to s—s; distinct points. This proves, with Corollary 1.5 (ii),
—3<D3}<—p,—(s—sy)=s,—6. On the other hand, if p,>3, then Y?=—2 by
Corollary 1.5 (ii), and so s, =2 (cf. Lemma 2.6 (v)), which is impossible. Hence we
obtain p, =2, s=4 and 3<s, <4. The last inequality implies Y2 < —3 and hence n<4
(Lemma 2.1). If s, =3, then we have by Theorem 1.3 D, =2D, + ¥, with YZ=-3,
D3=D%=—3 and D2=—1:

e /4_ D,
C, C, 1
> - D 3
-~
C1 Pl /; D4
' 1
p, }—
Y,
X X
In both cases we obtain D2= — 10, contradictory to Lemma 2.1.

Thus we proved that D has no rational components.

(4.2) Finally let us consider the case where D consists of disjoint non-singular
elliptic curves. Lemma 2.3 implies that D has five components. Set D =Ei5=lD,- and
C=p, D= Zf: , Ciwhere C;=p,D;. C; and D, are non-singular elliptic curves (1 <i <5),
Dy’s are disjoint, but C is connected. Let P; (1 <i<n) denote the center of the blow-up
u;- Then, by Lemma 2.2 and 2.6 (v), Py, - - -, P, are not infinitely near each other, hence



NORMAL QUINTIC ABELIAN SURFACES 381

we may regard them as distinct points on X. Set k;=multp C. Then k; is equal to the
number of curves C; which pass through P;. Lemma 2.2 says k;>2 (1 <i<n), and we
may assume 5S>k, >k,>"-->k,>2.

With these notations we have first from Lemma 2.1

'Zlk,-=n+5 (1

since —n—5=D2= j=1Df= ;=1Cf—2?=lk,-= —>.1_ k;. Next, let us show that
C,C;>0 for any i, j (i #j). Let s denote the maximal number of components in C, which
are disjoint each other. We may assume that C,, - - -, C, are disjoint. Lemma 2.6 (iv)

implies C;=q,C; for 2<j<s, where g; are some positive rational numbers. Hence we

obtain by (11)
s5-9<( ¥ c)( 2 ¢
ji=1 Jj=s+1

= )} (ki—1< Y, (k;—1)=5,
i;Pie{J5=1Cj i=1

and so s=1, 4 or 5. If s=5, then C is not connected, which is excluded. If s=4, then
Cs meets C,, C,, C; and C,, and hence D%< —4, which is impossible since D;
corresponds to a simple elliptic hypersurface singularity. Therefore s=1 as required.

Now we shall derive a contradiction for each n (1 <n<S5 by Lemma 2.1) from what
we have proved.

n=1: Clear since then 5>k, =n+5=6.

n=2: We have two possibilities: (i) k, =5, k,=2; (ii) k, =4, k,=3. In (i), all C;
pass through P, and we may assume that P,eC,, C, and P,¢C;, C,, Cs. Then the

intersection form of Cy, - - -, Cs is as follows:
02111
20111
(CCj)=|1101 1},
11101
11110

which is clearly non-degenerate. But the Picard number of X is not greater than 4 since
X is an abelian or a hyperelliptic surface, and so we get a contradiction. In (ii), we may
assume that P, ¢ C,, but then C, must meet every C; (2<i<5) away from P,, that is
at P,, a contradiction.

n=23: There are two possibilities: (i) k, =4, k,=k3=2; (ii) k; =k,=3, k3=2. In
both cases we may assume P, ¢ C,, and hence C,; meets every C; (2<i<5) at P, or P;,
which is impossible for k,, k3 <5 and k, + k3 <6.

n=4: We have k, =3, k,=k;=k,=2. Assuming P, ¢ C,, we see that C, should
meet every C; (2<i<5) at either P,, P; or P,, which is also impossible.
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n=35: In this last case, we have k, = - - - =ks=2 and so the five curves C,, - - -, C,
should meet each other at only five points P,, - - -, P with multiplicity 2, which is absurd.
Thus we have completed our proof of the Main Theorem.
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