Tokyo J. MATH.
VoL. 18, No. 2, 1995

A Note on Satake Parameters of Siegel Modular Forms
of Degree 2

Hideshi TAKAYANAGI

Keio University
(Communicated by Y. Maeda)

Introduction.

For a positive integer &, let S, be the space of all Siegel cusp forms of weight k
on Sp(2, Z). Suppose fe S, is an eigenform, i.e., a non-zero common eigenfunction of
the Hecke algebra. Then we define the spinor L-function attached to f by

0.1) L(s, f, spin)
= H {(1 _“o,pp-s)(l —aO,pal,pp_s)(l _‘xo.p“z,pp_s)(l —ao,p%,p“z,ppﬂ)} -1
p

and the standard L-function attached to f by
2 -1
0.2) L(s, f, 0 :=]1 {(1 —r) Hl (=i, p™)1 —“j,pp_s)} ,

where p runs over all prime numbers and «; , (0 <j<2) are the Satake p-parameters of

/- The right-hand sides of (0.1) and (0.2) converge absolutely and locally uniformly for
Re(s) sufficiently large.

For an indeterminate ¢, we put
H(t, f; spin) :=(1—o, ,t)(1 — 0o, p%y p I —0tg p 0ty LIl — 0t p0ty %5 51),
2
Hy(t, f;st) :=(1—1) H1 Ao, )1 —ay,0),
J=
where H,(t, f, spin), H,(t, f, st) € R[t].
DEFINITION. (cf. Kurokawa [9]) We say that feS, satisfies the Ramanujan—

Petersson conjecture if the absolute values of the zeros of H,(t, f, spin) are all equal
to p~®~3/2 for all p.

Received March 28, 1994
Revised October 14, 1994




358 HIDESHI TAKAYANAGI
Since the Satake p-parameters satisfy a3 o, ,0, ,=p?* >, this is equivalent to
saying that
Loy pl=1laz =1 for all p,

that is, the absolute values of the zeros of H(t, f, st) are all equal to 1 for all p, or to
saying that

1 0 0 0 0
0 a b, 0 0
st,(f):=] 0 —b, a, 0 0 | eSO, R) forall p,
o o0 0 ¢ 4
0o 0 0 —d, ¢

where a,=3(a, ,+0a72), b,=%(as ,—07}), ¢,=3(a3,+023,), dy=3i(2;,—23,) (cf.
Langlands [11]).

For an even integer k, let S} be the MaaB subspace of S, (cf. Maaf} [13, 14, 15],
Andrianov [3], Zagier [23]). We know that if f belongs to the MaaB space S§¥, f doesn’t
satisfy the Ramanujan—Petersson conjecture. Now, our conjecture takes the following
form:

CoNJECTURE. (cf. Kurokawa [9, Conjecture 3]) If k is an even integer, any cusp
eigenform of weight k in the orthogonal complement of the MaaB space satisfies the
Ramanujan—Petersson conjecture. If k is an odd integer, any cusp eigenform of weight
k satisfies the Ramanujan—Petersson conjecture.

We will analyze this conjecture from elementary properties of L-functions. Al-
though several authors make numerical researches on our conjecture, so far we don’t
know even the existence of f which satisfies the Ramanujan—Petersson conjecture
(cf. Kurokawa [9], Skoruppa [21]).

NoTATION. 1°. As usual, Z is the ring of rational integers, Q the field of rational
numbers, R the field of real numbers, C the field of complex numbers.

2°. Let m,neZ, m,n>0. If A4 is an m x n-matrix, then we write it also as 4™",
and as A™ if m=n. The identity matrix of size » is denoted by 1,.

3°. ForneZ,n>0, let A™ be a diagonal matrix with diagonal entries a,, - - -, a,,.
We denote it by d(a,, - -, a,).

4°. For neZ, n>0, let I'":=Sp(n, Z) be the Siegel modular group of degree n
and let §, be the Siegel upper half space of degree n, that is,

9, :={Z=X+iYeC"|Z=Z,Y >0}.
5°. We put
&) :=Tg(s){(s)=¢(1—5),
Ig(s):=n""2I(s/2), Ids):=2Q2mn)"I(s)=Tgr(s)g(s+1),



SIEGEL MODULAR FORMS 359

where {(s) is the Riemann zeta function and I'(s) is the gamma function.

§1. Preliminaries.

Let k be a positive integer. A holomorphic function f on §, is called a Siegel
modular form of weight & if it satisfies

(f| MXZ) :=det(CZ + D)~ *f((AZ + B\CZ+ D)~ )= f(Z)

(n) (n)
forall Ze 9, and M =(’C4 - gm>el‘" and if it is holomorphic at the cusps when n=1.

The space of Siegel modular forms of weight k is denoted by M?.
We define the Siegel operator @ on M? by

()

for Ze$H,_,. Then the operator & defines the map &: M2 — M2~ !. Suppose fe M~.
Then it is called a cusp form if it satisfies @ f =0.

In what follows, we restrict ourselves to the case n=2 and we omit subscripts
concerning the case n=2 when there is no fear of confusion.

We define G* :=G*Sp(2, Q) by

a0 LY., 0 1,
(0 Spamsnf ° ) snno}

and for a prime number p, G} :=G* nGL(4, Z[p~'])).

Let 5 (resp. 5#,) be the free C-module generated by the double cosets I'gI", ge G™*
(resp. G;). Then # is a commutative algebra and we call it the Hecke algebra (over
C). We get = () ,,, where the tensor product is the restricted one. Moreover, the

structure of 5, is known: For 0<; <2, let w; be an automorphism of C[X§', X!, X51]
such that

G* :={MeGL(4, 0)

wo(Xo)=Xo, Wwo(X1)=X,, wo(X3)=X,,
wilXo)=XoX,, wi(X)=X7', wi(X;)=X,,
wiXo)=XoX,, wiX)=X,, wy(X)=X;"'.
The automorphisms w; (0 < j<2) generate a finite group W. We call it the Weyl group.
We get
Y:#, = CIXFL XL X517,

where C[X&!, X £, XF11¥ is the W-invariant subalgebra of C[X !, X!, X£1].
For geG™*, let I'gI'= U:= , T'g; be a decomposition of the double coset I'gI” into
left cosets. For fe M, (resp. S,), we define the Hecke operator (I'gI") by
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Fl@rgr) :=u(g)*~3 ‘;f |g; -

Then we get a homomorphism 5 — End(M,) (resp. End(S,)).
For 6€ Z, 6>0 and a prime number p, we put

T(pY):= ), (gD,

u(g)=p°

where g=d(p*, p*, p*', p*)€G,,d;, e;e Z(j=1,2) and 0<d; <d,<e,<e,.
Suppose fe M, is an eigenform. We denote the eigenvalue of (I'gI") on f'by A (I'gI")
and that of T(p®) on f by 1p°.
If the homomorphism A,: #,— C coincides with the composite map of the
isomorphism ¥ and the evaluation map

1w X X5 X )2 2, “z,p);

CLX3', Xi' X5 C,

then the numbers « ,, a; ,, @, ,€ C*, the Satake p-parameters of f, are uniquely
determined modulo W. In this case, they are uniquely determined by

AJ(FP14F)=P—3°‘(2>,p°‘1,p°‘2,p s Afp)=ao (1 +ay N1 +0as,),
j'f(rd(la D, p2, p)r)=p_ 1(x(z),p(al,p_{_aZ,p)(l + al,paZ,p)+(p— ! _p~3)“(2),p“1,pa2,p ’

up to the action of the Weyl group W.

We summarize some facts on Siegel modular forms and on L-functions attached
to them. In what follows, we suppose that fe S, is an eigenform.

(I) It follows from the hermiteness of Hecke operators (I'gl'), ge G*, that we
have A ,(I'gI') e R. In fact, by Kurokawa [10], we know that the eigenvalues on f of the
Hecke algebra over Q generate a totally real finite extension of Q.

(I) We put

A(s, f; st) :=T'g(s) ﬁ I'ds+k—jL(s, 1, st) .
j=1

Andrianov—Kalinin [4] and Bo6cherer [6] (cf. Piatetski-Shapiro and Rallis [20]) have
discovered that A(s, f, st) has a meromorphic continuation to the whole s-plane and
satisfies the functional equation

A(S,_f, _S~t) =A(1 _S7f; §E) .

Moreover, Mizumoto [16] has shown that it is entire.
(III) We put

AC(s, £, spin) : =T'(s)[ (s — k + 2)LLs, f, spin) .

Andrianov [1] has shown that A(s,f, spin) has a meromorphic continuation to the
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whole s-plane and satisfies the functional equation
A(s, f, spin) = (— 1)*A(2k—2 —s, f, spin) .

For an odd integer k, it is entire. For an even integer k, Evdokimov [8] and Oda [19]
have shown that A(s, f, spin) has a simple pole at s=k (or equivalently, at s=k—2) if
and only if feS¥. Especially, if fe S¥, L(s, f, spin) is the following form:

(1.1 Ls, fyspim) =] [{(1 —p* ' p ™)1 —p* 2p ™Y1 —p™ Y1 —ap™)} 7',

where |w|=p* %2

§2. Results.

First we note that the set {a; ,, a7}, &, ,, @5 ,} is invariant under the action of the
Weyl group W.

LEMMA 1. For an eigenform fe€S,, the set {a, ,, a1, %y, 07,) iS one of the
following types:

Type I.  {p*, p~*, p*2, p~**} or {—p™, —p~ %, —p*®?, —p~*?}, where a,, a,€ R and
O<a,<ay.

Type 1. {e®, e~% p%,p™®} or {—1, —1, —p% —p~°}, where acR, 0<a and
0<0<2m.

Type III.  {p°%®, p~ %™, p"e ™, p~ %"}, where aeR, 0<a and 0<6<2m.

Type RP. {e¥, e, 2, e7%2} where 0<6,, 0,<2m.

PROOF. By H\(t, f, st)e R[t], we have

{01, > AT 3 %250 O3 5} = {01 p» X1 ps Oz g X2 5} -

From this fact, Lemma 1 is proved except for signatures in type I and in type II.

In type I, it follows from i,(p)e R that we have a, ,€ R. Combining this with
o 01 % ,=Pp?* 3, we obtain a, Lo, ,>0. In the same way, we can determine signatures
in type II. ]

THEOREM 1. Conjecture holds if any eigenform feS, satisfies the following
conditions:

(A) For any prime p, the logarithms of the absolute values of the zeros of H (t, f, spin)
(or equivalently, of H(t, f, st)) to the base p are independent of p.

(B) For all but a finite number of primes p, H,(t, f, spin) and H\(t, f, st) have no
negative real zeros.

With the use of the Satake parameters, we can replace the condition (A) by the
following form:
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(A") For any primes p and q, by the suitable action of the Weyl group,
logpl al,p | = logq' al,q I and logpl a2,p I = logq' a2,q I
hold.

If we note that our L-functions L(s, f; spin) and L{(s, f, st) are unramified at all p in
the sense of Langlands [11], we can understand that “any prime” in (A) is “any
unramified prime”. If so, (A) is true for many L-functions which have the Euler product
expansions, e.g., the Riemann zeta-function, the Dirichlet L-functions, the Hasse—Weil
L-functions and so on.

Proor. For a positive integer k, let fe S, be an eigenform. We note that, under
the condition (A), the types of {a; ,, ai}, ®, , 5 ,} are the same for all p. If
{oty p» #1.5, s p, 075} is Of type I (resp. type II, type III or type RP) for any prime p,
we say that fis of type I (resp. type II, type III or type RP).

In what follows, we assume that f satisfies the condition (B).

If fis of type I, then for almost all p, H/(t, f, st) is the following form:

H (¢, f, sH=(1—t)1—p*t)1 —p~ )1 —p*tf1 —p~*),

where a, and a, are independent of p. Then L(s, f, st) has a pole at s=1+a,. This
contradicts the fact (II).
If fis of type II, then for almost all p, H,(t, f, st) is the following form:

H(t.f, st) = (1 —t)X1 —e“ref1 —e™re)(1 — p*tN1 —p~*),
where 0<60,< 2z and a is independent of p. Then L(s, £, st) has a pole at s=1+a. This

contradicts the fact (II).
If fis of type III, then for almost all p, H (t, f, spin) is the following form:

Hp(t,f; Spil’l) =(1 __pk—3/2 +at)(1 _pk—3/2 —at)(l _pk—3/2eiopt)(1 _pk—-3/2e—i0,,t) ,

where 0<60,< 2z and a is independent of p. Then L(s, f, spin) has a pole at s=k—1/2+a.
If k is an odd integer, this contradicts the fact (III). If £ is an even integer, we have
feS¥ and a=1/2. O

For an even integer k, let S¥* be the orthogonal complement of the MaaB space
S¥, that is, S,=S¥* @ S¥. For an odd integer k, we put S¥ ={0} when there is no fear
of confusion.

Suppose that any eigenform feS, satisfies the condition (A). If f of type I
occurs, then there exist infinitely many prime numbers such that A4p)<0 and
AArd(1, p, p*, p)I)<0. If f of type II occurs, then there exist infinitely many
prime numbers such that A{p)=0. If f of type IIl occurs, then feS¥ or there exist
infinitely many prime numbers such that 1,(p)<0.

So we have:
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COROLLARY 1. Let f€ S, be an eigenform. If f satisfies the condition (A) and if
24(p)>0 for almost all p, then f satisfies the Ramanujan—Petersson conjecture or f belongs
to the Maaf space Si.

We consider the spaces S¥3=CY20, S¥r=CY22, S¥+=CY24a® CY24b and

S%s =CY26a@® CY26b, where Y is the same eigenform as that in Skoruppa [21]. Note
that S¥+={0} for k<20.
In [21], the first few Euler factors

H (¢, f, spin) =
Y*(p) / 2k—3,2 A'T*(p) / 2k—3,2
1— ) —0+ d)"t(p) t+p 4 1— _—2——' dY#(p) t+p 4 s

where dy.p)=—22y.(p)*+Ain(p?)+p** *+2p*~3, have been computed. Using
Skoruppa’s Table 4 in [21], we compute the first few Euler factors

H(t, Y*,st)=(1—1t) x
1— Y‘*(p) / 1 2 CY#(p) / 1 2
2 —_—t Dr,(p) p 3 t+t 1—- —'—2-——— Dy-.(p) ;ZT_Tt'i‘t .

The resulting values of Cy,(p) and D y(p) are given in Table below. Within the range
of our computations, the Euler factors H (t, Y, spin) and H (t, Y'x, st) of Y22 up to Y'26b

TABLE

Y* D Cr.( p) DY;( p)
Y20 2 226.32.191 250.11898121

3 —24.322.23-41413 22-3%44.494567-196757063

5 —22.32.520.881-12576191 26.5%0.231611-253651-409704728921

7 —26-721.709861 - 1080713 22.34.742.53-1531-5519-62131- 149684694787
Y22 2 —225-32.6043 248.7.687078607

3 —24.323.7.7834259 22-346.37.311-587-2818358041

5 —22.32.522.7.61-2458670741 26.544.112-29-709-257371-1235981 - 6006439
Y24a 2 —231.34.353 260.7.17-3540071

3 —24.326.72.37.55823 22.352-11-1583-10501-1380258457

5 —22.34.524.73.9463-1015159 26.548.31-41-2167243962867300928540511*
Y24b 2 —228.32.1019 254.7.12641-2076143

3 —24.325.7-3517-11987 22.350.113.23-167561325051733

5 —~22.32.523.7.34913-235654733 26-546.29.31-241-290956671215935002572891
Y26a 2 —232.32.11-1571 262.96153491281

3 —24.331.751-14243 22.359.11-23-61-198676251769691

5 —22.32.528.7.73.23131- 1652899 26.556-11:19-9719-3626449 - 549711087746599
Y26b 2 —229.32.337-929 256.41-21871-1870919

3 24-329.101-1130863 22-3%8.73.29927101391081233

5 —22.32.528.17-41-14311199239 26.5%5.271-215309-539789837317483898071

* The number 2167243962867300928540511 is not a prime number.
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have no negative real zeros.

Now we define some L-functions attached to Siegel modular forms. Let sym? be
the symmetric square representation of GL(n, C), i.e.,

sym?: GL(n, C) - GL(Ln;ﬂ, C) .

For an eigenform fe S;, we put

2.1 L(s, f, sym?(st)) : =] [ det(1, s —sym?(st,(f)p~5) !,
(2.2) L(s, f, sym*(spin)) : =] [ det(1,, —sym?(spin,(f))p ¢+ 2k~ 3)~1

where spin (f) :=d(eto,p» %o, p%1,p» %0,p%1,%2,p» %o,p%2,,)- The right-hand sides of (2.1) and
(2.2) converge absolutely and locally uniformly for Re(s) sufficiently large.
For r=sym?(st) or r=sym?(spin), we put

AGs, f, 1) :=T(s, f, DLs, f, 1) ,

where I'(s, f, 1) is the suitable I'-factor of L(s, f, r).
Then we expect the following:

(C) Let r=sym?(st) or r=sym?(spin). For any eigenform fe€S,, A(s,f,1) has a
meromorphic continuation to the whole s-plane and satisfies the functional equation
(2.3) Als, fD)=¢&(f,)A(1—s, £, 1),

where &(f, 1) is a constant. Moreover, I'(s,f, 1) has neither poles nor zeros at s=c€R,
o>1 and if A(s, f, 1) has a pole at s=6€R, 6> 1, then fe S¥.

The following is proved in the same way as Theorem 1.

THEOREM 2. If the condition (C) holds, Conjecture is equivalent to saying that any
eigenform f€ S, satisfies the condition (A).

PROOF. It is clear that any eigenform fe S, satisfies the condition (A) if Conjecture
holds. So we suppose that any eigenform fe S, satisfies the condition (A).
The set of eigenvalues of sym?(spin,(f))p~**~3 is
(2.4 {1, a1, 015, 02 p 075, 1, 04 005 0y 502 5> U1 502 ps 1 503
and that of sym?(st,(f)) is
(2.5) {19 al,p’ a]:ll;, az,p’ az_,;’ ]" a%,p’ al—;i’ a%m’ az_rlz”
1, 01 p%2.ps X1 %2 ps X1 p0z py X7 07 5} -

If fis of type I, then the set (2.4) is
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{1, £p™, £p7%, £p%, £p772, 1, pn 7oz, ph 7o pT T, praTay,

where a, and a, are independent of p. So L(s, f, sym?(spin)) has a pole at 1 +a, +a,
and fe S} by the condition (C). But this is impossible because of the form of (1.1).
If fis of type II, then the set (2.5) is
{1’ eio, e—iO, ipa, ip—a’ 1, eZiG, e—2i0, p2a,_ p—2a,
1’ ipaeio’ i_p—aeie, i_pae—iﬂ’ ip—ae—iﬂ} ,
where a is independent of p. So L(s, f, sym?(st)) has a pole at 1+2a and fe S§¥ by the

condition (C). But this is impossible because of the form of (1.1).
If fis of type III, then the set (2.4) is

{1, paeiﬂ’ p—-ae—iﬂ, pae—ia’ p—aeiﬂ, 1, p2a, eZiO’ e-2i0, p—Za} ,
where a is independent of p. So L(s, f, sym?(spin)) has a pole at 1+2a and feS¥ by
the condition (C). Thus Theorem 2 is proved. O

REMARKS. (i) If feS¥, then L(s, f, sym?(spin)) diverges at s=2.

(i) In (C), we don’t assert absolute convergence of L(s, f, r) for Re(s)> 1.

At the referee’s suggestion we study the sign of 4 (p). For this, we need the following
condition (cf. §1 (III)).

(D) Let fe S, be an eigenform. Then the I'-factor of L(s, f, sym?(spin)) is

10
I(s,f, sym*(spim))= [ | Ta(s+v;)  (v,€32).
ji=1
The function A(s, f, sym?(spin)) has a meromorphic continuation to the whole s-plane and

satisfies the functional equation (2.3). In any vertical strip, there exists a constant K>0
such that

Lis, f, sym*(spin)) =0(e™)  (s=0+it)

as t— 00. The function A(s, f, sym*(spin)) has a pole if and only if fe S¥. Moreover, if
f#SE, (L, £,59)#0 and L(1, £, sym™(spin)) 0.
Then we have:

THEOREM 3. Let fe S, be an eigenform. Suppose that the condition (D) holds. If f
satisfies the Ramanujan—Petersson conjecture, then A p) changes sign infinitely often.

Then Corollary 1 takes the following form.

COROLLARY 2. Let fe S, be an eigenform. Under the conditions (A) and (D), f
belongs to the Maap space S§ if and only if A, (p)>0 for almost all p.

For our purposes we consider the Dirichlet series
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o0

@1(s)= 3, = Lis+k—3/2,/, spin),

n=1 s

Px)= 3 2= Lis, £, 5pin®) = L)L, f; sDLLs /; sym*(spin)

n=1

where s=0 +it. Note that b,=a2=1,p)*p~?*~ for all p.
For r=1, 2, define the function

N, (o, T):=#{p=B+iy|¢,(p)=0 with >0 and |y|<T}.

LEMMA 2. Let fe€ S, be an eigenform. Suppose that the condition (D) holds. If f
satisfies the Ramanujan—Petersson conjecture, then ¢/s) (r=1,2) has the following
Sfour properties:

p 2
1) Y a,logp=— Y. -x—+o(—’ffk’7gw_x)),

psx lylsT P

P 10 2
S b logp=x— ¥ x_+0(x(_gi>,
pP<x lPl<sT P T

where the sum on the left-hand side is over primes and that on the right-hand side is over
the zeros p=B+iy of @,(s) with |y|<T<x'? and $=>0.

Q) @,(s)#0 in the region azl—rg(;m, A>0.
3) N, (o, T)xT1"9, c>0,
uniformly for 1/2<o6<1, T— 0.

4) N, (0, T)«<TlogT.

We say that ¢,(s) has the Hoheisel property if the four properties above hold.

PROOF. By an application of Perron’s formula to the function — ¢!(s)/@,(s), we
have

143+iT ’ s 2 . _
2.6) 1. J o8 x ds+0< x(log x) )={zp5xaplogp, ff r=1,
27 Jivs—ir @AS) s T Yp<xbplogp, if r=2,

where 6>0. The integral on the left-hand side of (2.6) is

1 1+3+iT ’ s 1 1 1+6+iT —u+iT —u—iT
T ([ [,
C

2 Jyrs-ir @A8) s 2mi Zni\ —wHiT 1+8-iT

—u—iT

where the contour C consists of four lines joining the points 1+6—iT7, 14+0+iT,
—u+iT, —u—iT and 14+ 6—iT. Then we have
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X Loa if r=1
1 _ -_ZLﬂST—;_4-O()’ 1 r=1,

xP .
¢ x—}j,y,ﬂ—p—+0(1), if r=2,

L(J*l +6+iT+J‘—u+iT+J‘—u—iT >=0( x(logx)z )

2mi —u+iT —u—iT 1+6—iT T

as u— oo (cf. Chandrasekharan [7, Chapter V Theorem 1]). Thus ¢,(s) has the prop-
erty (1).

If we apply the same method as in the proof of Murty’s Theorem 3 in [18] to
S(s)=,(s) and g(s)={(s)@(s)*@,(s), we have ¢(1+it)#0 and ¢,(1 +it)#0. Then the
same method as in the proof of Titchmarsh’s Theorem 3.5 in [22, Chapter III] gives
a zero-free region of the type (2) for f(s) and g(s). Thus ¢,(s) has the property (2).

The property (3) is proved in the same way as that in Chandrasekharan [7, Chapter
V Theorem 3]. The property (4) has been shown by Berndt [5, Theorem 10]. O

2mi

ProoOF OF THEOREM 3. By Lemma 2, we know that ¢,(s) has the Hoheisel property.

Then, by Moreno [17] (cf. Murty [18, Lemma 4]), there is a v>0, such that if h=x?,
v<6<1, we have

(1) 2 a,=oh),
x<p<x+h
(i) Y b,>h.
x<p<x+h

Suppose that A (p)=a,p*~*? doesn’t change sign in x <p<x+h, for h=x°, where
0 satisfies the condition above. Then we have

Y oa= Y lal» Y a= Y b,

x<p<x+h x<p<x+h x<p<x+h x<p<x+th

since f satisfies the Ramanujan—Petersson conjecture. But this is a contradiction to (i)

and (ii). Therefore, 4(p) changes sign in the interval x <p<x+h. This completes the
proof of Theorem 3. O

References

[1] A.N. ANpriaNov, Euler products corresponding to Siegel modular forms of genus 2, Russian Math.
Surveys 29 (1974), 45-116 (English translation).

[2] A.N. ANDRrRiaNOv, The multiplicative arithmetic of Siegel modular forms, Russian Math. Surveys 34
(1979), 75-148 (English translation). ’

[3]1 A.N. ANDRIANOV, Modular descent and the Saito-Kurokawa conjecture, Invent. Math. 53 (1979),
267-280.




368 HIDESHI TAKAYANAGI

[4] A. N. AnNDrRIANOV and V. L. KALININ, On the analytic properties of standard zeta function of Siegel
modular forms, Math. USSR-Sb. 35 (1979), 1-17 (English translation).
[5] B. C. BERNDT, On the zeros of a class of Dirichlet series 1, Illinois J. Math. 14 (1970), 244-258.
[61 S.BocHERER, Uber die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe,
J. Reine Angew. Math. 362 (1985), 146-168.
[ 7] K. CHANDRASEKHARAN, Arithmetical Functions, Grundlehren Math. Wiss. 167 (1970), Springer.
[8] S.A.EvDOKIMOV, A characterization of the Maass space of Siegel cusp forms of second degree, Math.
USSR-Sb. 40 (1981), 125-133 (English translation).
[9] N. Kurokawa, Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two,
, Invent. Math. 49 (1978), 149-165.
[10] N. KUurROKAWA, On Siegel eigenforms, Proc. Japan Acad. Ser. A 57 (1981), 47-50.
[11] R. P. LANGLANDS, Problems in the theory of automorphic forms, Lecture Notes in Math. 170 (1970),
18-86.
[12] R. P. LANGLANDS, Euler Products, Yale Univ. Press (1971).
[13] H.MaaB, Uber eine Spezialschar von Modulformen zweiten Grades, Invent. Math. 52 (1979), 95-104.
[14] H. MaaB, Uber eine Spezialschar von Modulformen zweiten Grades (II), Invent. Math. 53 (1979),
249-253.
[15] H. MaaB, Uber eine Spezialschar von Modulformen zweiten Grades (III), Invent. Math. 53 (1979),
255-265.
[16] S. MizumoTo, Poles and residues of standard L-functions attached to Siegel modular forms, Math.
Ann. 289 (1991), 589-612.
[17] C.J. MoreNo, The Hoheisel phenomenon for generalized Dirichlet series, Proc. Amer. Math. Soc. 40
| (1973), 47-51.
| [18] M.R.MuRrTy, Oscillations of Fourier coefficients of modular forms, Math. Ann. 262 (1983), 431-446.
| [19] T. Opba, On the poles of Andrianov L-functions, Math. Ann. 256 (1981), 323-340.
| [20] I. PIATETSKI-SHAPIRO and S. RALLIS, L-Functions for the Classical Groups, Lecture Notes in Math. 1254
| (1987), Springer.
| [21] N.-P. SkoruprPA, Computations of Siegel modular forms of genus two, Math. Comp. 58 (1992), 381-398.
[22] E. C. TITCHMARSH, The Theory of the Riemann Zeta-Function, Clarendon Press (1951).
| [23] D.ZAGIER, Sur la conjecture de Saito—Kurokawa (d’aprés H. Maass), Séminaire de Théorie des Nombres,
| Paris 1979-80, Progress in Math. 12 (1981), 371-394.

| Present Address:
| DEPARTMENT OF BUSINESS ADMINISTRATION, SAKUSHIN GAKUIN UNIVERSITY,
908 TAKESHITA-MACHI, UTSUNOMIYA-SHI, TOCHIGI, 321-32 JAPAN.



