A Note on Satake Parameters of Siegel Modular Forms of Degree 2

Hideshi TAKAYANAGI

Keio University
(Communicated by Y. Maeda)

Introduction.

For a positive integer k, let S_k be the space of all Siegel cusp forms of weight k on $Sp(2, \mathbb{Z})$. Suppose $f \in S_k$ is an eigenform, i.e., a non-zero common eigenfunction of the Hecke algebra. Then we define the spinor L-function attached to f by

(0.1)
$$L(s, f, \underline{\text{spin}})$$

$$:= \prod_{p} \left\{ (1 - \alpha_{0,p} p^{-s}) (1 - \alpha_{0,p} \alpha_{1,p} p^{-s}) (1 - \alpha_{0,p} \alpha_{2,p} p^{-s}) (1 - \alpha_{0,p} \alpha_{1,p} \alpha_{2,p} p^{-s}) \right\}^{-1}$$

and the standard L-function attached to f by

(0.2)
$$L(s, f, \underline{st}) := \prod_{p} \left\{ (1 - p^{-s}) \prod_{j=1}^{2} (1 - \alpha_{j,p}^{-1} p^{-s}) (1 - \alpha_{j,p} p^{-s}) \right\}^{-1},$$

where p runs over all prime numbers and $\alpha_{j,p}$ $(0 \le j \le 2)$ are the Satake p-parameters of f. The right-hand sides of (0.1) and (0.2) converge absolutely and locally uniformly for Re(s) sufficiently large.

For an indeterminate t, we put

$$\begin{split} H_p(t,f,\underline{\text{spin}}) := & (1-\alpha_{0,p}t)(1-\alpha_{0,p}\alpha_{1,p}t)(1-\alpha_{0,p}\alpha_{2,p}t)(1-\alpha_{0,p}\alpha_{1,p}\alpha_{2,p}t) \;, \\ H_p(t,f,\underline{\text{st}}) := & (1-t) \prod_{i=1}^2 (1-\alpha_{j,p}^{-1}t)(1-\alpha_{j,p}t) \;, \end{split}$$

where $H_p(t, f, \underline{\text{spin}})$, $H_p(t, f, \underline{\text{st}}) \in R[t]$.

DEFINITION. (cf. Kurokawa [9]) We say that $f \in S_k$ satisfies the Ramanujan–Petersson conjecture if the absolute values of the zeros of $H_p(t, f, \underline{\text{spin}})$ are all equal to $p^{-(k-3/2)}$ for all p.

Received March 28, 1994 Revised October 14, 1994 Since the Satake p-parameters satisfy $\alpha_{0,p}^2 \alpha_{1,p} \alpha_{2,p} = p^{2k-3}$, this is equivalent to saying that

$$|\alpha_{1,p}| = |\alpha_{2,p}| = 1$$
 for all p ,

that is, the absolute values of the zeros of $H_p(t, f, \underline{st})$ are all equal to 1 for all p, or to saving that

$$\underline{\operatorname{st}}_{p}(f) := \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & a_{p} & b_{p} & 0 & 0 \\ 0 & -b_{p} & a_{p} & 0 & 0 \\ 0 & 0 & 0 & c_{p} & d_{p} \\ 0 & 0 & 0 & -d_{p} & c_{p} \end{pmatrix} \in SO(5, \mathbb{R}) \quad \text{for all } p,$$

where $a_p = \frac{1}{2}(\alpha_{1,p} + \alpha_{1,p}^{-1}), b_p = \frac{1}{2i}(\alpha_{1,p} - \alpha_{1,p}^{-1}), c_p = \frac{1}{2}(\alpha_{2,p} + \alpha_{2,p}^{-1}), d_p = \frac{1}{2i}(\alpha_{2,p} - \alpha_{2,p}^{-1})$ (cf. Langlands [11]).

For an even integer k, let S_k^* be the Maaß subspace of S_k (cf. Maaß [13, 14, 15], Andrianov [3], Zagier [23]). We know that if f belongs to the Maaß space S_k^* , f doesn't satisfy the Ramanujan-Petersson conjecture. Now, our conjecture takes the following form:

CONJECTURE. (cf. Kurokawa [9, Conjecture 3]) If k is an even integer, any cusp eigenform of weight k in the orthogonal complement of the Maaß space satisfies the Ramanujan-Petersson conjecture. If k is an odd integer, any cusp eigenform of weight k satisfies the Ramanujan-Petersson conjecture.

We will analyze this conjecture from elementary properties of L-functions. Although several authors make numerical researches on our conjecture, so far we don't know even the existence of f which satisfies the Ramanujan-Petersson conjecture (cf. Kurokawa [9], Skoruppa [21]).

NOTATION. 1°. As usual, Z is the ring of rational integers, Q the field of rational numbers, R the field of real numbers, C the field of complex numbers.

- 2°. Let $m, n \in \mathbb{Z}$, m, n > 0. If A is an $m \times n$ -matrix, then we write it also as $A^{(m,n)}$, and as $A^{(m)}$ if m = n. The identity matrix of size n is denoted by 1_n .
- 3°. For $n \in \mathbb{Z}$, n > 0, let $A^{(n)}$ be a diagonal matrix with diagonal entries a_1, \dots, a_n . We denote it by $d(a_1, \dots, a_n)$.
- 4°. For $n \in \mathbb{Z}$, n > 0, let $\Gamma^n := Sp(n, \mathbb{Z})$ be the Siegel modular group of degree n and let \mathfrak{H}_n be the Siegel upper half space of degree n, that is,

$$\mathfrak{H}_n := \{ Z = X + iY \in C^{(n)} \mid {}^tZ = Z, Y > 0 \}.$$

5°. We put

$$\xi(s) := \Gamma_{R}(s)\zeta(s) = \xi(1-s) ,$$

$$\Gamma_{R}(s) := \pi^{-s/2}\Gamma(s/2) , \quad \Gamma_{C}(s) := 2(2\pi)^{-s}\Gamma(s) = \Gamma_{R}(s)\Gamma_{R}(s+1) ,$$

where $\zeta(s)$ is the Riemann zeta function and $\Gamma(s)$ is the gamma function.

§1. Preliminaries.

Let k be a positive integer. A holomorphic function f on \mathfrak{H}_n is called a Siegel modular form of weight k if it satisfies

$$(f|M)(Z) := \det(CZ+D)^{-k} f((AZ+B)(CZ+D)^{-1}) = f(Z)$$

for all $Z \in \mathfrak{H}_n$ and $M = \begin{pmatrix} A^{(n)} & B^{(n)} \\ C^{(n)} & D^{(n)} \end{pmatrix} \in \Gamma^n$ and if it is holomorphic at the cusps when n = 1.

The space of Siegel modular forms of weight k is denoted by M_k^n .

We define the Siegel operator Φ on M_k^n by

$$(\Phi f)(Z) := \lim_{t \to \infty} f\left(\begin{pmatrix} Z & 0 \\ 0 & it \end{pmatrix}\right)$$

for $Z \in \mathfrak{H}_{n-1}$. Then the operator Φ defines the map $\Phi : M_k^n \to M_k^{n-1}$. Suppose $f \in M_k^n$. Then it is called a cusp form if it satisfies $\Phi f = 0$.

In what follows, we restrict ourselves to the case n=2 and we omit subscripts concerning the case n=2 when there is no fear of confusion.

We define $G^+ := G^+ Sp(2, \mathbf{Q})$ by

$$G^{+} := \left\{ M \in GL(4, \mathbf{Q}) \middle| {}^{t}M \begin{pmatrix} 0 & 1_{2} \\ -1_{2} & 0 \end{pmatrix} M = \mu(M) \begin{pmatrix} 0 & 1_{2} \\ -1_{2} & 0 \end{pmatrix}, \mu(M) > 0 \right\},$$

and for a prime number $p, G_p^+ := G^+ \cap GL(4, \mathbb{Z}[p^{-1}]).$

Let \mathcal{H} (resp. \mathcal{H}_p) be the free C-module generated by the double cosets $\Gamma g\Gamma$, $g \in G^+$ (resp. G_p^+). Then \mathcal{H} is a commutative algebra and we call it the Hecke algebra (over C). We get $\mathcal{H} = \bigotimes_p \mathcal{H}_p$, where the tensor product is the restricted one. Moreover, the structure of \mathcal{H}_p is known: For $0 \le j \le 2$, let w_j be an automorphism of $C[X_0^{\pm 1}, X_1^{\pm 1}, X_2^{\pm 1}]$ such that

$$\begin{split} & w_0(X_0) = X_0 \;, & w_0(X_1) = X_2 \;, & w_0(X_2) = X_1 \;, \\ & w_1(X_0) = X_0 X_1 \;, & w_1(X_1) = X_1^{-1} \;, & w_1(X_2) = X_2 \;, \\ & w_2(X_0) = X_0 X_2 \;, & w_2(X_1) = X_1 \;, & w_2(X_2) = X_2^{-1} \;. \end{split}$$

The automorphisms w_j $(0 \le j \le 2)$ generate a finite group W. We call it the Weyl group. We get

$$\Psi \colon \mathscr{H}_p \xrightarrow{\cong} C[X_0^{\pm 1}, X_1^{\pm 1}, X_2^{\pm 1}]^W,$$

where $C[X_0^{\pm 1}, X_1^{\pm 1}, X_2^{\pm 1}]^W$ is the *W*-invariant subalgebra of $C[X_0^{\pm 1}, X_1^{\pm 1}, X_2^{\pm 1}]$.

For $g \in G^+$, let $\Gamma g \Gamma = \bigcup_{j=1}^r \Gamma g_j$ be a decomposition of the double coset $\Gamma g \Gamma$ into left cosets. For $f \in M_k$ (resp. S_k), we define the Hecke operator $(\Gamma g \Gamma)$ by

$$f\big|(\Gamma g\Gamma):=\mu(g)^{2k-3}\sum_{j=1}^r f\big|g_j.$$

Then we get a homomorphism $\mathcal{H} \to \operatorname{End}(M_k)$ (resp. $\operatorname{End}(S_k)$).

For $\delta \in \mathbb{Z}$, $\delta > 0$ and a prime number p, we put

$$T(p^{\delta}) := \sum_{\mu(g)=p^{\delta}} (\Gamma g \Gamma) ,$$

where $g = d(p^{d_1}, p^{d_2}, p^{e_1}, p^{e_2}) \in G_p^+, d_j, e_j \in \mathbb{Z}$ (j = 1, 2) and $0 \le d_1 \le d_2 \le e_2 \le e_1$.

Suppose $f \in M_k$ is an eigenform. We denote the eigenvalue of $(\Gamma g \Gamma)$ on f by $\lambda_f(\Gamma g \Gamma)$ and that of $T(p^{\delta})$ on f by $\lambda_f(p^{\delta})$.

If the homomorphism $\lambda_f \colon \mathscr{H}_p \to C$ coincides with the composite map of the isomorphism Ψ and the evaluation map

$$C[X_0^{\pm 1}, X_1^{\pm 1}, X_2^{\pm 1}]^W \xrightarrow{(X_0, X_1, X_2) \mapsto (\alpha_{0,p}, \alpha_{1,p}, \alpha_{2,p})} C$$

then the numbers $\alpha_{0,p}$, $\alpha_{1,p}$, $\alpha_{2,p} \in \mathbb{C}^*$, the Satake *p*-parameters of f, are uniquely determined modulo W. In this case, they are uniquely determined by

$$\begin{split} \lambda_f(\Gamma p \mathbf{1}_4 \Gamma) &= p^{-3} \alpha_{0,p}^2 \alpha_{1,p} \alpha_{2,p} \;, \qquad \lambda_f(p) = \alpha_{0,p} (1 + \alpha_{1,p}) (1 + \alpha_{2,p}) \;, \\ \lambda_f(\Gamma \mathbf{d}(1,\, p, p^2,\, p) \Gamma) &= p^{-1} \alpha_{0,p}^2 (\alpha_{1,p} + \alpha_{2,p}) (1 + \alpha_{1,p} \alpha_{2,p}) + (p^{-1} - p^{-3}) \alpha_{0,p}^2 \alpha_{1,p} \alpha_{2,p} \;, \end{split}$$

up to the action of the Weyl group W.

We summarize some facts on Siegel modular forms and on L-functions attached to them. In what follows, we suppose that $f \in S_k$ is an eigenform.

- (I) It follows from the hermiteness of Hecke operators $(\Gamma g\Gamma)$, $g \in G^+$, that we have $\lambda_f(\Gamma g\Gamma) \in \mathbb{R}$. In fact, by Kurokawa [10], we know that the eigenvalues on f of the Hecke algebra over Q generate a totally real finite extension of Q.
 - (II) We put

$$\Lambda(s, f, \underline{\operatorname{st}}) := \Gamma_{R}(s) \prod_{j=1}^{2} \Gamma_{C}(s+k-j)L(s, f, \underline{\operatorname{st}}) .$$

Andrianov-Kalinin [4] and Böcherer [6] (cf. Piatetski-Shapiro and Rallis [20]) have discovered that $\Lambda(s, f, \underline{st})$ has a meromorphic continuation to the whole s-plane and satisfies the functional equation

$$\Lambda(s, f, st) = \Lambda(1 - s, f, st)$$
.

Moreover, Mizumoto [16] has shown that it is entire.

(III) We put

$$\Lambda(s, f, \underline{\text{spin}}) := \Gamma_{\mathbf{c}}(s)\Gamma_{\mathbf{c}}(s-k+2)L(s, f, \underline{\text{spin}}).$$

Andrianov [1] has shown that $\Lambda(s, f, spin)$ has a meromorphic continuation to the

whole s-plane and satisfies the functional equation

$$\Lambda(s, f, \text{spin}) = (-1)^k \Lambda(2k-2-s, f, \text{spin}).$$

For an odd integer k, it is entire. For an even integer k, Evdokimov [8] and Oda [19] have shown that $\Lambda(s, f, \underline{\text{spin}})$ has a simple pole at s = k (or equivalently, at s = k - 2) if and only if $f \in S_k^*$. Especially, if $f \in S_k^*$, $L(s, f, \underline{\text{spin}})$ is the following form:

(1.1)
$$L(s, f, \underline{\text{spin}}) = \prod_{p} \left\{ (1 - p^{k-1} p^{-s}) (1 - p^{k-2} p^{-s}) (1 - \omega p^{-s}) (1 - \bar{\omega} p^{-s}) \right\}^{-1},$$

where $|\omega| = p^{k-3/2}$.

§2. Results.

First we note that the set $\{\alpha_{1,p}, \alpha_{1,p}^{-1}, \alpha_{2,p}, \alpha_{2,p}^{-1}\}$ is invariant under the action of the Weyl group W.

LEMMA 1. For an eigenform $f \in S_k$, the set $\{\alpha_{1,p}, \alpha_{1,p}^{-1}, \alpha_{2,p}, \alpha_{2,p}^{-1}\}$ is one of the following types:

Type I. $\{p^{a_1}, p^{-a_1}, p^{a_2}, p^{-a_2}\}\ or\ \{-p^{a_1}, -p^{-a_1}, -p^{a_2}, -p^{-a_2}\}\$, where $a_1, a_2 \in \mathbb{R}$ and $0 < a_2 < a_1$.

Type II. $\{e^{i\theta}, e^{-i\theta}, p^a, p^{-a}\}$ or $\{-1, -1, -p^a, -p^{-a}\}$, where $a \in \mathbb{R}$, 0 < a and $0 \le \theta < 2\pi$.

Type III. $\{p^a e^{i\theta}, p^{-a} e^{-i\theta}, p^a e^{-i\theta}, p^{-a} e^{i\theta}\}$, where $a \in \mathbb{R}$, 0 < a and $0 \le \theta < 2\pi$.

Type RP. $\{e^{i\theta_1}, e^{-i\theta_1}, e^{i\theta_2}, e^{-i\theta_2}\}$, where $0 \le \theta_1, \theta_2 < 2\pi$.

PROOF. By $H_p(t, f, \underline{st}) \in R[t]$, we have

$$\{\alpha_{1,p}, \alpha_{1,p}^{-1}, \alpha_{2,p}, \alpha_{2,p}^{-1}\} = \{\overline{\alpha_{1,p}}, \overline{\alpha_{1,p}^{-1}}, \overline{\alpha_{2,p}}, \overline{\alpha_{2,p}^{-1}}\} \ .$$

From this fact, Lemma 1 is proved except for signatures in type I and in type II.

In type I, it follows from $\lambda_f(p) \in \mathbf{R}$ that we have $\alpha_{0,p} \in \mathbf{R}$. Combining this with $\alpha_{0,p}^2 \alpha_{1,p} \alpha_{2,p} = p^{2k-3}$, we obtain $\alpha_{1,p} \alpha_{2,p} > 0$. In the same way, we can determine signatures in type II.

THEOREM 1. Conjecture holds if any eigenform $f \in S_k$ satisfies the following conditions:

- (A) For any prime p, the logarithms of the absolute values of the zeros of $H_p(t, f, \underline{\text{spin}})$ (or equivalently, of $H_p(t, f, \underline{\text{st}})$) to the base p are independent of p.
- (B) For all but a finite number of primes p, $H_p(t, f, \underline{spin})$ and $H_p(t, f, \underline{st})$ have no negative real zeros.

With the use of the Satake parameters, we can replace the condition (A) by the following form:

(A') For any primes p and q, by the suitable action of the Weyl group,

$$\log_p |\alpha_{1,p}| = \log_q |\alpha_{1,q}|$$
 and $\log_p |\alpha_{2,p}| = \log_q |\alpha_{2,q}|$

hold.

If we note that our L-functions $L(s, f, \underline{spin})$ and $L(s, f, \underline{st})$ are unramified at all p in the sense of Langlands [11], we can understand that "any prime" in (A) is "any unramified prime". If so, (A) is true for many L-functions which have the Euler product expansions, e.g., the Riemann zeta-function, the Dirichlet L-functions, the Hasse-Weil L-functions and so on.

PROOF. For a positive integer k, let $f \in S_k$ be an eigenform. We note that, under the condition (A), the types of $\{\alpha_{1,p}, \alpha_{1,p}^{-1}, \alpha_{2,p}, \alpha_{2,p}^{-1}\}$ are the same for all p. If $\{\alpha_{1,p}, \alpha_{1,p}^{-1}, \alpha_{2,p}, \alpha_{2,p}^{-1}\}$ is of type I (resp. type II, type III or type RP) for any prime p, we say that f is of type I (resp. type II, type III or type RP).

In what follows, we assume that f satisfies the condition (B).

If f is of type I, then for almost all p, $H_p(t, f, st)$ is the following form:

$$H_p(t, f, st) = (1-t)(1-p^{a_1}t)(1-p^{-a_1}t)(1-p^{a_2}t)(1-p^{-a_2}t)$$
,

where a_1 and a_2 are independent of p. Then $L(s, f, \underline{st})$ has a pole at $s = 1 + a_1$. This contradicts the fact (II).

If f is of type II, then for almost all p, $H_p(t, f, st)$ is the following form:

$$H_p(t, f, \underline{st}) = (1-t)(1-e^{i\theta_p}t)(1-e^{-i\theta_p}t)(1-p^at)(1-p^{-a}t)$$
,

where $0 \le \theta_p < 2\pi$ and a is independent of p. Then $L(s, f, \underline{st})$ has a pole at s = 1 + a. This contradicts the fact (II).

If f is of type III, then for almost all p, $H_p(t, f, spin)$ is the following form:

$$H_p(t, f, \text{spin}) = (1 - p^{k-3/2 + a}t)(1 - p^{k-3/2 - a}t)(1 - p^{k-3/2}e^{i\theta_p}t)(1 - p^{k-3/2}e^{-i\theta_p}t)$$

where $0 \le \theta_p < 2\pi$ and a is independent of p. Then $L(s, f, \underline{\text{spin}})$ has a pole at s = k - 1/2 + a. If k is an odd integer, this contradicts the fact (III). If k is an even integer, we have $f \in S_k^*$ and a = 1/2.

For an even integer k, let $S_k^{*\perp}$ be the orthogonal complement of the Maaß space S_k^* , that is, $S_k = S_k^{*\perp} \oplus S_k^*$. For an odd integer k, we put $S_k^* = \{0\}$ when there is no fear of confusion.

Suppose that any eigenform $f \in S_k$ satisfies the condition (A). If f of type I occurs, then there exist infinitely many prime numbers such that $\lambda_f(p) < 0$ and $\lambda_f(\Gamma d(1, p, p^2, p)\Gamma) < 0$. If f of type II occurs, then there exist infinitely many prime numbers such that $\lambda_f(p) = 0$. If f of type III occurs, then $f \in S_k^*$ or there exist infinitely many prime numbers such that $\lambda_f(p) < 0$.

So we have:

COROLLARY 1. Let $f \in S_k$ be an eigenform. If f satisfies the condition (A) and if $\lambda_f(p) > 0$ for almost all p, then f satisfies the Ramanujan-Petersson conjecture or f belongs to the Maa β space S_k^* .

We consider the spaces $S_{20}^{*\perp} = CY20$, $S_{22}^{*\perp} = CY22$, $S_{24}^{*\perp} = CY24a \oplus CY24b$ and $S_{26}^{*\perp} = CY26a \oplus CY26b$, where Y^* is the same eigenform as that in Skoruppa [21]. Note that $S_k^{*\perp} = \{0\}$ for k < 20.

In [21], the first few Euler factors

$$H_{p}(t,f,\underline{\text{spin}}) = \left(1 - \left(\frac{\lambda_{\Upsilon *}(p)}{2} + \sqrt{d_{\Upsilon *}(p)}\right)t + p^{2k-3}t^{2}\right)\left(1 - \left(\frac{\lambda_{\Upsilon *}(p)}{2} - \sqrt{d_{\Upsilon *}(p)}\right)t + p^{2k-3}t^{2}\right),$$

where $d_{\Upsilon_*}(p) = -\frac{3}{4}\lambda_{\Upsilon_*}(p)^2 + \lambda_{\Upsilon_*}(p^2) + p^{2k-4} + 2p^{2k-3}$, have been computed. Using Skoruppa's Table 4 in [21], we compute the first few Euler factors

$$\begin{split} H_{p}(t, \ \Upsilon*, \underline{\mathrm{st}}) &= (1-t) \times \\ & \left(1 - \left(\frac{C_{\varUpsilon*}(p)}{2} + \sqrt{D_{\varUpsilon*}(p)}\right) \frac{1}{p^{2k-3}} t + t^{2}\right) \left(1 - \left(\frac{C_{\varUpsilon*}(p)}{2} - \sqrt{D_{\varUpsilon*}(p)}\right) \frac{1}{p^{2k-3}} t + t^{2}\right). \end{split}$$

The resulting values of $C_{Y*}(p)$ and $D_{Y*}(p)$ are given in Table below. Within the range of our computations, the Euler factors $H_p(t, Y*, spin)$ and $H_p(t, Y*, st)$ of Y22 up to Y26b

TABLE

Υ *	p	$C_{Y_{\bullet}}(p)$	$D_{\gamma_{\bullet}}(p)$
Y20	2	2 ²⁶ ·3 ² ·191	2 ⁵⁰ ·11898121
	3	$-2^4 \cdot 3^{22} \cdot 23 \cdot 41413$	22 · 344 · 494567 · 196757063
	5	$-2^2 \cdot 3^2 \cdot 5^{20} \cdot 881 \cdot 12576191$	2 ⁶ ·5 ⁴⁰ ·231611·253651·409704728921
	7	$-2^{6} \cdot 7^{21} \cdot 709861 \cdot 1080713$	$2^2 \cdot 3^4 \cdot 7^{42} \cdot 53 \cdot 1531 \cdot 5519 \cdot 62131 \cdot 149684694787$
Y22	2	$-2^{25} \cdot 3^2 \cdot 6043$	248 · 7 · 687078607
	3	$-2^4 \cdot 3^{23} \cdot 7 \cdot 7834259$	$2^2 \cdot 3^{46} \cdot 37 \cdot 311 \cdot 587 \cdot 2818358041$
	5	$-2^2 \cdot 3^2 \cdot 5^{22} \cdot 7 \cdot 61 \cdot 2458670741$	$2^6 \cdot 5^{44} \cdot 11^2 \cdot 29 \cdot 709 \cdot 257371 \cdot 1235981 \cdot 6006439$
Y24a	2	$-2^{31} \cdot 3^4 \cdot 353$	2 ⁶⁰ ·7·17·3540071
	3	$-2^{4} \cdot 3^{26} \cdot 7^{2} \cdot 37 \cdot 55823$	$2^2 \cdot 3^{52} \cdot 11 \cdot 1583 \cdot 10501 \cdot 1380258457$
	5	$-2^2 \cdot 3^4 \cdot 5^{24} \cdot 7^3 \cdot 9463 \cdot 1015159$	2 ⁶ ·5 ⁴⁸ ·31·41·2167243962867300928540511*
Y24b	2	$-2^{28} \cdot 3^2 \cdot 1019$	254 · 7 · 12641 · 2076143
	3	$-2^{4} \cdot 3^{25} \cdot 7 \cdot 3517 \cdot 11987$	$2^2 \cdot 3^{50} \cdot 11^3 \cdot 23 \cdot 167561325051733$
	5	$-2^2 \cdot 3^2 \cdot 5^{23} \cdot 7 \cdot 34913 \cdot 235654733$	$2^6 \cdot 5^{46} \cdot 29 \cdot 31 \cdot 241 \cdot 290956671215935002572891$
Y26a	2	$-2^{32}\cdot 3^2\cdot 11\cdot 1571$	2 ⁶² ·96153491281
	3	$-2^4 \cdot 3^{31} \cdot 751 \cdot 14243$	$2^2 \cdot 3^{59} \cdot 11 \cdot 23 \cdot 61 \cdot 198676251769691$
	5	$-2^2 \cdot 3^2 \cdot 5^{28} \cdot 7 \cdot 73 \cdot 23131 \cdot 1652899$	$2^{6} \cdot 5^{56} \cdot 11 \cdot 19 \cdot 9719 \cdot 3626449 \cdot 549711087746599$
Y26b	2	$-2^{29} \cdot 3^2 \cdot 337 \cdot 929$	256.41.21871.1870919
	3	$2^4 \cdot 3^{29} \cdot 101 \cdot 1130863$	$2^2 \cdot 3^{58} \cdot 73 \cdot 29927101391081233$
	5	$-2^2 \cdot 3^2 \cdot 5^{28} \cdot 17 \cdot 41 \cdot 14311199239$	2 ⁶ ·5 ⁵⁵ ·271·215309·539789837317483898071

^{*} The number 2167243962867300928540511 is not a prime number.

have no negative real zeros.

Now we define some L-functions attached to Siegel modular forms. Let sym² be the symmetric square representation of GL(n, C), i.e.,

sym²:
$$GL(n, C) \rightarrow GL\left(\frac{n(n+1)}{2}, C\right)$$
.

For an eigenform $f \in S_k$, we put

(2.1)
$$L(s, f, \operatorname{sym}^{2}(\underline{\operatorname{st}})) := \prod_{p} \det(1_{15} - \operatorname{sym}^{2}(\underline{\operatorname{st}}_{p}(f))p^{-s})^{-1},$$

(2.2)
$$L(s, f, \operatorname{sym}^{2}(\underline{\operatorname{spin}})) := \prod_{p} \det(1_{10} - \operatorname{sym}^{2}(\underline{\operatorname{spin}}_{p}(f)) p^{-(s+2k-3)})^{-1},$$

where $\underline{\text{spin}}_p(f) := d(\alpha_{0,p}, \alpha_{0,p}\alpha_{1,p}, \alpha_{0,p}\alpha_{1,p}, \alpha_{0,p}\alpha_{2,p})$. The right-hand sides of (2.1) and (2.2) converge absolutely and locally uniformly for Re(s) sufficiently large.

For $r = sym^2(st)$ or $r = sym^2(spin)$, we put

$$\Lambda(s,f,r) := \Gamma(s,f,r)L(s,f,r),$$

where $\Gamma(s, f, r)$ is the suitable Γ -factor of L(s, f, r).

Then we expect the following:

(C) Let $r = sym^2(\underline{st})$ or $r = sym^2(\underline{spin})$. For any eigenform $f \in S_k$, $\Lambda(s, f, r)$ has a meromorphic continuation to the whole s-plane and satisfies the functional equation

(2.3)
$$\Lambda(s,f,r) = \varepsilon(f,r)\Lambda(1-s,f,r),$$

where $\varepsilon(f, \mathbf{r})$ is a constant. Moreover, $\Gamma(s, f, \mathbf{r})$ has neither poles nor zeros at $s = \sigma \in \mathbf{R}$, $\sigma > 1$ and if $\Lambda(s, f, \mathbf{r})$ has a pole at $s = \sigma \in \mathbf{R}$, $\sigma > 1$, then $f \in S_k^*$.

The following is proved in the same way as Theorem 1.

THEOREM 2. If the condition (C) holds, Conjecture is equivalent to saying that any eigenform $f \in S_k$ satisfies the condition (A).

PROOF. It is clear that any eigenform $f \in S_k$ satisfies the condition (A) if Conjecture holds. So we suppose that any eigenform $f \in S_k$ satisfies the condition (A).

The set of eigenvalues of $sym^2(spin_p(f))p^{-(2k-3)}$ is

$$(2.4) \{1, \alpha_{1,p}, \alpha_{1,p}^{-1}, \alpha_{2,p}, \alpha_{2,p}^{-1}, 1, \alpha_{1,p}\alpha_{2,p}, \alpha_{1,p}\alpha_{2,p}^{-1}, \alpha_{1,p}^{-1}\alpha_{2,p}, \alpha_{1,p}^{-1}\alpha_{2,p}^{-1}\}$$

and that of $sym^2(st_n(f))$ is

$$(2.5) \left\{1, \alpha_{1,p}, \alpha_{1,p}^{-1}, \alpha_{2,p}, \alpha_{2,p}^{-1}, 1, \alpha_{1,p}^{2}, \alpha_{1,p}^{-2}, \alpha_{2,p}^{2}, \alpha_{2,p}^{-2}, \alpha_{1,p}^{-1}, \alpha_{2,p}^{-1}, \alpha_{2,p}^{-$$

If f is of type I, then the set (2.4) is

$$\{1, \pm p^{a_1}, \pm p^{-a_1}, \pm p^{a_2}, \pm p^{-a_2}, 1, p^{a_1+a_2}, p^{a_1-a_2}, p^{-a_1+a_2}, p^{-a_1-a_2}\}$$
,

where a_1 and a_2 are independent of p. So $L(s, f, \text{sym}^2(\underline{\text{spin}}))$ has a pole at $1 + a_1 + a_2$ and $f \in S_k^*$ by the condition (C). But this is impossible because of the form of (1.1).

If f is of type II, then the set (2.5) is

$$\{1, e^{i\theta}, e^{-i\theta}, \pm p^{a}, \pm p^{-a}, 1, e^{2i\theta}, e^{-2i\theta}, p^{2a}, p^{-2a}, \\ 1, \pm p^{a}e^{i\theta}, \pm p^{-a}e^{i\theta}, \pm p^{a}e^{-i\theta}, \pm p^{-a}e^{-i\theta}\},$$

where a is independent of p. So $L(s, f, \text{sym}^2(\underline{st}))$ has a pole at 1+2a and $f \in S_k^*$ by the condition (C). But this is impossible because of the form of (1.1).

If f is of type III, then the set (2.4) is

$$\{1, p^a e^{i\theta}, p^{-a} e^{-i\theta}, p^a e^{-i\theta}, p^{-a} e^{i\theta}, 1, p^{2a}, e^{2i\theta}, e^{-2i\theta}, p^{-2a}\},$$

where a is independent of p. So $L(s, f, \text{sym}^2(\underline{\text{spin}}))$ has a pole at 1+2a and $f \in S_k^*$ by the condition (C). Thus Theorem 2 is proved.

REMARKS. (i) If $f \in S_k^*$, then $L(s, f, \text{sym}^2(\text{spin}))$ diverges at s = 2.

(ii) In (C), we don't assert absolute convergence of L(s, f, r) for Re(s) > 1.

At the referee's suggestion we study the sign of $\lambda_f(p)$. For this, we need the following condition (cf. §1 (III)).

(D) Let $f \in S_k$ be an eigenform. Then the Γ -factor of $L(s, f, \text{sym}^2(\text{spin}))$ is

$$\Gamma(s, f, \text{sym}^2(\underline{\text{spin}})) = \prod_{j=1}^{10} \Gamma_{\mathbf{R}}(s + \gamma_j) \qquad (\gamma_j \in \frac{1}{2}\mathbf{Z}).$$

The function $\Lambda(s, f, \text{sym}^2(\underline{\text{spin}}))$ has a meromorphic continuation to the whole s-plane and satisfies the functional equation (2.3). In any vertical strip, there exists a constant K>0 such that

$$L(s, f, \text{sym}^2(\underline{\text{spin}})) = O(e^{t^K})$$
 $(s = \sigma + it)$

as $t \to \infty$. The function $\Lambda(s, f, \text{sym}^2(\underline{\text{spin}}))$ has a pole if and only if $f \in S_k^*$. Moreover, if $f \notin S_k^*$, $L(1, f, \underline{\text{st}}) \neq 0$ and $L(1, f, \underline{\text{sym}^2(\underline{\text{spin}})}) \neq 0$.

Then we have:

THEOREM 3. Let $f \in S_k$ be an eigenform. Suppose that the condition (D) holds. If f satisfies the Ramanujan-Petersson conjecture, then $\lambda_f(p)$ changes sign infinitely often.

Then Corollary 1 takes the following form.

COROLLARY 2. Let $f \in S_k$ be an eigenform. Under the conditions (A) and (D), f belongs to the Maa β space S_k^* if and only if $\lambda_f(p) > 0$ for almost all p.

For our purposes we consider the Dirichlet series

$$\varphi_1(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} := L(s + k - 3/2, f, \underline{\text{spin}}) ,$$

$$\varphi_2(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s} = L(s, f, \underline{\text{spin}}^{\otimes 2}) := \zeta(s)L(s, f, \underline{\text{st}})L(s, f, \underline{\text{sym}}^2(\underline{\text{spin}})) ,$$

where $s = \sigma + it$. Note that $b_p = a_p^2 = \lambda_f(p)^2 p^{-(2k-3)}$ for all p.

For r=1, 2, define the function

$$N_{\varphi_r}(\sigma, T) := \#\{\rho = \beta + i\gamma \mid \varphi_r(\rho) = 0 \text{ with } \beta \ge \sigma \text{ and } |\gamma| \le T\}$$
.

LEMMA 2. Let $f \in S_k$ be an eigenform. Suppose that the condition (D) holds. If f satisfies the Ramanujan-Petersson conjecture, then $\varphi_r(s)$ (r=1,2) has the following four properties:

(1)
$$\sum_{p \le x} a_p \log p = -\sum_{|\gamma| \le T} \frac{x^{\rho}}{\rho} + O\left(\frac{x(\log x)^2}{T}\right),$$

$$\sum_{p \le x} b_p \log p = x - \sum_{|\gamma| \le T} \frac{x^{\rho}}{\rho} + O\left(\frac{x(\log x)^2}{T}\right),$$

where the sum on the left-hand side is over primes and that on the right-hand side is over the zeros $\rho = \beta + i\gamma$ of $\varphi_r(s)$ with $|\gamma| \le T \le x^{1/2}$ and $\beta \ge 0$.

(2)
$$\varphi_r(s) \neq 0$$
 in the region $\sigma \geq 1 - \frac{A}{\log(2+|t|)}$, $A > 0$.

$$N_{\varphi_r}(\sigma, T) \ll T^{c(1-\sigma)}, \qquad c > 0,$$

uniformly for $1/2 \le \sigma \le 1$, $T \to \infty$.

$$(4) N_{\varphi_r}(0, T) \ll T \log T.$$

We say that $\varphi_r(s)$ has the Hoheisel property if the four properties above hold.

PROOF. By an application of Perron's formula to the function $-\varphi'_r(s)/\varphi_r(s)$, we have

(2.6)
$$\frac{1}{2\pi i} \int_{1+\delta-iT}^{1+\delta+iT} -\frac{\varphi_r'(s)}{\varphi_r(s)} \frac{x^s}{s} ds + O\left(\frac{x(\log x)^2}{T}\right) = \begin{cases} \sum_{p \le x} a_p \log p, & \text{if } r = 1, \\ \sum_{p \le x} b_p \log p, & \text{if } r = 2, \end{cases}$$

where $\delta > 0$. The integral on the left-hand side of (2.6) is

$$\frac{1}{2\pi i} \int_{1+\delta-iT}^{1+\delta+iT} -\frac{\varphi_r'(s)}{\varphi_r(s)} \frac{x^s}{s} ds = \frac{1}{2\pi i} \int_C +\frac{1}{2\pi i} \left(\int_{-u+iT}^{1+\delta+iT} + \int_{-u-iT}^{-u+iT} + \int_{1+\delta-iT}^{-u-iT} \right),$$

where the contour C consists of four lines joining the points $1+\delta-iT$, $1+\delta+iT$, -u+iT, -u-iT and $1+\delta-iT$. Then we have

$$\frac{1}{2\pi i} \int_{C} = \begin{cases}
-\sum_{|\gamma| \le T} \frac{x^{\rho}}{\rho} + O(1), & \text{if } r = 1, \\
x - \sum_{|\gamma| \le T} \frac{x^{\rho}}{\rho} + O(1), & \text{if } r = 2, \\
\frac{1}{2\pi i} \left(\int_{-u+iT}^{1+\delta+iT} + \int_{-u-iT}^{-u+iT} + \int_{1+\delta-iT}^{-u-iT} \right) = O\left(\frac{x(\log x)^{2}}{T}\right)$$

as $u \to \infty$ (cf. Chandrasekharan [7, Chapter V Theorem 1]). Thus $\varphi_r(s)$ has the property (1).

If we apply the same method as in the proof of Murty's Theorem 3 in [18] to $f(s) = \varphi_2(s)$ and $g(s) = \zeta(s)\varphi_1(s)^2\varphi_2(s)$, we have $\varphi_1(1+it) \neq 0$ and $\varphi_2(1+it) \neq 0$. Then the same method as in the proof of Titchmarsh's Theorem 3.5 in [22, Chapter III] gives a zero-free region of the type (2) for f(s) and g(s). Thus $\varphi_r(s)$ has the property (2).

The property (3) is proved in the same way as that in Chandrasekharan [7, Chapter V Theorem 3]. The property (4) has been shown by Berndt [5, Theorem 10].

PROOF OF THEOREM 3. By Lemma 2, we know that $\varphi_r(s)$ has the Hoheisel property. Then, by Moreno [17] (cf. Murty [18, Lemma 4]), there is a v > 0, such that if $h = x^{\theta}$, $v < \theta < 1$, we have

$$\sum_{x \le p \le x+h} a_p = o(h) ,$$

$$\sum_{x \le p \le x+h} b_p \gg h.$$

Suppose that $\lambda_f(p) = a_p p^{k-3/2}$ doesn't change sign in $x \le p \le x + h$, for $h = x^{\theta}$, where θ satisfies the condition above. Then we have

$$\left|\sum_{x \leq p \leq x+h} a_p \right| = \sum_{x \leq p \leq x+h} |a_p| \gg \sum_{x \leq p \leq x+h} a_p^2 = \sum_{x \leq p \leq x+h} b_p,$$

since f satisfies the Ramanujan-Petersson conjecture. But this is a contradiction to (i) and (ii). Therefore, $\lambda_f(p)$ changes sign in the interval $x \le p \le x + h$. This completes the proof of Theorem 3.

References

- [1] A. N. Andrianov, Euler products corresponding to Siegel modular forms of genus 2, Russian Math. Surveys 29 (1974), 45–116 (English translation).
- [2] A. N. Andrianov, The multiplicative arithmetic of Siegel modular forms, Russian Math. Surveys 34 (1979), 75–148 (English translation).
- [3] A. N. Andrianov, Modular descent and the Saito-Kurokawa conjecture, Invent. Math. 53 (1979), 267-280.

- [4] A. N. Andrianov and V. L. Kalinin, On the analytic properties of standard zeta function of Siegel modular forms, Math. USSR-Sb. 35 (1979), 1-17 (English translation).
- [5] B. C. Berndt, On the zeros of a class of Dirichlet series I, Illinois J. Math. 14 (1970), 244-258.
- [6] S. BÖCHERER, Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe, J. Reine Angew. Math. 362 (1985), 146–168.
- [7] K. CHANDRASEKHARAN, Arithmetical Functions, Grundlehren Math. Wiss. 167 (1970), Springer.
- [8] S. A. EVDOKIMOV, A characterization of the Maass space of Siegel cusp forms of second degree, Math. USSR-Sb. 40 (1981), 125-133 (English translation).
- [9] N. Kurokawa, Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two, Invent. Math. 49 (1978), 149–165.
- [10] N. Kurokawa, On Siegel eigenforms, Proc. Japan Acad. Ser. A 57 (1981), 47-50.
- [11] R. P. Langlands, Problems in the theory of automorphic forms, Lecture Notes in Math. 170 (1970), 18-86.
- [12] R. P. LANGLANDS, Euler Products, Yale Univ. Press (1971).
- [13] H. MAAB, Über eine Spezialschar von Modulformen zweiten Grades, Invent. Math. 52 (1979), 95-104.
- [14] H. MAAB, Über eine Spezialschar von Modulformen zweiten Grades (II), Invent. Math. 53 (1979), 249–253.
- [15] H. MAAB, Über eine Spezialschar von Modulformen zweiten Grades (III), Invent. Math. 53 (1979), 255–265.
- [16] S. MIZUMOTO, Poles and residues of standard L-functions attached to Siegel modular forms, Math. Ann. 289 (1991), 589-612.
- [17] C. J. Moreno, The Hoheisel phenomenon for generalized Dirichlet series, Proc. Amer. Math. Soc. 40 (1973), 47-51.
- [18] M. R. Murty, Oscillations of Fourier coefficients of modular forms, Math. Ann. 262 (1983), 431-446.
- [19] T. Oda, On the poles of Andrianov L-functions, Math. Ann. 256 (1981), 323-340.
- [20] I. Piatetski-Shapiro and S. Rallis, *L-Functions for the Classical Groups*, Lecture Notes in Math. 1254 (1987), Springer.
- [21] N.-P. SKORUPPA, Computations of Siegel modular forms of genus two, Math. Comp. 58 (1992), 381–398.
- [22] E. C. TITCHMARSH, The Theory of the Riemann Zeta-Function, Clarendon Press (1951).
- [23] D. ZAGIER, Sur la conjecture de Saito-Kurokawa (d'après H. Maass), Séminaire de Théorie des Nombres, Paris 1979-80, Progress in Math. 12 (1981), 371-394.

Present Address:

Department of Business Administration, Sakushin Gakuin University, 908 Takeshita-machi, Utsunomiya-shi, Tochigi, 321–32 Japan.