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Introduction..

On the Euclidean space Gevrey classes on open sets and closed sets with boundary
are studied by many mathematicians. In the present paper, we define Gevrey classes on
compact real analytic Riemannian manifolds (without boundary) and study their
properties. Special attention will be paid for the cases of the sphere and the Lie sphere.

Let X be a compact real analytic Riemannian manifold with a Riemannian metric
g. We denote by &(X) the space of infinitely differentiable functions on X equipped
with the usual topology, by «/(X) the space of analytic functions on X equipped with
the usual inductive limit topology, and by #(X)=«/'(X) the space of hyperfunctions
on X. We denote by ||| .. the L>-norm with respect to the measure du corresponding
to g. Let s>0, >0 and let Ay be the Laplace-Beltrami operator corresponding to g
on X. We define Gevrey classes &4(X) and &(X) by

) ) 1
é’}s}(X)zlnﬂI;m {fe@‘”(X); Sltp(—zk—)!wk—"Ag'f”Lz< 00} s

é’;s)(X)=pr;)i(l)im{feé"(X); S‘:P(‘z‘lal!”sﬁk* ||AI)‘(f”L2< 00} s
respectively. &,(X) is a DFS space and &,(X) is an FS space. We denote their dual
spaces by &(X) and & (X), respectively.

According to Roumieu [9], the definition of Gevrey classes on R"*! with compact
support by means of the Laplacian and the supremum norm is equivalent to the usual
definition given in Komatsu [2].

In our definition, the L?-norm may be replaced by the sup-norm. In fact, for s=1,
Lions-Magenes [3] proved the equivalence and their argument is still valid for s>0.
Moreover, [3] showed that &,,(X) is equal to /(X). Further, Hashizume-Minemura
[1] characterized the spaces .«/(X) and £(X) by the growth behavior of the coefficients
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of eigenfunction expansion of the Laplace-Beltrami operator on X relying on the equality
#(X)=84/(X). ;

First, we extend results in [1] to the spaces &y(X), &,(X), &y(X) and & (X)
(Theorems 3 and 5). The spaces are characterized by the growth behavior of the
coefficients of eigenfunction expansion (Corollaries 4 and 6), which deduces that
85(X), 5(X), s>0 and £(X), &;(X), s>1 are subspaces of B(X).

Second, we investigate the case X =S", where S”" is the n-dimensional unit sphere
and neN. We call S"={zeC"*'; z2+2%+--- +22,,=1} the complex sphere. O(S")
denotes the space of holomorphic functions on §” equipped with the topology of uniform
convergence on compact sets. O(S™) is an FS space. An element of O(S™) is called an
entire function on S". The spaces 8(S"); 85(S™), 84(S™) and & (S") are characterized by
the growth behavior of spherical harmonic expansion on S" (Corollary 8). A result in
Morimoto [6] and Corollary 8 imply that &4,(S") and &,(S"), 0<s<1, are spaces of
entire functions of the minimal exponential type on §*. We prove the linear topological
isomorphism &,,(S")~@(S") (Theorem 9).

Third, we study the case X=2"*!={e"w; e R, w e S"}, where Z"*! is the Lie
sphere (see Morimoto [4]). The covering mapping p: S* x " X" *1 is locally isometric,
where S! x $" is the Riemannian product of the unit circle and the n-dimensional unit
sphere. For the Lie sphere, similar results to the case X =8" are valid.

1. Gevrey classes on compact real analytic Riemannian manifolds.

Let X be a compact real analytic Riemannian manifold with a Riemannian metrics
g and Ay the Laplace-Beltrami operator corresponding to g. L?*(X) denotes the space
of square integrable functions on X with respect to the measure du corresponding
to g. Choosing suitable g, we may assume [,du=1. For fe LX) we put ||f||,=
I f (w)f w)du. As is well-known, the eigenvalues of A, are non-negative and we can
choose eigenfunctions ¢,, k=0,1,2,---, so that they form a complete orthonormal
basis of L?(X) and that the corresponding eigenvalues 4, satisfy 0=1,<1,<- ' <
A=<---.

Let s>0. We take 1}/?9>0.

LEMMA 1. For any t>0, the series ) °_ exp(—tA;'®?) is convergent.

Proof is similar to Lemma 1.2 in [1] and is omitted.
For f(w)=) ", &x@i(w) € &(X) and me N, we define

Q0

AP f(w)= Y. @A™ p,(w).

k=0
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1 k (m/2)
|flsn= W”Axf”Lza 1/ 5.0 =sup ,Sh,,,IIA Slle, -

LeMMA 2. For fe £(X), we have
| flea<Iflsa<2¢2|flss.

Proof is similar to Lemma 1.5 in [1] and is omitted.
Let h>0 and put

EWX)={fe8X); | fllsn<oo}={fe&X); |fln<}.
&, (X) is a Banach space.
We define Gevrey classes &,(X) and &(X) by
€y(X)=ind lim &, ,(X), s X)= Prﬁ’j lim &, ,(X) .
h— o =0

Since
1 tALI(2D
el =sup— - A('"/z’sexp(——,;},—,—), )

@;’s belong to any &, ,(X), t>0, h>0.
We employ the following spaces of sequences of numbers:

& 1
F N X)= {(ak)kzo§ aeC, Z | a | CXP<71‘ l;%“”) < 00} >

k=0

Fo(X)= 1nd 11m F. X)), F (X)) = proj lim Z ,(X) .
h—=0

Z,4(X) is a Banach space, Z,(X) is a DFS space and F5(X) is an FS space.

For f€ 6,(X) or &,(X) we define &(f) = (@), o, Where a, = {f, B> = f W (w)dp.
The following theorem generalizes Proposition 1.7 in [1].

THEOREM 3. The mapping ® is a linear topological isomorphism of 84(X) onto
F(X) and of E,(X) onto F,(X).

PrROOF. Let fe &, ,(X).

=] 1 1/2
I hmsup o 5wt =su— ,sh,,{ 5 |a,.|21"'}
1/s
>sup — ml kl pLEDS (exp((ﬂh) )) I kl
h 2 S A/h) s +4
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1/s
2 L‘.i exp(i(ﬂ) ) .
4s 2\ h

Putting ¢ =$(1/h)', we have
| @ | <#| f Is nexp(—t'2") . 2

Thus, for any t>0 with ¢ <t there is C,,,>0 such that

kzo |ax | exp(t 4/ 0) <4°|| f |l kzo exp((t =)/ < Copell f llo » 3

where we used Lemma 1 in the last inequality.

& is injective by the complete orthogonality of ¢,’s.

We prove only that & is a linear topological isomorphism of &(X) onto %(X).
If fe 8(X), then || f||,,,<oo for any h>0. By (3), &( f) belongs to F,(X). This shows
that @(8,(X)) = #,(X). P is continuous by (3).

Assume (@) » 0 € F(X). Then (@) 0 € Z (X) for any t>0. By (1) we have

ko+1 ko+1 sl,%/(zs)
Y aor] < Y laglexp —— for any h .
k=ko sh k=ko h

Thus fy =Zf= o @i converges to a function f in the topology of any &, ,(X). The
function fe &,(X) satisfies D(f)=(a)x»0- Thus @ is surjective.
Let (a)>o0€ Fo(X) and f=3 " a,¢, € &,(X). For any h>0 we have

00 00 sl’%/(Zs)
Il < Y @] l@illop< Y IakleXP( s >
k=0 k=0 h

Thus @~ ! is also continuous. qg.ed.

COROLLARY 4. Let a,={f, ;). Then we have the following relations:
(i) feéy(X)<>It>0, lim |q|exp(tii/®)=0,

k— o
(i) fedy(X)<Vt>0, lim |q |exp(tA;/??)=0.

k— oo

The series f(z)=). :°= 0 Pi(2), z€ X, converges in the topology of respective spaces.

Put

gs,h(X)={(ak)k20; aeC, ), |a|exp(—ha}/®9) < 00},

k=0

Gs(X)= prgj (1)im 9iX), GyX)=indlimg, (X).
- h— oo
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9, 4 X) is a Banach space, 94(X) is an FS space and ¥%,(X) is a DFS space.

Let Te &, (X) or &,(X). (T, ¢, is well-defined since ¢, belongs to &y(X) and
6(X). Thus, we define P(T)=(a)i»0, Where a;=<(T, ¢,>. The following theorem
generalizes Theorem 1.8 in [1].

THEOREM 5. The mapping ¥ is a linear topological isomorphism of &g(X) onto
95(X) and of &,(X) onto %,(X).

PrOOF. We prove only that ¥ is a linear topological isomorphism of &;(X) onto
Y5 X). Let Ted(X). By the continuity of 7, there is >0 such that

1T 1% =sup{KT, /O; I fllsp<1} <0

Therefore,

_ SAL/(29)
la | =KT, o< I Tl loullsn<I T exp(#) :

Thus, for any t>s/h'/* we have

2 lalexp(—tA/PN<|TIY, X exp(( hf,s —t>/1,1/<28)><oo
k=0

by Lemma 1. This shows that ¥(&;(X)) = ¥,(X) and ¥ is continuous.
We prove the injectivity of Y. Assume that Y(T)=0 for Ted(X); that is,
a,=<{T, ¢;>=0, k=0,1,2, - --. Let fe 8,(X). Corollary 4 implies

o0

<T5f>=<Ts kio <f; ak>¢k>= Z ak<f; ﬂ>=0,

k=0

which means T=0.
Assume (@, ); » o € (5(X). Then there is >0 such that (@) 0 € %, (X). Let fe 8(X).

Then f belongs to any &, ,(X). Putting ¢’ =4(1/h)'/, we have
IS, @ <) f |l nexp(—t 4/??) C))
by (2). Therefore, if t'>¢>0, then we have

o0

Z alf; or>

k=0

< 3 lal 1< 0

<#0 Sl 3. |axlexp(—# 439 <o ©®)

by (4) and Lemma 1. Thus, ), :°= o Gx®i converges to a functional Ted&(X) in the
topology of &(X). For fe §,(X), we have (T, f> =Z:°= o WS, @i It is clear that T
satisfies <7, ;> =a,; that is, ¥(T)=(ay)y»o- Thus ¥ is surjective and ¥ ~! is continuous

by (5). | q.e.d.
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CoROLLARY 6. Let a,=<T, ¢,>. Then we have the following relations:

(1) Teéy(X)<=Vi>0, klim | @y | exp(—t AL/ =0,
(i) Ted&(X)<>3r>0, lim | |exp(— 1?9 =0.
k— oo

Further, we have T= E :°= o P> Le.
(T, f> =kZO j a@(w).f (W)dpu(w) ,
=0Jx

where f is a test function in respective spaces.
From Corollaries 4 and 6, we have the following remark.
REMARK. For 1<s<t, we have
0 C 8y y(X) € 815 X) = By 19 X) = 4(X) = H(X) = (X)) = E15(X)
< Ey(X) = 8(X) = LYX) = &'(X) = 8t X) = &y X) = (X))
< B(X) = 6\ X) = &y o X) = 8y 5 X) =y X) = - - - .

2. The sphere and the complex sphere.

In this section, we consider the case where X =S". Taguchi [8] studied the case
n=1. We denote Ay by As. In our previous papers, Ag was denoted by —Ag.
The cross norm L(z) on C**! corresponding to the Euclidean norm | x| is the Lie
norm given by
Lz)=L(x+iy)=[lIxI1>+ Iy + 2/ IxI* [yl2—(x - y)?12,
where x - y=x,y; +X,¥,+ - - - +Xp4 1Va+1- Put

S)={zeS"; Lz)<r}, 0<r<oo

and
S[r1={ze8"; Lz)<r}, 0O<r<w.

Note that $*(c0)=S" and $"[1]=S". For 1 <r< oo we denote by O($"(r)) the space of
holomorphic functions on §”(r) equipped with the topology of uniform convergence on
compact sets. O(S"(r)) is an FS space. Now we set

oS r)=ind lim 0(8"(r)), 1<r<oo.

O(S"[r]) is a DFS space. Since {S™(r); r>1} is a fundamental system of complex
neighborhoods of S", we have (5" = 0(S"[1]). We denote by
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Exp(8™; (0)={fec 0(S"); Ve>0,3C>0s.t. | f(z)| < Ce?, ze §}

the space of entire functions of minimal exponential type on S".

We denote by #X(C"*!) the space of k-homogeneous polynomials with complex
coefficients of n+ 1 variables. Put

PHC™ ) ={FePHC"*1); A,F=0}
where A, is the complex Laplacian; —A,=08%/0z2+0%/0z3+ - - - +0%/0z2,,. It is the
space of #*-homogeneous complex harmonic polynomials. Let
HHS)={P|s.; PEFHC* )}

be the space of k-spherical harmonics. We know that the restriction mapping fi— f Is"

is a linear isomorphism of Z¥(C"*!) onto #*(S™). N(k, n) denotes the dimension of the
space J#%(S™); -

N@©, 1)=1,

Qk+n—1)k+n—2)!

Nk, )= Kn—1)!

=0(k""1), (k,n)#(0, 1) . 6)

It is well-known that
. L3 (SM)= @ #*SM).
k=0

For spherical harmonics see Miiller [7], for example.

Fix an orthonormal basis of #*(S"): ¢, ;,j=1,2, -, N(k, n).

We renumber 0<1,<A; < - - <A <--- and @g, @1, ", @, * - in Section 1
t0 0<41<41,1<41,< " SAhyamSA21 < SAG<- and @o,1, 1,1, P12, "
O1.N1.dp P2,15 " " "> Prjp - - In the case X =8", 4, ;=k(k+n—1), 1 < j<N(k, n), and we
write dS for du. Let fe L*(S") and a,;=<f, ¢r;> =|s.f (@)@, {w)dS. Then S (w)=
Y Mem g, 0 () is independent of the choice of orthonormal basis {¢; ;} of H#*(S").

j=1
In fact, we have

Su(@)=S8(f; )=N(k, n) J J@P (o - 1)dS(7), Q)
sn

where P, () is the Legendre polynomial of degree k and of dimension n+1. We call
S (w) the k-spherical harmonic component of f.

We shall show that all results in Section 1 expressed in terms of {@,} can be
reformulated in terms of {S,}.

Let fe&(S") and f (co)=z;"°=0 S,(w) the spherical harmonic expansion of f. Then
we define
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a0

A2 f= 3. {k(k+n—1)}"25,

k=0

and

a0

1/2
I f |5 =sup ! {kz {k(k+n—1)}’"||Sk||{z} .

m m!h™ (k=0

Especially, for S, € 5#*(S™)

— 1)@
Selp=59P — (ke +n— 1)}'"/2scxp(s (htn—1) ) .
’ m m!*h™ hl/s
Put
Fk,n(z9 Cl)) =(\/ 22 )kPk,n(7z—2— * CD) .
z
Then
S2)=N(k, n) J S(t) P, .z, 1)dS(z) ®)
sn
is the k-homogeneous harmonic extension of S;(w). Note that
|13k,n(zaw)|SL(Z)k, ZEC"+1 ’ welS" (9)
(Lemma 5.5 in [5]) and that
P ,3(r?+1/r?) = C k™ "?r?* for r>1, (10)

where C, is a constant independent of k=0, 1,2, - - - (Lemma 8 in [6]).
We have

| Sk Isn <</ N(k, n)||Sill 2 ISkl 2 <] Sk lsn »

where | f|sn =Sup,en | f(w)| (Proposition 1.1 in [5]).
By the same argument as in Theorem 3, we have the following theorem:

THEOREM 7. Put
[+ o]
Fh(S™) = {(Sk)kz 0> SLEH(S™), kzo | Sk Isnexp(£ k1% < 00} .

Then we have the following linear topological isomorphisms:

(i) &y(S)=ind lime*4(s7),

(i) &(S")=proj im F>*s") .
h—0
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COROLLARY 8. Let S, be the k-spherical harmonic component of fe L*(S"). Then
we have the following relations:

(i) fedy(S)=3>0, lim |S,|smexp(tk')=0,
(ii) feé'(s,(S”)®Vt>O, lim | S, |sn exp(tk”s)=0.
k— o0

The series f(w)=) :°= o S(w), w e S™, converges in the topology of respective spaces.
By identifying F € O(S") with F | sn We consider
Exp($"; (0)) = O(8™) = A(S") .
Then we have the following theorem.
THEOREM 9. (i) &4)(S")=<4(S").

(ii) The restriction mapping a: O(S") — &1y(S") is a linear topological isomorphism.
(iii) Let 0<s<1. Then &y(S") and &\(S") are subspaces of Exp(S™; (0)).

Proor. (i) This 1~s a special case of the general result in [3].
(ii) Suppose fe O(S™). Then we have
Sw)=5(f; w)
_ N(k, n)
P k(2 2+1/r%) 28n1r]
where r>1, 08"[r]={zeS8"; L(z)=r} and du,(z) is the O(n+ 1)-invariant measure on

0S"[r] (Lemma 3.3 in [10], in which # is assumed n>2, but (11) is also true for n=1).
Let ~>0. Then by (9) we have

S@P(Z - wydpul2),  weS(), (11)

N(k, n)r*
< nry
=V @bsmp G671/
where | f(2) 95,1 =5UD.co5 | f(2)|. By (6) and (10), for r>exp(1/h) we have

_ & N(k, n)exp(k/h)
K50 P32 +1/r?)

| S(@) |sn

h,r

Therefore, we have

I ANl & 1.m¢smy < Chp | f lagnge 5 ,

where | f| g1.nsn denotes the norm of the space # '"*(S"). Thus f=) * 'Sy is in &;S")
and « is continuous.

Conversely, suppose f =Z:’= o Sk € &1)(S"). By (8) and (9) we have
|52 | <Nk, n)| Sils-LA2)*,  zeS".
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For any r>1 and h> 0 satisfying r <exp(1/h), there is C; ,>0 such that
Y 1812 o5t S Cufl f l g1msm) - (12)
k=0

Therefore F(z)=Y°  Si(z) defines an entire function on §" and «(F)= f; that is, « is
surjective. By (12) we have

| F(2) |3ngn < Cho | f | #1.0¢smy -

This shows that « is injective and that « ™! is continuous.
(iii) is clear by Corollary 9 and Theorem 11 in [6] which are valid for n>1.
q.e.d.

Similar to (7), we define the k-spherical harmonic component S, of T e &;(S"™) by
Suw@)=S(T; w)=N(k, nKT, P, (w-1)).

Then we have
(Tf>= 3§ SUT: S f: ).

By the same argument as in Theorem 5, we have the following theorem:

THEOREM 10. Put
GH(S")= {(Sk)kzo ; See K S, 2‘,0 | Sy [s»exp(—hk'/) < 00} .
Then we have the following linear topological isomorphisms:
(1) &)= pr;)i ‘l)im goH(sm),
(i) (S = inhcl lcim e

COROLLARY 11. Let S be the k-spherical harmonic component of T € 8,(S"™). Then
we have the following relations:

(i) Te&y(S") < Vt>0, lim|S,|smexp(—tk!)=0,
k—
(ii) TE J(S)(‘S”) <> 3t>0 ’ lim | Sk 'sn Cxp(—tkl/‘)=() .
k— o0
Further, we have

=3 | sio)f@idsw),

k=0 Sn

where f is a test function in respective spaces.
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3. The Lie sphere.

In this section, we consider the case X =3"*!, where Z"*!={e"w; 0 R, we5"}.
We review some results in [4]. First we note that

V={zeC"*'; 220}

- is a complexification of Z"*!. (Lemmas 1.2 and 1.5 in [4]).
For A, B>0 with AB>1 and R>1 put

V(A,B; R)y={zeV; B~2<|z?| < A%, L(z)*<|z*| R%)}
and for 4, B>0 with AB>1 and R>1 put
V[A4,B; R1={zeV; B~ 2<|2?|<A?, L(z)*<|z*|R%} .
We consider 17= V(00, 00 ; o). Note that Z"*1=P[1, 1; 1].
Since {V(4,B;R); A>1,B>1,R>1} is a fundamental system of complex

neighborhoods of £"*! (Lemma 1.6 in [4]), we have o/ (Z"*Y)=0(V[1, 1; 1]).
The inner product of the Hilbert space L%(Z"*1!) is given by

(fs Dragn+ny=<fs G pner= % r I f(e®w)g(e’w)dbdS(w) ,
0 Js»

for f, ge L3(2"*!). The Laplace-Beltrami operator Ay on Z"*! is represented by Ag;

and its eigenvalues are

Amp=m?+k(k+n—1), m=0,+1,4+2,--+, k=0,1,2,---.

Put
A={m,k)eZx Z,; m=k (mod2)} .
For (m, k)e A we define
H™EE Y ={e™S(w); S, € H*(S")} .
By Theorem 2.1 in [4], we have

L2(2"+1)= C"D %m,k(zn+1)'

(m,k)e A

For fe L?2(Z"*!') we define the (m, k)}-component S,, (f; @) by
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N(k, n)
T

Smilf; @)= j ' f(e®)e™ ™ Py (o - 7)d0dS(z)
0 JSn

=Nk, n){ f(e"1), e "™ Py, > * T)D g1 -

Since |€™S,, |sn+1=|Smx|s by the same argument as in Theorem 3, we have the
following theorem:

THEOREM 12. Put

f""(z"“)={(sm,k),1;S...,keéi”"(s"), ) |Sm,k|s-exp(%(lrnl+k)”’)<°0}-

(m,k)eA

(i) &y(Z"*)=ind im FsH(Z"*1),
h— o

@) Ee(E"*Y)=proj lim FoH(z"*1)
h—0

COROLLARY 13. Let S, be the (m, k)-component of fe LX(X™*!). Then we have the
JSollowing relations:

(i) fegy(Z"*) < A>0, Um |8, l|sexp(t(|m|+k))=0,

|m| +k— o0

(i) fe&y (E"*Y)<sVt>0, lim |8, |sexp(t(m|+k)"=0.

|m] +k— 00

\
|
|
|
Then we have the following linear topological isomorphisms:

The series f(e°W)=2 11c1 €™ Smi(@), e®w e Z"*", converges in the topology of re-
spective spaces.

By identifying F € O(V) with F|s,.., we consider
Exp(¥V; (0) = O(V) = A (Z"*1),
where
Exp(V; (0)={feO(F); Ve>0,3C>0s.t. | f(z) | < Ce*™, ze P}
is the space of entire functions of minimal exponential type on V.
THEOREM 14. (i) &, (Z"*N)=L(C"")).
(ii) The restriction mapping o: o) 81)(Z"* 1) is a linear topological iso-

morphism. .
(iii) Let 0<s<1. Then &y (Z"*") and &, (Z"*") are subspaces of Exp(V ; (0)).

(i) is a special case of the general result in [3]. By the similar argument to Theorem
9, Theorem 3.1 and its Corollary 2 (i) in [4] imply (ii). (iii) is clear by Corollary 13.
Similarly, we define the (m, k)-component of a functional Te & (="*?') by
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SmaT; ©)=N(k, n){T(6, w), e "™ P (@ * T)Dgn+1 .
Then for fe &, (X"*') we have
T,f>= X j Smil(T'5 V) Sl f5 7)AS(7) -
(mk)ed Jsn
By the same argument as in Theorem 5, we have the following theorem:
THEOREM 15. Put
gHZm )= {(Sm,k)/l S Sma€HM(S™, Y | Smilsmnexp(—h(m|+k))< 00} -
(m,k)eA

Then we have the following linear topological isomorphisms:
(i) &y(Z"*Y)=proj limg*h(zm+1)
h=0

(i) &,(Z"*!)=ind lim F>H(Z+1y

h—

COROLLARY 16. Let S,,, be the (m, k)-component of Te &, (E"*"). Then we have
the following relations:

(i) Tegy(Z ") <«=Vt>0, lm |, |smexp(—t(m|+k)'*)=0,

|m]+k— o0

(i) TedyZ ') <=3t>0, Lm |S,,;[s.exp(—t(m|+k)'*)=0.

jmj+k— o0

Further, we have

<T;f>2"+‘ = Z <Sm,k(T; CO), Sm,k(f; w)>£"+‘

(m,k)ed ’

where f is a test function in respective spaces.

4. Appendix.

Consider a sequence {M,} which satisfies the following conditions:

. M
MJZ)SMp—lMp+19 M0=M1, llm L4 =O.

P Mp+1

a2

1
M, (h)=su
k() pp M

Php

ASSUMPTION.  For any h<W, } > M (h)/Mh) is convergent.
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If M,=p'", s>0, then we have

1/(25) 2\ 1s
% exp(%(—%—) ) <M, (h)< exp(2s(—hi) ) .

Hence M,(h) and exp(tAl’®) are equivalent and Assumption is valid by Lemma 1.
Let h>0 and put

Eu(X)={fe&X); | flun< ©},

where

S laen=sup HA%S ., -

M2kh2k

We define the spaces of ultradifferentiable functions on X by

|
| Em ( X)= inhcllim S X) S, X)= Pfgi iim S X) -

1. Then under Assumption, which plays the role of Lemma 1, we can modify the results
in Section 1 as follows.

THEOREM 3'. The mapping ® is a linear topological isomorphism of &y ,(X) onto
Fu (X)) and of (X)) onto Fp (X))

COROLLARY 4. Let a,={f, ¢i>. Then we have the following relations:

Similarly, we define the spaces F,,(X), Far,)(X), Gar,(X) and %y, (X) as in Section
(i) febuy(X)<3>0, lim|aMy()|=0,
k—* oo

(i) fe8u,)(X)<Ve>0, lim|aM,(1)]|=0.
k— o

The series f(z)=Y :°= o WPu(2), € X, converges in the topology of respective spaces.

Because M (h) < o for any h, ¢, belongs to &y, ,(X). Thus we can define a, = (T, ¢,>
for Te &, X).

THEOREM 5'. The mapping ¥ is a linear topological isomorphism of &), (X) onto
Ym,(X) and of 8 (X) onto G, X).

COROLLARY 6'. Let a,={T, ¢,). Then we have the following relations:

ay

b

(i) Te&)y (X)<Vt>0, lim
k

g o]

1
M (1)

(i) Tey(X)<>3t>0, lim

k-* o0

ay

1 ’= .
M(t)
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Further, we have

Tfy=3 | awwfwdumw),

k=0Jx

where f is a test function in respective spaces.
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