# Values of the Unipotent Characters of the Chevalley Group of Type $F_4$ at Unipotent Elements

Reginaldo M. MARCELO and Ken-ichi SHINODA

Sophia University

#### §0. Introduction.

Let G be a connected reductive algebraic group with connected center and split over a finite field  $F_q$  of characteristic p, and F the corresponding Frobenius morphism. Then the subgroup  $G = G^F$  of G consisting of elements fixed by F is a finite Chevalley group. The table consisting of the values at unipotent elements of the unipotent characters of G which we shall simply call the unipotent character table of G, is an essential part of the character table of G.

If G has type  $F_4$  and p is good for G (that is,  $p \ge 5$ ), the problem of completing the unipotent character table of G is reduced to the determination of the values of one almost character; this was settled independently by N. Kawanaka [Ka2, Ka3] and G. Lusztig ([Lu3], cf. Remark 4.3 of this paper also). The purpose of this paper is to form the table in the cases p=2 or 3. And since the unipotent character table when  $p \ge 5$  can be obtained at once from that when p=3 (cf. Remark 4.5), we could actually form this table as well.

Through the Fourier transform matrix introduced by G. Lusztig [Lu1], the determination of the values of irreducible characters of G is equivalent to the determination of the values of almost characters. And the almost characters are closely related to another set of class functions on G called the characteristic functions associated with character sheaves of G, also due to Lusztig [Lu2]. In fact, he conjectured that if p is almost good for G the characteristic functions coincide with the almost characters up to multiplication by a scalar. In [Sho4], T. Shoji proved Lusztig's conjecture in the case where G has connected center; moreover, he showed that for G of type  $F_4$ , Lusztig's conjecture also holds when p=3, and a weaker version of it holds when p=2 (cf. Theorem 1.7).

Now,  $G = F_4(p^n)$  has 37 unipotent characters and using known results, we can compute the values at unipotent elements of 30 of the corresponding almost characters. Our problem therefore is to determine the values of the remaining 7 almost characters,

all of which belong to a 21-element family. By Shoji's result (Theorem 1.7), 5 (resp., 3) of these 7 can be expressed as a scalar multiple of a characteristic function or a linear combination of 2 characteristic functions, and the rest are 0 at the unipotent elements. Since the values of the characteristic functions at unipotent elements can be determined\* using the same algorithm Lusztig devised in [Lu2, V, §24], as proved by Shoji in [Sho4, I], the values of the undetermined almost characters can be expressed in terms of the scalars appearing in Theorem 1.7. And our work is done once we find the values of these scalars.

We can choose a parabolic subgroup P of G so that 5 of the 11 irreducible characters in  $1_P^G$  will lie in the 21-element family of unipotent characters. We construct the Hecke algebra  $\mathcal{H}(G,P)$  and form its character table. For a unipotent character  $\chi$  belonging to  $1_P^G$  and a unipotent element x of G,  $\chi(x)$  can then be computed using the character formula Theorem 2.3, provided we know  $|\mathscr{C} \cap D_i|$  for all  $D_i \in P \setminus G/P$ , where  $\mathscr{C}$  is the unipotent conjugacy class containing x.

On the other hand, we can also compute  $\chi(x)$  by transforming the 21-element family of almost characters to the corresponding unipotent characters using the appropriate Fourier transform matrix. We do this for  $\chi \in I_F^G$  and a unipotent element  $x \in G$ . Equating this with the value obtained above through Hecke algebras, and repeating this for the appropriate  $\chi$ 's and  $\chi$ 's, we obtain equations involving the scalars in Theorem 1.7.

We actually succeed in finding the values of all the scalars we want to determine when p=3, and all except two  $(c \text{ and } c_7)$  when p=2. In either case, we obtain the values of the yet undetermined almost characters, thus completing the unipotent character table of  $G=F_4(p^n)$ , p=2 or 3. And as remarked in (4.5), this will allow us to form the corresponding table for the case  $p \ge 5$ .

As a consequence, we improve Shoji's result vis-a-vis Lusztig's conjecture when  $G = F_4(2^n)$ —namely, that the conjecture holds for one more pair of characteristic function and almost character.

The rest of the paper goes as follows. In §1 we look into the unipotent characters and almost characters and how they are classified into families, particularly for the case  $G = F_4(p^n)$ . Here we state Shoji's result concerning Lusztig's conjecture relating almost characters with characteristic functions for  $G = F_4(p^n)$ .

In §2 we form the Hecke algebra  $\mathcal{H}(G, P)$  for a certain maximal parabolic subgroup P of  $G = F_4(p^n)$  and determine its character table. We state the character formula (Theorem 2.3) relating irreducible characters of G with those of  $\mathcal{H}(G, P)$ ; we note that it involves a factor  $|\mathcal{C} \cap D_i|$  where  $\mathcal{C}$  is a unipotent class in G and  $D_i$  a double coset in  $P \setminus G/P$ . We compute this number in §3.

In §4, we determine the unknown almost character values of  $G = F_4(p^n)$ , p = 2 or 3, leading us into the completion of the unipotent character table of  $G = F_4(p^n)$ , p = 2

<sup>\*</sup> Actually, when p=2, one characteristic function,  $\chi_{A_4}$ , cannot be computed. But its restriction map  $\chi'_{A_4}$  (see Theorem 1.7) can be determined and this would turn out to be sufficient for our purpose.

arbitrary. §5 lists our results given in table form. We also include, omitting the details, the unipotent character table of  $Sp(8, 2^n)$  which can be formed from the Green functions [Y] and the generalized Green functions.

Throughout the paper, G will denote a connected reductive algebraic group with connected center and split over a finite field  $F_q$  of characteristic p, unless otherwise specified;  $F: G \to G$  will be the corresponding Frobenius morphism. G will denote the subgroup  $G^F$  consisting of elements of G fixed by F. Similarly, for subgroups G, G, the corresponding subgroups of G will be written G, G, G, the corresponding subgroups of G will be written G, G, G, G, the corresponding subgroups of G will be written G, G, G, G, the corresponding subgroups of G will be written G, G, G, the corresponding subgroups of G will be written G, G, G, the corresponding subgroups of G will be written G, G, G, G, the corresponding subgroups of G will be written G, G, G, G, the corresponding subgroups of G.

Card S = |S| denotes the cardinality of a set S. If H is a group and  $S \subset H$ ,  $N_H(S)$  (resp.,  $Z_H(S)$ ) or simply N(S) (resp., Z(S)) is the normalizer (resp., centralizer) of S in H. If H is finite, Irr H denotes the irreducible characters of H over C,  $C(H/\sim)$  the space of class functions on H over C, and  $\langle \psi, \phi \rangle_H$  the inner product of  $\psi, \phi \in C(H/\sim)$  given by  $\langle \psi, \phi \rangle_H = \frac{1}{|H|} \sum_{h \in H} \psi(h) \overline{\phi(h)}$ , sometimes simply written  $\langle \psi, \phi \rangle$ .

If H is an algebraic group,  $H^{\circ}$  will denote the connected component of H containing the identity element and  $A_H(u) = Z_H(u)/Z_H(u)^{\circ}$  for  $u \in H_{\text{uni}}$ , where  $H_{\text{uni}}$  stands for the set of unipotent elements in H.

When we take  $G = F_4(p^n)$ , we follow the notations in [Shi1] and [Sho1] for the unipotent conjugacy classes. The simple roots  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ ,  $\alpha_4$  correspond to the vertices of the Dynkin diagram of the Lie algebra of type  $F_4$  as follows:

Finally, we mention that the main parts of this paper are contained in the Doctor of Science thesis of the first named author [Mar].

## §1. Unipotent characters, almost characters, and characteristic functions.

Let **G** be as in the introduction and F the corresponding Frobenius map. Fix a prime  $l \neq p$  and let  $\bar{\mathbf{Q}}_l$  be the algebraic closure of the field of l-adic numbers. Then for an F-stable maximal torus  $\mathbf{T}$  and  $\theta \in \operatorname{Irr} T$ , the generalized character  $R_{\mathbf{T}}^{\mathbf{G}}(\theta)$  is defined by Deligne and Lusztig in  $\lceil DL \rceil$ .

In particular, when  $\theta$  is the trivial representation of T, we obtain the unipotent characters of G.

(1.1) DEFINITION. An irreducible character  $\chi$  of G is said to be unipotent if  $\langle R_{\mathbf{T}}^{\mathbf{G}}(1), \chi \rangle \neq 0$ .

In [Lu1], Lusztig showed that the unipotent characters can be classified into families and each family  $\mathcal{F}$  can be parametrized in terms of a certain finite group  $\Gamma$  which must be one of

1, 
$$(\mathbb{Z}/2\mathbb{Z})^n$$
,  $\mathcal{S}_3$ ,  $\mathcal{S}_4$ , and  $\mathcal{S}_5$ ,

(where  $\mathcal{S}_n$  denotes the symmetric group of degree n). Specifically,

$$\mathscr{F} \stackrel{\text{1:1}}{\longleftrightarrow} M(\Gamma) = \{(x, \sigma) : x \in \Gamma, \sigma \in \operatorname{Irr} Z_{\Gamma}(x)\}/\sim.$$

An operation  $\{,\}$  is defined on  $M(\Gamma)$  so that the  $|\mathcal{F}| \times |\mathcal{F}|$ -matrix with entries  $\{(x,\sigma),(y,\tau)\}$  for  $(x,\sigma),(y,\tau) \in M(\Gamma)$  is unitary and hermitian. Lusztig calls such a matrix a Fourier transform matrix. Now, for each  $\chi_{(x,\sigma)} \in \mathcal{F}$  an almost character  $R_{(x,\sigma)}$  is defined as follows:

$$R_{(x,\sigma)} = \sum_{(y,\tau)\in M(\Gamma)} \Delta(\chi_{(y,\tau)})\{(x,\sigma),(y,\tau)\}\chi_{(y,\tau)}$$

where  $\Delta(\chi_{(y,\tau)}) = \pm 1$  is the modification concerning exceptional characters of Weyl groups of type  $E_7$  and  $E_8$  (cf. [Lu1, 4.21]).

Extending this definition to all irreducible characters, we obtain an orthonormal basis for the space  $C(G/\sim)$  of class functions on G. Since the transition matrix from this basis to that consisting of irreducible characters of G is known and is invertible, the problem of determining the values of the irreducible characters is reduced to determining the values of the almost characters.

To describe the situation for the case  $G = F_4(p^n)$  more precisely, we recall the following definition:

(1.2) DEFINITION.  $\chi \in \text{Irr } G$  is cuspidal if for every proper parabolic subgroup P of G, the truncation map  $T_{P/U}(\chi) = 0$  where U is the unipotent radical of P and

$$(T_{P/U}(\chi))(p) = \frac{1}{|U|} \sum_{u \in U} \chi(up) \qquad (p \in P).$$

- (1.3) THEOREM. [Lu1, Theorems 4.23, 8.6]  $G = F_4(p^n)$  has 37 unipotent characters that can be classified as follows: (Here, B is a fixed Borel subgroup of G.)
- (1) 25 characters appearing in  $1_B^G$  and denoted by  $[\chi]$  where  $\chi \in Irr W$ , W the Weyl group of G;
- (2) 5 characters in  $\delta_P^G$  where  $\delta$  is the unique unipotent cuspidal character of M with M Levi subgroup of a parabolic subgroup P of G of type  $B_2$ ;
- (3) 7 cuspidal characters in G.

For the 25 characters of  $W = W(F_4)$ , we follow the usual notation—that is, using Kondo's table in [Ko], the isolated characters of degree 4, 12 and 16 are denoted  $4_1$ ,  $12_1$ , and  $16_1$ , respectively, the 4 other characters of degree 4 are denoted  $4_2$ ,  $4_3$ ,  $4_4$ , and  $4_5$  in this sequence; the other characters of the same degree d are denoted  $d_1$ ,  $d_2$ , etc., as they appear in the table. On the other hand, the 5 characters in (2) are denoted  $B_2[\chi]$  where  $\chi \in Irr N(M)/M$ . Now  $N(M)/M \cong W(B_2) \cong D_4$ , the dihedral group of order

8 which can be naturally embedded in  $\mathcal{S}_4$ . Irr  $W(B_2) = \{1, \varepsilon, \varepsilon', \varepsilon'', r\}$  where 1 and r are the trivial and the degree-2 characters, respectively, and for a transposition  $h_2$  and a 4-cycle  $h_4$  in  $W(B_2)$ ,  $\varepsilon'(h_2) = \varepsilon'(h_4) = -1$ ,  $\varepsilon''(h_2) = 1$ ,  $\varepsilon''(h_4) = -1$ , and  $\varepsilon = \varepsilon' \cdot \varepsilon''$ . We denote the 7 cuspidal unipotent characters in G by  $F_4[\theta]$ ,  $F_4[\theta^2]$ ,  $F_4[i]$ ,  $F_4[-i]$ ,  $F_4^I[1]$ , and  $F_4[-1]$  where  $\theta$  (resp., i) is a fixed primitive cube (resp., fourth) root of 1 in C.

(1.4) THEOREM. [Lu1, 4.10] The unipotent characters of  $G = F_4(p^n)$  belong to 11 families: eight 1-element families, two 4-element families, and one 21-element family.

We list below the 37 unipotent characters opposite their labeling in the family they belong (for the nontrivial families) [loc. cit., p. 371]. We note in particular that the 7 cuspidal characters lie in the 21-element family. For the notations, see [loc. cit., pp. 79, 80].

4-element families

1-element families

| $\begin{bmatrix} 1_1 \end{bmatrix} \begin{bmatrix} 1_4 \end{bmatrix}$ $\begin{bmatrix} 9_1 \end{bmatrix} \begin{bmatrix} 9_4 \end{bmatrix}$ $\begin{bmatrix} 8_1 \end{bmatrix} \begin{bmatrix} 8_2 \end{bmatrix}$ $\begin{bmatrix} 8_3 \end{bmatrix} \begin{bmatrix} 8_4 \end{bmatrix}$ | $[2_3]$ , $[2$ $[2_1]$ , $[2$                            | $ \begin{array}{ccc}                                   $ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                                                                                                                                                                         | 21-element family                                        |                                                          |
| $[12_1] \leftrightarrow (1,1)$                                                                                                                                                                                                                                                          | $B_2[\varepsilon''] \leftrightarrow (g_2, \varepsilon')$ | $[6_1] \leftrightarrow (g_3, 1)$                         |
| $[9_3] \leftrightarrow (1, \lambda^1)$                                                                                                                                                                                                                                                  | $[4_4] \leftrightarrow (g_2, \varepsilon'')$             | $F_4[\theta] \leftrightarrow (g_3, \theta)$              |
| $[1_3] \leftrightarrow (1, \lambda^2)$                                                                                                                                                                                                                                                  | $[9_2] \leftrightarrow (g_2', 1)$                        | $F_4[\theta^2] \leftrightarrow (g_3, \theta^2)$          |
| $F_4^{\text{II}}[1] \leftrightarrow (1,\lambda^3)$                                                                                                                                                                                                                                      | $F_4^{\rm I}[1] \leftrightarrow (g_2', \varepsilon)$     | $[4_3] \leftrightarrow (g_4, 1)$                         |
| $[6_2] \leftrightarrow (1, \sigma)$                                                                                                                                                                                                                                                     | $[1_2] \leftrightarrow (g'_2, \varepsilon')$             | $B_2[\varepsilon'] \leftrightarrow (g_4, -1)$            |
| $[16_1] \leftrightarrow (g_2, 1)$                                                                                                                                                                                                                                                       | $[4_1] \leftrightarrow (g_2', \varepsilon'')$            | $F_4[i] \leftrightarrow (g_4, i)$                        |
| $F_4[-1] \leftrightarrow (g_2, \varepsilon)$                                                                                                                                                                                                                                            | $B_2[r] \leftrightarrow (g_2', r)$                       | $F_4[-i] \leftrightarrow (g_4, -i)$                      |

Again, let us consider the general case for G. In [Lu3], Lusztig defines character sheaves as certain complexes of perverse sheaves on G. A character sheaf A is said to be F-stable if A is isomorphic to the inverse image  $F^*A$ . For each F-stable character sheaf A and an isomorphism  $\varphi: F^*A \cong A$ , a function  $\chi_{A,\varphi} \in C(G/\sim)$ , called the characteristic function associated with A and  $\varphi$ , is defined. Now, Lusztig proves:

- (1.5) THEOREM. [Lu2] Suppose p is almost good for G—that is, p is good for each factor of exceptional type.
- (i)  $\{\chi_{A,\varphi_A}: A \text{ F-stable character sheaf on } \mathbf{G}, \varphi_A: F^*A \cong A \text{ appropriately chosen}\}$  is an orthonormal basis for  $C(G/\sim)$ .
  - (ii) Each  $\chi_{A,\varphi_A}$  is computable.

In Lusztig's program of determining the values of all irreducible characters of G, it then remains to find the transition matrix from the characteristic functions to the irreducible characters, for the case p is almost good for G. He was able to determine

part of this matrix in [Lu4] (for certain groups, including  $G = F_4(p^n)^*$  with  $p \ge 5$ ), and this submatrix turned out to be sufficient to form the unipotent character table of G (cf. Remark 4.3).

Now Lusztig made the following conjecture:

(1.6) Conjecture. [Lusztig] If p is almost good for G, then the characteristic functions coincide with the almost characters of G up to scalar.

In [Sho4], Shoji proves that Lusztig's conjecture holds if G has connected center. Moreover, when  $G = F_4(p^n)$ , he shows that it also holds when p = 3 and a weaker version of it holds when p = 2. We state Shoji's results for the cases that we need.

For the rest of the section let G be of type  $F_4$ . We note that of the 37 almost characters, 25 could be determined from the Green functions (restrictions of  $R_T^G(1)$  to the set  $G_{uni}$  of unipotent elements of G) which can be computed due to the algorithm in [Lu2, V, §24] as extended by [Sho4, I, Theorems 2.2 and 7.4]. In particular, it follows that the restrictions on p and  $p^n$  for the table of Green functions in [Sho2] can be replaced by  $p \ge 3$ . If p = 2, G. Malle [Ma] determined the Green functions of G; also, one of the authors computed them [Shi2] using the results in [Lo] and Table 7 in §5 and with several assumptions that are now assured by [Sho4].

If p=2, the 5 almost characters in Theorem 1.3(2) could be determined through the generalized Green functions associated with the Levi subgroup of type  $B_2$ , which can be computed as (ordinary) Green functions using the table in [Sp2] p. 330. We note that the linear combinations of almost characters  $B_2[1] + B_2[\epsilon''] + B_2[r]$  and  $B_2[\epsilon] + B_2[\epsilon'] + B_2[r]$  can be calculated directly, again using [Lo] and Table 7. The 5 almost characters thus obtained are exhibited in Table 5.A. If  $p \ge 3$ , these 5 almost characters are zero at unipotent elements.

So we just need to determine the values of the 7 remaining almost characters, corresponding to the cuspidal characters of G. For this, we look into the following character sheaves of G: (For notations on unipotent classes of G, we follow [Sp1]; for representatives  $x_i$ , [Shi1] and [Sho1]; and for character sheaves  $A_i$ , [Sho4].)

### A. When p=2:

- $A_j \leftrightarrow (u, \rho_j)$   $(j = 1, 2), u = x_{31}$  a regular unipotent element of G and  $\rho_1, \rho_2$  linear characters of  $A_G(u)$  such that  $\rho_1(\bar{u}) = i$  and  $\rho_2(\bar{u}) = -i$  where  $\langle \bar{u} \rangle = A_G(u) \cong \mathbb{Z}/4\mathbb{Z}$ ;
- $A_3 \leftrightarrow (u, \rho), u = x_{29}$  unipotent element of type  $F_4(a_1), \rho$  the nontrivial character of  $A_G(u) \cong \mathbb{Z}/2\mathbb{Z}$ ;
- $A_4 \leftrightarrow (u, \rho)$ ,  $u = x_{24}$  unipotent element of type  $F_4(a_2)$ ,  $\rho$  the sign character of  $A_G(u) \cong D_4$ ;
- $A_5 \leftrightarrow (u, \rho), u = x_{17}$  unipotent element of type  $F_4(a_3), \rho$  the sign character of  $A_6(u) \cong \mathcal{S}_3$ .

<sup>\*</sup> He initially assumes  $p^n \equiv 1 \pmod{12}$ , then suggests that this assumption can be extended to  $p \ge 5$ .

- B. When p=3:
  - $A_j \leftrightarrow (u, \rho_j)$   $(j=1, 2), u=x_{25}$  a regular unipotent element of G and  $\rho_1, \rho_2$  linear characters of  $A_G(u)$  such that  $\rho_1(\bar{u}) = \theta$  and  $\rho_2(\bar{u}) = \theta^2$   $(\theta$  a primitive cube root of 1) where  $\langle \bar{u} \rangle = A_G(u) \cong \mathbb{Z}/3\mathbb{Z}$ ;
  - $A_3 \leftrightarrow (u, \rho), u = x_{14}$  unipotent element of type  $F_4(a_3), \rho$  the sign character of  $A_{\mathbf{G}}(u) \cong \mathcal{G}_4$ .
- C. When  $p \ge 5$ :
  - $A_1 \leftrightarrow (u, \rho), u = x_{14}$  unipotent element of type  $F_4(a_3), \rho$  the sign character of  $A_G(u) \cong \mathcal{S}_4$ .
- (1.7) THEOREM. [Sho4, I, Theorems 6.3, 7.5] Following the notations above, we have:
- A. If p=2, then there exist  $c_i \in \overline{\mathbb{Q}}_i$   $(1 \le i \le 7)$  with  $|c_i|=1$  for i=1,2,3, such that

$$R_{(g_4,i)} = c_1 \chi_{A_1}$$
,  $R_{(g_4,-i)} = c_2 \chi_{A_2}$ ,  $R_{(g_2,\varepsilon)} = c_3 \chi_{A_3}$ ,

$$R_{(g_2',\varepsilon)} = c_4 \chi_{A_4} + c_5 \chi_{A_5}$$
, and  $R_{(1,\lambda^3)} = c_6 \chi_{A_4} + c_7 \chi_{A_5}$ .

Moreover,  $\chi_{A_4} = \chi'_{A_4} + c\chi_{A_5}$  for some  $c \in \overline{\mathbb{Q}}_l$  where  $\chi'_{A_4} \in C(G/\sim)$  obtained by restricting  $\chi_{A_4}$  on  $\mathscr{C}^F$  where  $\mathscr{C}$  is the unipotent class of  $\mathbf{G}$  corresponding to  $A_4$ .

B. If p=3, then there exist  $c_i \in \overline{\mathbb{Q}}_1$  with  $|c_i|=1$ , i=1, 2, 3 such that

$$R_{(g_3,\theta)} = c_1 \chi_{A_1}$$
,  $R_{(g_3,\theta^2)} = c_2 \chi_{A_2}$  and  $R_{(1,\lambda^3)} = c_3 \chi_{A_3}$ .

C. If  $p \ge 5$ , then there exists  $c_1 \in \overline{\mathbb{Q}}_l$  with  $|c_1| = 1$  such that

$$R_{(1,\lambda^3)}=c_1\chi_{A_1}.$$

- (1.8) REMARKS. (i) The almost characters listed in the preceding theorem correspond to cuspidal characters. Those almost characters corresponding to cuspidal characters not listed are 0 at all unipotent elements.
- (ii) By Lusztig's algorithm for Theorem 1.5 (ii) (when  $p \ge 5$ ) and its extension by Shoji, we can assume the following\*:

|                                        | X <sub>A1</sub>             | χ <sub>A2</sub>             |
|----------------------------------------|-----------------------------|-----------------------------|
| $x_{31} \\ x_{32} \\ x_{33} \\ x_{34}$ | $q^2$ $iq^2$ $-q^2$ $-iq^2$ | $q^2$ $-iq^2$ $-q^2$ $iq^2$ |

|                                    | $\chi_{A_3}$ |
|------------------------------------|--------------|
| x <sub>29</sub><br>x <sub>30</sub> | $q^3$ $-q^3$ |

|             |                            | X'14                            |
|-------------|----------------------------|---------------------------------|
| x<br>x<br>x | 24<br>25<br>26<br>27<br>28 | $q^4$ $-q^4$ $q^4$ $-q^4$ $q^4$ |

|                              | X <sub>A5</sub>    |
|------------------------------|--------------------|
| $x_{17} \\ x_{18} \\ x_{19}$ | $q^6$ $-q^6$ $q^6$ |

A:  $p = 2^*$ 

<sup>\*</sup> The unipotent elements at which a character function is 0 are omitted.

<sup>\*\*</sup> In place of  $\chi_{A_4}$ , we can determine only its restriction map  $\chi'_{A_4}$  (cf. Theorem 1.7).

|                                                       | $\chi_{A_1}$                      | χ,,,                                |
|-------------------------------------------------------|-----------------------------------|-------------------------------------|
| x <sub>25</sub><br>x <sub>26</sub><br>x <sub>27</sub> | $q^2$ $\theta q^2$ $\theta^2 q^2$ | $q^2 \\ \theta^2 q^2 \\ \theta q^2$ |

|                                                  | χ <sub>Α3</sub>                                              |
|--------------------------------------------------|--------------------------------------------------------------|
| $x_{14} \\ x_{15} \\ x_{16} \\ x_{17} \\ x_{18}$ | $egin{array}{c} q^6 \ q^6 \ -q^6 \ -q^6 \ q^6 \ \end{array}$ |

|                                                                               | χ <sub>A1</sub>                  |
|-------------------------------------------------------------------------------|----------------------------------|
| $\begin{array}{c} x_{14} \\ x_{15} \\ x_{16} \\ x_{17} \\ x_{18} \end{array}$ | $q^{6}$ $q^{6}$ $-q^{6}$ $q^{6}$ |
|                                                                               |                                  |

B: p = 3

C: *p*≥5

We notice that  $\chi_{A_3}$  of p=3 coincides with  $\chi_{A_1}$  of  $p \ge 5$ .

(iii) Yamagishi has determined the Green functions of  $Sp(8, 2^n)$  under certain assumptions [Y] which can now be removed due to Theorem 2.2 in [Sho4]. Since no cuspidal characters exist in this case, we can form the unipotent character table as soon as we know the values of the generalized Green functions associated with the Levi subgroup of type  $B_2$ . The values of the almost characters and unipotent characters thus obtained are given in Tables 8 and 9.

#### §2. The Hecke algebra.

From the last section our problem of constructing the unipotent character table of  $G=F_4(p^n)$  is reduced to finding the values of certain scalars. For this purpose we form linear equations involving these scalars by computing the values of certain unipotent characters in the 21-element family at unipotent elements in two ways. The first way is by transforming the almost characters into unipotent characters by using the  $21 \times 21$ -Fourier transform matrix\* and then applying Theorem 1.7.

The second way is through the Hecke algebras and is discussed in this section.

Let G be the finite group of Lie type corresponding to G as in the last section. Suppose P is a subgroup of G. Let  $e = |P|^{-1} \sum_{x \in P} x$ , a primitive idempotent in the group algebra CG. Then we define the Hecke algebra  $\mathcal{H} = \mathcal{H}(G, P)$  associated with G and P to be the subalgebra  $e\mathbb{C}Ge$  of  $\mathbb{C}G$ .

If we set

$$\operatorname{ind} x = |P: {}^{x}P \cap P| \quad (x \in G), \qquad \{D_{j}\}_{1 \leq j \leq r} = P \setminus G/P,$$

$$D_{j} = Px_{j}P \quad (1 \leq j \leq r), \quad \text{and} \quad a_{j} = (\operatorname{ind} x_{j})ex_{j}e \quad (1 \leq j \leq r),$$

then  $\{a_i: 1 \le j \le r\}$  is a basis of  $\mathcal{H}$  called the standard basis of  $\mathcal{H}$ .

We enumerate three results on Hecke algebras that we shall need later. For their proof, please refer to [CR1].

<sup>\*</sup> This matrix is in [Ca, p. 456] but the entry corresponding to  $\{(1, \sigma), (g_3, 1)\}$  should be -1/3.

- (2.1) PROPOSITION. [CR1, Theorem 11.25] Let  $\mathcal{H}$  be the Hecke algebra associated with a finite group G and subgroup P.
- (i) Let  $\zeta \in \operatorname{Irr} G$  and  $\zeta|_{\mathscr{H}}$  the restriction of  $\zeta$  to  $\mathscr{H}$ . Then  $\zeta|_{\mathscr{H}} \neq 0$  if and only if  $\langle \zeta, 1_F^G \rangle \neq 0$ .
- (ii) The map from  $\{\zeta \in \operatorname{Irr} G : \langle \zeta, 1_P^G \rangle \neq 0\}$  to the set of irreducible characters of  $\mathscr{H}$  given by  $\zeta \mapsto \zeta|_{\mathscr{H}}$  is a bijection. Under this map,  $\operatorname{deg}(\zeta|_{\mathscr{H}}) = \langle \zeta, 1_P^G \rangle$ .
- (2.2) THEOREM. [CR1, Theorem 11.32] (i) The central primitive idempotents  $\{e\varepsilon_i: \langle \zeta^i, 1_P^G \rangle \neq 0\}$  of  $\mathcal{H}$  are given by

$$e\varepsilon_i = \zeta^i(1) \cdot |G:P|^{-1} \sum_{j=1}^r (\operatorname{ind} x_j)^{-1} \zeta^i(\widehat{a_j}) a_j$$

where  $\widehat{a_j} = (\operatorname{ind} x_j) e x_i^{-1} e$  for  $1 \le j \le r$ .

(ii) (Orthogonality relations) For  $\varphi$ ,  $\varphi'$  irreducible characters of  $\mathcal{H}$ ,

$$\sum_{j=1}^{r} (\operatorname{ind} x_{j})^{-1} \varphi(\widehat{a_{j}}) \varphi'(a_{j}) = \begin{cases} 0 & \text{if } \varphi \neq \varphi', \\ \varphi(e) \cdot |G:P| \cdot \zeta(1)^{-1} & \text{if } \varphi = \varphi' = \zeta|_{\mathscr{H}}. \end{cases}$$

(2.3) THEOREM. [CR1, Theorem 11.34] If  $\zeta \in \operatorname{Irr} G$ ,  $\langle \zeta, 1_P^G \rangle \neq 0$ , and  $\zeta |_{\mathscr{H}} = \varphi$ , then

$$\zeta(t) = \frac{|Z_G(t)| \cdot \{\sum_{j=1}^r (\operatorname{ind} x_j)^{-1} \varphi(a_j) | \mathscr{C} \cap D_j|\}}{|P| \cdot \{\sum_{j=1}^r (\operatorname{ind} x_j)^{-1} \varphi(\widehat{a_j}) \varphi(a_j)\}}$$

where  $\mathscr{C}$  is the conjugacy class of G that contains  $t \in G$ .

For the rest of the section, let  $G = F_4(p^n)$ . Then the Weyl group W of G has the generating set  $\{s_1, s_2, s_3, s_4\}$  where  $s_i$  is the reflection corresponding to the root  $\alpha_i$   $(1 \le i \le 4)$ . Let  $J = \{s_1, s_2, s_4\}$  and  $P = P_J$  and  $W_J$  the parabolic subgroups corresponding to J of G and W, respectively. Since  $\mathcal{H}(G, P) \cong \mathcal{H}(W, W_J)$  (cf. [CIK]), and the decomposition of  $1_{W_J}^W$  is explicitly determined (cf. [A]), we know that  $\mathcal{H}$  is 17-dimensional,

$$\mathcal{H} \cong \underbrace{\mathbf{C} \oplus \mathbf{C} \oplus \cdots \oplus \mathbf{C}}_{9 \text{ copies}} \oplus M_2(\mathbf{C}) \oplus M_2(\mathbf{C}),$$

and that (see §1 for the notations):

$$1_{P}^{G} = \begin{bmatrix} 1_{1} \end{bmatrix} + \begin{bmatrix} 4_{2} \end{bmatrix} + \begin{bmatrix} 12_{1} \end{bmatrix} + \begin{bmatrix} 16_{1} \end{bmatrix} + \begin{bmatrix} 6_{1} \end{bmatrix} + \begin{bmatrix} 8_{3} \end{bmatrix} + \begin{bmatrix} 2_{1} \end{bmatrix} + \begin{bmatrix} 9_{2} \end{bmatrix} + \begin{bmatrix} 4_{3} \end{bmatrix} + 2\begin{bmatrix} 8_{1} \end{bmatrix} + 2\begin{bmatrix} 9_{1} \end{bmatrix}.$$

It then follows from Proposition 2.1 (ii) that  $\mathcal{H}$  has 9 characters of degree 1 and 2 characters of degree 2. We also note that 5 of the 11 characters in  $1_P^G$  lie in the 21-element family of unipotent characters of G.

For  $P \setminus G/P$  we choose the representatives  $w_i$  as given in Table 1 and then form the standard basis elements of  $\mathcal{H}$ :  $a_i = |P|^{-1} \sum_{x \in D_i} x$ ,  $1 \le i \le 17$ .

For simplicity, suppose that the irreducible characters of G in  $1_P^G$  are  $\zeta^1, \zeta^2, \dots, \zeta^{11}$  corresponding to the irreducible characters  $\varphi^1, \varphi^2, \dots, \varphi^{11}$ , respectively, of  $\mathscr{H}$  where  $\varphi_{10}$  and  $\varphi_{11}$  have degree 2.

We notice that to apply the character formula (2.3) on  $\zeta$  in  $1_p^G$ , we need to know two sets of values, namely  $\varphi(a_j)$  and  $|\mathscr{C} \cap D_j|$ ,  $1 \le j \le 17$ . Theorem 2.4 takes care of the first; the second is discussed in the next section.

(2.4) THEOREM. The character table of  $\mathcal{H}(G, P)$  is as given in Table 3.

The rest of the section will be devoted to the proof of this theorem. First we note that for  $1 \le i, j \le 17$ ,  $a_i a_j = \sum_{k=1}^r p_{ij}^k a_k$ , for  $p_{ij}^k \in \mathbb{C}$ . Let  $B_i = (p_{ij}^k)_{(j,k)}$ .  $B_2$  and  $B_3$  in particular can be formed without much difficulty (cf. [Go]).

(2.5) REMARK. Suppose  $\varphi$  is an irreducible character of  $\mathscr{H}$  of degree 1. Then  $\varphi(a_1) = 1$  and  $\varphi(a_i)\varphi(a_j) = \varphi(a_ia_j) = \sum_{k=1}^r p_{ij}^k \varphi(a_k)$ , and so

$$\varphi(a_i)\begin{pmatrix}1\\\varphi(a_2)\\\vdots\\\varphi(a_r)\end{pmatrix}=B_i\begin{pmatrix}1\\\varphi(a_2)\\\vdots\\\varphi(a_r)\end{pmatrix}.$$

Thus  $^t(\varphi(a_1)\,\varphi(a_2)\,\cdots\,\varphi(a_r))$ , the transpose of  $(\varphi(a_1)\,\varphi(a_2)\,\cdots\,\varphi(a_r))$ , is an eigenvector of  $B_i$  associated with the eigenvalue  $\varphi(a_i)$ ,  $1 \le i \le r$ .

We look at  $B_2 = (p_{2i}^k)_{(i,k)}$ . Using Mathematica 2.0 for DEC RISC, we obtain:

(2.6) Proposition.  $B_2$  has the eigenvalues

(i)  $-1-q+q^2$ , -1-q,  $q(1+2q+2q^2+q^3)$ ,  $-1+q+3q^2+2q^3$ , and  $-1-q+3q^2$ , each of multiplicity 1;

(ii) 
$$\frac{q\sqrt{q(4+9q+4q^2)}-2+3q^2+2q^3}{2}$$
 and  $\frac{-q\sqrt{q(4+9q+4q^2)}-2+3q^2+2q^3}{2}$ ,

both of multiplicity 2;

- (iii)  $-1+2q^2+q^3$  of multiplicity 3; and
- (iv)  $-1-q-q^2$  of multiplicity 5.

Let us determine the degree 1 characters of  $\mathcal{H}$ . Suppose  ${}^{t}(1\alpha_{2}\cdots\alpha_{17})$  is an eigenvector of  $B_{2}$  with eigenvalue  $\alpha_{2}$  one of those listed in the last proposition. If  $\alpha_{2}$  has multiplicity 1 then this eigenvector is uniquely determined; for the other cases, it involves m-1 parameters where m is the multiplicity of  $\alpha_{2}$ . For this eigenvector to give rise to a character of  $\mathcal{H}$ , the following must also hold according to Remark 2.5:

$$\alpha_3 \begin{pmatrix} 1 \\ \alpha_2 \\ \vdots \\ \alpha_{17} \end{pmatrix} = B_3 \begin{pmatrix} 1 \\ \alpha_2 \\ \vdots \\ \alpha_{17} \end{pmatrix}.$$

In fact, even if we know only the 2nd, 3rd, 5th, and 6th rows, for example, of  $B_3$ , we will obtain exactly 9 solutions for  $(1 \alpha_2 \cdots \alpha_{17})$ : one each from the multiplicity 1 and

multiplicity 3 eigenvalues and three from that having multiplicity 5. And since  $\mathcal{H}$  has exactly 9 characters of degree 1, the 9 eigenvectors we just obtained should give us these 9 characters of  $\mathcal{H}$ .

To determine the two degree 2 irreducible characters of  $\mathcal{H}$ , we first form a linear combination of these two. By Theorem 2.2 (i):

$$e = \sum_{i=1}^{11} e \varepsilon_i = |G: P|^{-1} \left( \sum_{i=1}^{11} \zeta^i(1) \sum_{j=1}^{17} (\operatorname{ind} x_j)^{-1} \varphi^i(\widehat{a_j}) a_j \right).$$

This implies

$$|G:P|^{-1}\sum_{j=1}^{17} (\operatorname{ind} x_j)^{-1} (\zeta^{10}(1)\varphi^{10} + \zeta^{11}(1)\varphi^{11})(\widehat{a_j})a_j$$
  
=  $e - |G:P|^{-1}\sum_{j=1}^{17} (\operatorname{ind} x_j)^{-1} (\sum_{i=1}^{9} \zeta^i(1)\varphi^i)(\widehat{a_j})a_j$ .

We then obtain

(2.8) 
$$(\zeta^{10}(1)\varphi^{10} + \zeta^{11}(1)\varphi^{11})(a_j) = -\sum_{i=1}^{9} (\zeta^i(1)\varphi^i)(a_j) \qquad (2 \le j \le 17)$$

Now, the values of the degree 1 irreducible characters  $\varphi^1, \dots, \varphi^9$  of  $\mathcal{H}$  are already known from the computations above and the degrees of  $\zeta^1, \dots, \zeta^{11}$  are known in [Lu1]. Thus, as soon as we know one of  $\varphi^{10}$  and  $\varphi^{11}$ , the other can be determined from (2.8).

Suppose  $\rho^i$  is the irreducible matrix representation of  $\mathcal{H}$  affording the character  $\phi^i$  ( $1 \le i \le 11$ ). Then

$$\rho^{10}(a_i) = \begin{pmatrix} \alpha_i & \beta_i \\ \gamma_i & \delta_i \end{pmatrix}$$

with  $\alpha_i$ ,  $\beta_i$ ,  $\gamma_i$ ,  $\delta_i \in \mathbb{C}$ , for  $1 \le i \le 17$ . Then  $\varphi^{10}(a_i) = a_i + \delta_i$   $(1 \le i \le 17)$  and we may assume

$$\rho^{10}(a_1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \rho^{10}(a_2) = \begin{pmatrix} \alpha_2 & \beta_2 \\ 0 & \delta_2 \end{pmatrix}.$$

Now  $B_2$  is the matrix of the regular representation of  $\alpha_2$  and  $B_2$  is similar to

$$(\bigoplus_{i=1}^{9} \rho^{i}(a_{2})) \oplus \rho^{10}(a_{2}) \oplus \rho^{10}(a_{2}) \oplus \rho^{11}(a_{2}) \oplus \rho^{11}(a_{2})$$
.

Taking into account the multiplicities of the eigenvalues of  $B_2$ , we can conclude that  $\alpha_2 \neq \delta_2$  and both have multiplicity 2. Thus in the matrix representation above we may assume  $\beta_2 = 0$ . We then have

$$\rho^{10}(a_2 a_j) = \sum_{k=1}^{17} p_{2j}^k \rho^{10}(a_k) = \sum_{k=1}^{17} p_{2j}^k \binom{\alpha_k \quad \beta_k}{\gamma_k \quad \delta_k}, \text{ and}$$

$$\rho^{10}(a_2 a_j) = \rho^{10}(a_2) \rho^{10}(a_j) = \binom{\alpha_2 \quad 0}{0 \quad \delta_2} \binom{\alpha_j \quad \beta_j}{\gamma_j \quad \delta_j} = \binom{\alpha_2 \alpha_j \quad \alpha_2 \beta_j}{\delta_2 \gamma_j \quad \delta_2 \delta_j}.$$

Thus

$$\alpha_{2} \begin{pmatrix} 1 \\ \alpha_{2} \\ \vdots \\ \alpha_{17} \end{pmatrix} = B_{2} \begin{pmatrix} 1 \\ \alpha_{2} \\ \vdots \\ \alpha_{17} \end{pmatrix}, \quad \text{and} \quad \delta_{2} \begin{pmatrix} 1 \\ \delta_{2} \\ \vdots \\ \delta_{17} \end{pmatrix} = B_{2} \begin{pmatrix} 1 \\ \delta_{2} \\ \vdots \\ \delta_{17} \end{pmatrix}.$$

Now for  $2 \le j \le 17$ , substituting the values of  $\zeta^i(1)$  and  $\varphi^i(a_j)$   $(1 \le i \le 9)$  in the right-hand side of (2.8), we obtain a rational integer. We can then conclude that  $\{\alpha_2, \delta_2\}$  must be either  $\{-1-q-q^2, -1+2q^2+q^3\}$  or {the two eigenvalues of multiplicity 2 in Proposition 2.6}. Computing the eigenvectors  ${}^t(1 \alpha_2 \cdots \alpha_{17})$  and  ${}^t(1 \delta_2 \cdots \delta_{17})$  associated with  $\alpha_2$  and  $\delta_2$ , respectively, we obtain  $\varphi^{10}$ ;  $\varphi^{11}$  can then be determined at once using (2.8).

#### §3. $|\mathscr{C} \cap D_i|$ .

Let G be a finite group of Lie type corresponding to the connected reductive algebraic group G and Frobenius map  $F: G \to G$ . Let W be the Weyl group of G. Then W is a finite Coxeter group with a presentation  $\langle s_1, s_2, \dots, s_l : s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1, i \neq j \rangle$  where  $m_{ij}$  is the order of  $s_i s_j$ . Let  $J \subset \{s_1, s_2, \dots, s_l\}$  and  $W_J = \langle J \rangle$ , the standard parabolic subgroup of W corresponding to J. We then have

- (3.1) PROPOSITION. [CR2, Theorem 64.38] Let  $I, J \subset \{s_1, s_2, \dots, s_l\}$ . Then every double coset  $W_I w W_J \in W_I \setminus W/W_J$  contains a unique element x of minimal length satisfying: For every  $y \in W_I x W_J$ , there exist  $u \in W_I$  and  $v \in W_J$  such that y = uxv and l(uxv) = l(u) + l(v).
- (3.2) REMARK. An element  $x \in W_I w W_J$  satisfying the property stated in Proposition 3.1 is called a distinguished coset representative. We denote by  $D_{IJ}$  the set of all such coset representatives for  $W_I \setminus W/W_J$ .

Suppose that U, B, H, N, and W=N/H are the subgroups associated with G as a group with split BN-pair. Moreover, let  $(\Phi, \Delta)$  be the root system of W with  $\Phi^+$  (resp.,  $\Phi^-$ ) the set of positive (resp., negative) roots with respect to a fixed ordering. For  $\alpha \in \Phi$ , let  $U_{\alpha} = \{x_{\alpha}(t): t \in \mathbb{F}_q\}$ ; for  $w \in W$ ,  $U_w^+ = \langle U_{\alpha}: \alpha \in \Phi^+, w(\alpha) \in \Phi^+ \rangle$  and  $U_w^- = \langle U_{\alpha}: \alpha \in \Phi^+, w(\alpha) \in \Phi^- \rangle$ . Suppose, as above, that W has presentation  $\langle s_1, s_2, \dots, s_l : s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1, i \neq j \rangle$ . Fix  $J \subset \{s_1, s_2, \dots, s_l\}$ . Let  $W_J = \langle J \rangle$  and  $P_J = BW_J B$ , the standard parabolic subgroups associated with J of W and G, respectively. Then we have the following refinement of the Bruhat decomposition [CR2, Theorem 65.4]:

(3.3) Proposition. Following the notations above,

$$G = \bigcup_{w \in D_{\phi J}} U_{w^{-1}}^- w P_J.$$

Suppose  $D_{JJ} = \{w_1, w_2, \dots, w_r\}$ . Let  $D_i = P_J w_i P_J$  for  $1 \le i \le r$ . For  $x, g \in G$ , let  $x^g = g^{-1}xg$ . For a fixed  $x \in G$ , let  $\mathscr{C} = \{x^g : g \in G\}$ , the conjugacy class of G that contains x, and  $Z = Z_G(x)$ . We wish to determine  $|\mathscr{C} \cap D_i|$  for  $1 \le i \le r$ .

By Proposition 3.3, we get:

$$\operatorname{Card} \{g \in G : x^g \in D_i\} = |Z| \cdot \operatorname{Card} \{Zg \in Z \setminus G : x^g \in D_i\} = |Z| \cdot |\mathscr{C} \cap D_i|$$
$$= \operatorname{Card} \{(u, w, p) : w \in D_{\phi J}, u \in U_{w^{-1}}^-, p \in P_J, x^{uwp} \in D_i\} .$$

Since  $x^{uwp} \in D_i$  if and only if  $x^{uw} \in D_i$ , we have:

(3.4) COROLLARY. For  $x \in G$  contained in the conjugacy class  $\mathscr{C}$ ,

$$|\mathscr{C} \cap D_i| = \frac{|P_J|}{|Z_G(x)|} \cdot \operatorname{Card}\{(u, w) : w \in D_{\phi J}, u \in U_{w^{-1}}^-, x^{uw} \in D_i\}.$$

By the last corollary, to determine  $|\mathscr{C} \cap D_i|$  for a fixed  $x \in G$ , we just have to know which double coset  $D_i$  contains  $x^{uw}$  for each  $w \in D_{\phi J}$  and  $u \in U_{w^{-1}}^-$ . To carry this out we note the following:

- 1. For each  $w \in D_{\phi J}$ ,  $u \in U_{w^{-1}}^-$ , suppose  $x^u = x_{u,w^{-1}}^- x_{u,w^{-1}}^+$  where  $x_{u,w^{-1}}^+ \in U_{w^{-1}}^+$  and  $x_{u,w^{-1}}^- \in U_{w^{-1}}^-$ . Since  $Px^{uw}P = P(x_{u,w^{-1}}^-)^w (x_{u,w^{-1}}^+)^w P = P(x_{u,w^{-1}}^-)^w P$ , we may ignore  $x_{u,w^{-1}}^+$ .
- 2. If  $(x_{u,w^{-1}}^-)^w = x_{u,w}^1 w' x_{u,w}^2$  with  $x_{u,w}^1, x_{u,w}^2 \in P$  and  $w' \in W$ , then  $P(x_{u,w^{-1}}^-)^w P = Pw' P$ . Therefore  $Px^{uw}P = Pw' P$  and  $x^{uw}$  is in the double coset  $D_i$  if and only if  $w' \in D_i$ .

Let us now consider  $G = F_4(p^n)$ . As in the previous section we take  $J = \{s_1, s_2, s_4\}$  and form the parabolic subgroup  $W_J$  of W. Tables 1 and 2 give the sets  $D_{\phi J}$  and  $D_{JJ}$  of distinguished coset representatives for  $W/W_J$  and  $W_J \setminus W/W_J$ , respectively.

Also, let  $P = P_J$  be the corresponding parabolic subgroup of G, and  $D_i = Pw_iP$  ( $1 \le i \le 17$ ), the double cosets of G over P.

We apply the procedure outlined above. For example, if p=2,  $x=x_{31}$  (cf. [Shi1]) a regular unipotent element, and  $w=w_{33}\in D_{\phi J}$  (cf. Table 2), an element  $u\in U_{w^{-1}}^-$  is of the form

$$u = x_4(t_1)x_3(t_2)x_{3+4}(t_3)x_{2+4}(t_4)x_{1-2-3+4}(t_5)x_{1-2+3+4}(t_6)x_{1+2+3+4}(t_7)x_{1+4}(t_8)$$

where  $t_j \in \mathbb{F}_q$ ,  $1 \le j \le 8$  (for the other notations, please refer to [Shi1]); in this case we can show that:

$$x^{uw} \in D_{14} \Leftrightarrow t_1 + t_1^2 = 0$$
 and  $x^{uw} \in D_{15} \Leftrightarrow t_1 + t_1^2 \neq 0$ .

Insofar as we want to know  $|\mathscr{C} \cap D_i|$  to determine the values of certain unipotent characters on certain unipotent elements of G, we don't need to find this number for all  $x \in G$ . Moreover, using some information on the characters of G, we can obtain  $|\mathscr{C} \cap D_i|$  for all  $i = 1, 2, \dots, 17$  if we know this cardinality for certain i's.

For example, we consider the case  $x = x_{29}$ , again for p = 2. Since  $x_{29} \sim x_{29}^{-1}$  in

- $G, D_6^{-1} = D_7$ , and  $D_{10}^{-1} = D_{11}$ , it follows that  $|\mathscr{C} \cap D_6| = |\mathscr{C} \cap D_7|$  and  $|\mathscr{C} \cap D_{10}| = |\mathscr{C} \cap D_{11}|$ . We also know the values of the characters  $[1_1]$ ,  $[8_1]$ ,  $[9_1]$ ,  $[8_3]$ ,  $[9_2]$  and  $[2_1]$  on  $x_{29}$ . Moreover, using the transition matrix for the 21-family of irreducible characters of G, we have  $[6_1](x_{29}) = [4_3](x_{29}) = 0$  and  $[12_1](x_{29}) = [9_2](x_{29})$ . Combining all of these information,  $|\mathscr{C} \cap D_i|$ ,  $i = 1, 2, \dots, 17$ , can be obtained the moment we know its value for 6 different i's (not containing both 6 and 7, nor both 10 and 11).
- (3.5) THEOREM. Let  $G = F_4(p^n)$ . When p = 2 (resp., p = 3), Table 4.A (resp., 4.B) gives the values  $|\mathscr{C} \cap D_i|$  ( $1 \le i \le 17$ ) for  $\mathscr{C}$  the unipotent classes in G containing  $x = x_{24}, x_{29}, x_{31}, x_{32}, x_{33}$ , and  $x_{34}$  (resp.,  $x = x_{25}, x_{26}$ , and  $x_{27}$ ).
- (3.6) REMARKS. (i) We also computed  $|\mathscr{C} \cap D_i|$  for  $\mathscr{C}$  containing  $x_{17}$  and  $x_{30}$  when p=2 (cf. [Mar]).
- (ii) It seems that computing  $|\mathscr{C} \cap D_i|$  is a difficult problem. As far as we know the only general theorem for  $|\mathscr{C} \cap D_i|$  is the following result due to Kawanaka [Ka1, Theorem 7.2]: If p is good for G and  $\mathscr{C}$  is a regular unipotent class, then  $|\mathscr{C} \cap Bg|$  is independent of  $g \in G$  and of  $\mathscr{C}$ . As a corollary we have  $|\mathscr{C} \cap D_i| = |\mathscr{C} \cap P| \cdot \operatorname{ind} x_i$ . Although this result doesn't hold in the case  $G = F_4(p^n)$  and p = 2 or 3, we can show something similar (cf. Table 4):

$$|\mathscr{R} \cap D_i| = |\mathscr{R} \cap P| \cdot \operatorname{ind} x_i$$

where  $\mathcal{R}$  is the set of all regular unipotent elements in G.

### §4. Results.

In this section we restrict G to  $F_4(p^n)$  and we follow the notations in §2 and §3.

As we saw after (1.6), we only need to determine the 7 almost characters corresponding to cuspidal characters to complete the unipotent character table of G. Two (resp., four, six) of them are zero at unipotent elements when p=2 (resp., p=3,  $p \ge 5$ ). The nonzero almost characters are precisely those we listed in Theorem 1.7; to determine the values of these almost characters, we only need to determine  $c_i$  ( $1 \le i \le 7$ ) and  $c_i$  in (1.7.A) if p=2,  $c_i$  ( $1 \le i \le 3$ ) in (1.7.B) if p=3 and  $c_1$  in (1.7.C) if  $p \le 5$ .

First let us consider the case p=2. To determine  $R_{(g_4,i)}$  and  $R_{(g_4,-i)}$ , we apply Theorem 2.3 with  $\zeta=[12_1]$  at the regular unipotent element  $x_{31}$ :

$$[12_1](x_{31}) = \frac{|Z_G(x_{31})| \cdot \{\sum_{j=1}^{17} (\operatorname{ind} x_j)^{-1} [12_1](a_j) | \mathscr{C} \cap D_j|\}}{|P| \cdot \{\sum_{j=1}^{17} (\operatorname{ind} x_j)^{-1} [12_1](a_j)^2\}}$$

where  $\mathscr{C}$  is the unipotent class of G that contains  $x_{31}$ . Using Table 3 (for the values of  $[12_1](a_j)$ ) and Table 4.A (for the values of  $|\mathscr{C} \cap D_i|$ ), we get  $[12_1](x_{31}) = \frac{1}{2}q^2$ . Now, forming the irreducible character  $[12_1]$  from the 21-element family of almost characters using the  $21 \times 21$ -Fourier transform matrix, and applying Theorem 1.7 and the table in Remark 1.8 (ii), we get

$$[12_1](x_{31}) = \frac{1}{4}R_{(q_4,i)}(x_{31}) + \frac{1}{4}R_{(q_4,-i)}(x_{31}) = \frac{1}{4}(c_1+c_2)q^2$$
.

Thus  $c_1 + c_2 = 2$ . Since  $|c_1| = |c_2| = 1$ ,  $c_1 = c_2 = 1$ .

Similarly, we have

$$[12_1](x_{29}) = \frac{1}{4}q^3 = \frac{1}{4}R_{(q_2,\varepsilon)}(x_{29}) = \frac{1}{4}c_3q^3$$
,

and so  $c_3 = 1$ . Also,

$$[12_{1}](x_{24}) = \frac{1}{8}q^{3}(4+q) = (\frac{1}{8}R_{(g'_{2},\varepsilon)} + \frac{1}{4}R_{(g'_{2},r)})(x_{24})$$

$$= \frac{1}{8}(c_{4}\chi'_{A_{4}} + (cc_{4} + c_{5})\chi_{A_{5}})(x_{24}) + \frac{1}{2}q^{3}$$

$$= \frac{1}{8}c_{4}q^{4} + \frac{1}{2}q^{3},$$

which implies that  $c_4 = 1$ . Thus,

$$R_{(g_2',c)} = \chi'_{A_4} + (c+c_5)\chi_{A_5}$$
 and  $R_{(1,\lambda^3)} = c_6\chi'_{A_4} + (cc_6+c_7)\chi_{A_5}$ .

Now since  $\langle R_{(g_2',\epsilon)}, R_{(g_2',\epsilon)} \rangle = \langle \chi'_{A_4}, \chi'_{A_4} \rangle = 1$  and  $\langle \chi'_{A_4}, \chi_{A_5} \rangle = 0$ , we have  $c + c_5 = 0$  and  $c_6 = 0$ .

To show that  $c_7 = 1$ , we follow Lusztig's method in [Lu3, 8.12]. Specifically, using the 21-element family transition matrix, we have  $[12_1](x_{17}) = \frac{1}{24}q^4(5 + c_7q^2)$ . Since this value must be a rational integer,  $c_7 = \pm 1$  and  $3 \mid 5 + c_7q^2$ ; thus,  $c_7$  must be equal to 1.

Thus, we obtain the following

(4.1) THEOREM. For  $G = F_{\Delta}(2^n)$ ,

$$R_{(g_4,i)} = \chi_{A_1}$$
,  $R_{(g_4,-i)} = \chi_{A_2}$ ,  $R_{(g_2,\epsilon)} = \chi_{A_3}$ ,  $R_{(g_2',\epsilon)} = \chi'_{A_4}$ , and  $R_{(1,\lambda^3)} = \chi_{A_5}$ .

Now let us consider the case when p=3. Using Tables 3 and 4.B, and applying Theorem 2.3 with  $\zeta = [12_1]$  and  $t=x_{25}$ , we get  $[12_1](x_{25}) = \frac{2}{3}q^2$ . But also, using the transition matrix from the almost characters to unipotent characters in the 21-element family and Theorem 1.7 and Remark 1.8 (ii), we have

$$[12_1](x_{25}) = \frac{1}{3}(R_{(g_3,\theta)} + R_{(g_3,\theta^2)})(x_{25}) = \frac{1}{3}(c_1\chi_{A_1} + c_2\chi_{A_2})(x_{25}) = \frac{1}{3}(c_1 + c_2)q^2.$$

As above, it then follows that  $c_1 = c_2 = 1$  and therefore,  $R_{(g_3,\theta)} = \chi_{A_1}$  and  $R_{(g_3,\theta^2)} = \chi_{A_2}$ . Now following the method to prove  $c_6 = 1$  in Theorem 4.1, we have  $[12_1](x_{14}) = \frac{1}{24}q^4(23+c_3q^2)$ , which must be a rational integer. Therefore  $c_3 = \pm 1$ ,  $8 \mid 23+c_3q^2$  and so  $c_3 = 1$  giving us  $R_{(1,\lambda^3)} = \chi_{A_3}$ . We therefore have

(4.2) THEOREM. For  $G = F_4(3^n)$ ,

$$R_{(q_3,\theta)} = \chi_{A_1}$$
,  $R_{(q_3,\theta^2)} = \chi_{A_2}$ , and  $R_{(1,\lambda^3)} = \chi_{A_3}$ .

(4.3) REMARK. The method used to prove  $R_{(1,\lambda^3)} = \chi_{A_3}$  is also valid for the corresponding relation  $R_{(1,\lambda^3)} = \chi_{A_1}$  if  $p \ge 5$ . In fact using the result of Shoji [Sho4, I,

Theorem 5.7], we also have  $[12_1](x_{14}) = \frac{1}{24}q^4(23 + c_1q^2)$ , which is a rational integer. Thus we get  $c_1 = \pm 1$  and  $24 \mid 23 + c_1q^2$ . Since  $q^2 \equiv 1 \pmod{24}$  for  $p \ge 5$ , we must have  $c_1 = 1$ . This is actually the method devised by Lusztig in [Lu3, 8.12] to determine the unipotent character table of  $G = F_4(p^n)$  under the initial assumption  $p^n \equiv 1 \pmod{12}$ , and this restriction can thus be replaced by  $p \ge 5$  as he suggested and as we just showed above.

The values at unipotent elements of the almost unipotent characters which are not obtainable from the Green functions are listed in Table 5.A (resp., 5.B) when p=2 (resp., p=3). We can then complete the unipotent character table of G.

- (4.4) THEOREM. Table 6.A (resp., 6.B) gives the unipotent character table of  $F_4(p^n)$  when p=2 (resp., p=3).
- (4.5) REMARK. The corresponding tables for the case  $p \ge 5$  can be derived at once from the tables for the case p = 3. We note that if  $p \ge 5$ , G has 26 unipotent classes, the first 25 of which coincide with the first 25 of the case p = 3 (cf. [Sho1]). In fact the values of the unipotent characters on these 25 classes are equal for  $p \ge 5$  and for p = 3; for the 26th class, the regular unipotent class, the character values are all equal to 0 except for the character  $[1_1]$  which has the value 1.

#### §5. Tables.

In the tables,  $G = F_4(p^n)$ , p = 2 or 3, unless otherwise specified. For the unipotent conjugacy classes of G, we follow the notations in [Shi1] and [Sho1] when p = 2 and p = 3, respectively. When a subset J of the generating set of the Weyl group W of G appears in a table, it is understood to be the subset  $J = \{s_1, s_2, s_4\}$ ; the parabolic subgroup P is  $P_J$  and  $P \setminus G/P = \{D_j : 1 \le j \le 17\}$ .

For simplicity, we use *i* to denote  $s_i$ ,  $1 \le i \le 4$ , in Tables 1 and 2.  $\phi_n$  is the *n*th cyclotomic polynomial—for example,  $\phi_1 = q - 1$ ,  $\phi_2 = 1 + q$  and  $\phi_6 = 1 - q + q^2$ ; a dot entry stands for a value of 0.

For Table 7, consider the parabolic subgroup  $P_I$  of G where  $I = \{s_1, s_2, s_3\}$ . Suppose  $\mathscr C$  is a conjugacy class of G and  $\mathscr C'$  a conjugacy class of  $P_I/U_I$  where  $U_I$  is the unipotent radical of  $P_I$ . If X is an arbitrary element of  $\mathscr C$  and  $\pi: P_I \to P_I/U_I$  is the canonical map we define

$$g_{CC'} = \operatorname{Card} \{ gP_I \subset G : x^g \in P_I \text{ and } \pi(x^g) \in \mathscr{C}' \}$$
.

Table 7 gives these values for unipotent conjugacy classes. For the unipotent class representatives  $z_i$  of  $P_I/U_I$ , we follow [Shi1].

Since  $Sp(8, 2^n) = C_4(2^n) \cong B_4(2^n)$  we can use the  $y_i$ -notation for  $B_4(2^n)$  in [Shi1] for the unipotent classes of  $Sp(8, 2^n)$ . However we change the ordering slightly as follows:  $u_i = y_i$   $(0 \le i \le 24, i \ne 4, 5, 6, 7), u_4 = y_7, u_5 = y_6, u_6 = y_4, \text{ and } u_7 = y_5$ . For the almost

characters and unipotent characters, we use symbols introduced by Lusztig [Lu1].

#### List of Tables.

- 1 The elements of  $D_{JJ}$
- 2 The elements of  $D_{\phi J}$
- 3 The character table of  $\mathcal{H}(G, P)$
- 4  $|\mathscr{C}_j \cap D_i| \cdot |Z_G(x_j)|/|P|$  where  $\mathscr{C}_j$  is the conjugacy class containing  $x_j$  when

A. 
$$p = 2$$
 B.  $p = 3$ 

5 The values at unipotent elements of the almost characters of G not obtainable from the Green functions and whose restrictions at  $G_{uni}$  is not 0 when

A. 
$$p = 2$$
 B.  $p = 3$ 

The unipotent character table of G when

A. 
$$p = 2$$
 B.  $p = 3$ 

- 7 The table  $g_{CC'}$
- 8 The values at unipotent elements of the almost characters of  $Sp(8, 2^n)$  grouped according to families
- 9 The values at unipotent elements of the unipotent characters of  $Sp(8, 2^n)$  that belong to the 4-element families

ACKNOWLEDGMENTS. The authors wish to thank T. Shoji for many valuable discussions, Y. Gomi for explaining the method he used to compute the irreducible characters of a commutative Hecke algebra in [Go] and how it could possibly be extended to compute irreducible characters of degree higher than 1. The second named author would also like to thank H. Yamada and Y. Nakada for several useful discussions concerning the problem of forming the character table of  $F_4(p^n)$  during the seminar held in 1987.

## TABLE 1. The elements of $D_{JJ}$

 $\begin{array}{l} w_1 &= \{\}\\ w_2 &= 3\\ w_3 &= 323\\ w_4 &= 3423\\ w_5 &= 323123\\ w_6 &= 3423123\\ w_7 &= 3234123\\ w_8 &= 3234323\\ w_9 &= 32343123\\ w_{10} &= 3234323123\\ w_{11} &= 3231234323\\ w_{12} &= 34231234123\\ w_{13} &= 34231234323123\\ w_{14} &= 3231234323123\\ w_{15} &= 34231234323123\\ w_{16} &= 3234323123423123\\ w_{17} &= 32312343231234323123\\ \end{array}$ 

#### Table 2. The elements of $D_{\phi J}$

| $w_1 = \{\}$        | $w_{33} = 32343123$                             | $w_{65} = 432312343123$         |
|---------------------|-------------------------------------------------|---------------------------------|
| $w_2 = 3$           | $w_{34} = 31234123$                             | $w_{66} = 342312343123$         |
| $w_3 = 23$          | $w_{35} = 43234123$                             | $w_{67} = 234231234123$         |
| $w_4 = 43$          | $w_{36} = 31234323$                             | $w_{68} = 3231234323123$        |
| $w_5 = 123$         | $w_{37} = 234323123$                            | $w_{69} = 4231234323123$        |
| $w_6 = 323$         | $w_{38} = 123423123$                            | $w_{70} = 4323123423123$        |
| $w_7 = 423$         | $w_{39} = 323423123$                            | $w_{71} = 3423123423123$        |
| $w_8=3123$          | $w_{40} = 312343123$                            | $w_{72} = 3432312343123$        |
| $w_9 = 4123$        | $w_{41} = 432343123$                            | $w_{73} = 2342312343123$        |
| $w_{10}=4323$       | $w_{42} = 231234123$                            | $w_{74} = 1234231234123$        |
| $w_{11}=3423$       | $w_{43} = 431234123$                            | $w_{75} = 43231234323123$       |
| $w_{12}=23123$      | $w_{44} = 231234323$                            | $w_{76} = 34231234323123$       |
| $w_{13} = 43123$    | $w_{45} = 1234323123$                           | $w_{77} = 34323123423123$       |
| $w_{14} = 34123$    | $w_{46} = 3234323123$                           | $w_{78} = 23423123423123$       |
| $w_{15} = 34323$    | $w_{47} = 3123423123$                           | $w_{79} = 23432312343123$       |
| $w_{16} = 23423$    | $w_{48} = 4323423123$                           | $w_{80} = 12342312343123$       |
| $w_{17} = 323123$   | $w_{49} = 2312343123$                           | $w_{81} = 343231234323123$      |
| $w_{18} = 423123.$  | $w_{50} = 4312343123$                           | $w_{82} = 234231234323123$      |
| $w_{19} = 343123$   | $w_{51} = 4231234123$                           | $w_{83} = 234323123423123$      |
| $w_{20} = 234123$   | $w_{52} = 3231234323$                           | $w_{84} = 123423123423123$      |
| $w_{21} = 234323$   | $w_{53} = 31234323123$                          | $w_{85} = 123432312343123$      |
| $w_{22} = 123423$   | $w_{54} = 43234323123$                          | $w_{86} = 2343231234323123$     |
| $w_{23} = 4323123$  | $w_{55} = 23123423123$                          | $w_{87} = 1234231234323123$     |
| $w_{24} = 3423123$  | $w_{56} = 43123423123$                          | $w_{88} = 1234323123423123$     |
| $w_{25} = 2343123$  | $w_{57} = 32312343123$                          | $w_{89} = 3234323123423123$     |
| $w_{26} = 1234123$  | $w_{58} = 42312343123$                          | $w_{90} = 12343231234323123$    |
| $w_{27} = 3234123$  | $w_{59} = 34231234123$                          | $w_{91} = 32343231234323123$    |
| $w_{28} = 1234323$  | $w_{60} = 43231234323$                          | $w_{92} = 31234323123423123$    |
| $w_{29} = 3234323$  | $w_{61} = 231234323123$ $w_{61} = 431234323123$ | $w_{93} = 312343231234323123$   |
| $w_{30} = 34323123$ | $w_{62} = 431234323123$ $w_{62} = 222122422123$ | $w_{94} = 231234323123423123$   |
| $w_{31} = 23423123$ | $w_{63} = 323123423123$                         | $w_{95} = 2312343231234323123$  |
| $w_{32} = 12343123$ | $w_{64} = 423123423123$                         | $w_{96} = 32312343231234323123$ |

TABLE 3. The character table of  $\mathcal{H}(G, P)$ 

| 99                    | $q^8\phi_2^2\phi_3$ | $q^5\phi_1\phi_2(3+5q+3q^2)$                                                       | $q^2(-1+3q-3q^2)$ $q^2(1-5q+12q^2-5q^3+q^4)$ | $-q^2\phi_1\phi_2\phi_6$ | $q^2\phi_2^2\phi_6$ | $-2q^4\phi_1\phi_2^2$       | $q^5\phi_2^2\phi_3$   | $q^2\phi_2^2(1-3q+q^2)$ | $-q^2\phi_1\phi_2\phi_3$ | $q^3\phi_1\phi_2^2\phi_6$            | $q^4\phi_2^2(1-4q+q^2)$                                                                                         |
|-----------------------|---------------------|------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|---------------------|-----------------------------|-----------------------|-------------------------|--------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 80                    | $q^7\phi_3$         | $q^4(-1-q+q^2+2q^3)$                                                               | $q^2(-1+3q-3q^2)$                            | $q^2(-1+q+q^2)$          | -42                 | $q^3\phi_{12}$              | 9443                  | $q^2(-1-q+q^2)$         | $-q^2\phi_3$             | $-q^2\phi_2\phi_6$                   | $q^3\phi_2(1-q+q^3)$                                                                                            |
| 46, 47                | 9 42 43             | $q^3(-1+q^2+q^3)  \left  \ q^4(-2-2q+q^2+3q^3+q^4) \ \right  \ q^4(-1-q+q^2+2q^3)$ | $q^2(-1+5q-3q^2)$                            | $q^2(-1+q+q^2)$          | $-q^2\phi_2$        | $q^3\phi_2(1-q-q^2)$        | $\epsilon \phi_9 b -$ | $q^2(-1+q+q^2)$         | $-q^2\phi_3$             | $q^3(2+q-q^2-q^3)$                   | $q^3(1-q-2q^2+q^4)$                                                                                             |
| as                    | $a_e\phi_3$         | $q^3(-1+q^2+q^3)$                                                                  | $q^2(1-2q)$                                  | q2                       | $q^2\phi_2$         | $-q^3\phi_2$                | $q^3(-1-q^2+q^3)$     | $q^2(1-2q)$             | q <sup>2</sup>           | $q^2(1-2q-q^2+q^4)$                  | $q^2(1-q+q^4)$                                                                                                  |
| 42                    | $q^4\phi_2^2\phi_3$ | $q^2\phi_2(-2-q+3q^2+3q^3)$                                                        | $q(1+2q-8q^2+3q^3)$                          | $-q\phi_1(1+3q+q^2)$     | 962                 | $q\phi_1\phi_2^2(-1+q+q^2)$ | $-q^3\phi_2\phi_3$    | $q\phi_2(1+q-q^2)$      | 94243                    | $-q\phi_2(-1+q+3q^2)$                | $-2+3q^2+2q^3 \qquad \left  \ q\phi_1(1+4q+3q^2+q^3) \right  \ q\phi_2(1-2q-3q^2+2q^3+q^4) \qquad q^2(1-q+q^4)$ |
| <i>a</i> <sub>3</sub> | $q^3\phi_2\phi_3$   | $q\phi_2^2(-1+q+q^2)$                                                              | $2q^2(-2+q)$                                 | $-2q^{2}$                | $-q^2\phi_2$        | $q\phi_2(-1-q+q^2)$         | 94344                 | 243                     | •                        | $-2-q+q^2+q^3$ $q^2(-1+2q+2q^2+q^3)$ | $q\phi_1(1+4q+3q^2+q^3)$                                                                                        |
| 92                    | 94243               | $\begin{vmatrix} 1 & -1+q+3q^2+2q^3 \end{vmatrix}$                                 | $-1-q+3q^2$                                  | $-1-q+q^2$               | - 42                | $\phi_2(-1+q+q^2)$          | - <del>6</del> 3      | - <del>     </del>      | -φ <sub>3</sub>          | $-2-q+q^2+q^3$                       | $-2+3q^2+2q^3$                                                                                                  |
| ē                     | -                   | -                                                                                  | -                                            | -                        | -                   | -                           | -                     | -                       | -                        | 7                                    | 2                                                                                                               |
| - ,                   | Ξ                   | [42]                                                                               | [121]                                        | [161]                    | [61]                | <u>&amp;</u>                | [21]                  | [63]                    |                          | [8]                                  |                                                                                                                 |

|          | a <sub>10</sub> , a <sub>11</sub>  | d <sub>12</sub>              | d <sub>13</sub>                                                                                              | 914                    | 415                                                                                                                      | gi,                                  | a17   |
|----------|------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|
| [11]     | $q^{10}\phi_2\phi_3$               | $q^{11}\phi_3$               | 9124243                                                                                                      | $q^{13}\phi_2$         | q144243                                                                                                                  | q <sup>16</sup> \$\phi_2\$\phi_3\$   | 920   |
| [42]     | $[4_2]$ $q^6(-1-3q-q^2+2q^3+2q^4)$ | $2q^4$ ) $q^7(-2-q+q^2+q^3)$ | $q^8\phi_2(-3-3q+q^2+2q^3)$                                                                                  | $q^8(-1-q+q^3)$        | $q^9\phi_2^2(-1-q+q^2)$                                                                                                  | $\left q^{11}(-2-3q-q^2+q^3)\right $ | -914  |
| [121]    | $q^4(-3+5q-q^2)$                   | $q^4(-3+3q-q^2)$             | $q^4(3-8q+2q^2+q^3)$                                                                                         | $q^5(-2+q)$            | $2q^5(1-2q)$                                                                                                             | $q^{6}(3-q-q^{2})$                   | . *6  |
| [161]    | $q^4(-1-q+q^2)$                    | $q^4(-1-q+q^2)$              | $-q^4\phi_1(1+3q+q^2)$                                                                                       | -q <sup>6</sup>        | 2q <sup>6</sup>                                                                                                          | $q^6(-1+q+q^2)$                      | 86-   |
| [61]     | $-q^5\phi_2$                       | -ۀو                          | $q^5\phi_2^2$                                                                                                | $q^5\phi_2$            | $-q^5\phi_2$                                                                                                             | $-q^7\phi_2$                         | 85    |
| <u>æ</u> | $q^{\delta}\phi_2(1+q-q^2)$        | -q <sup>4</sup> \phi_12      | $q^5\phi_1\phi_2^2(1+q-q^2)$                                                                                 | 9,42                   | $q^7\phi_2(-1+q+q^2)$                                                                                                    | $q^8\phi_2(-1-q+q^2)$                | -911  |
| [3]      | -q <sup>6</sup> \phi_3             | $q^8\phi_3$                  | $-q^8\phi_2\phi_3$                                                                                           | $q^8(1-q-q^3)$         | 9934                                                                                                                     | $-q^{12}\phi_3$                      | q 14  |
| 8        | $q^4(1+q-q^2)$                     | $q^4(1-q-q^2)$               | $q^4\phi_2(-1+q+q^2)$                                                                                        | $q^{5}(-2+q)$          | $2q^{5}$                                                                                                                 | $-q^6\phi_3$                         | 86    |
| \$       | 9443                               | 9443                         | $-q^4\phi_2\phi_3$                                                                                           | <sub>9</sub> b-        | •                                                                                                                        | $q^6\phi_3$                          | 8p    |
| (§)      | $q^5(1+q-q^2-2q^3)$                | $q^6\phi_2\phi_6$            | $q^7\phi_2(3+q-q^2)$                                                                                         | $q^5(-1+q^2+2q^3-q^4)$ | $q^{8}(-1+q^{2}+2q^{3}-q^{4}) \left  q^{6}(-1-2q-2q^{2}+q^{3}) \right  q^{8}(-1-q+q^{2}+2q^{3}) \left  -2q^{11} \right $ | $q^8(-1-q+q^2+2q^3)$                 | -2q11 |
| [6]      | $q^{5}(1-2q^{2}-q^{3}+q^{4})$      | $q^5\phi_2(1-q^2+q^3)$       | $q^{5}\phi_{2}(1-q^{2}+q^{3})$ $\left q^{6}\phi_{2}(1+2q-3q^{2}-2q^{3}+q^{4})\right $ $q^{6}(1-q^{3}+q^{4})$ | $q^6(1-q^3+q^4)$       | $\begin{vmatrix} -q^7\phi_1(1+3q+4q^2+q^3) \end{vmatrix}$ $q^9(2+3q-2q^3)$                                               | $q^9(2+3q-2q^3)$                     | 2412  |

B: p = 3

A: p = 2

Table 4.  $|\mathscr{C}_j \cap D_j| \cdot |Z_G(x_j)| / |P|$  where  $\mathscr{C}_j$  is the conjugacy class containing  $x_j$ 

| , 25 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 6 \\ 6 \\ 1 + 6q + 2q + 2q^2 \end{array} $ $ \begin{array}{c} q^3 (1 + 2q + 2q^2) \\ q^3 (1 + 3q + q^2 + q^3) \\ q^4 (1 + 6q + 3q^2 + q^4) \\ q^5 (1 + 2q + q^2 + 2q^3 + q^4) \\ q^5 (-2 + q + q^2 + 2q^3 + 2q^4 + q^5) \\ q^5 (-2 + q + q^2 + 2q^3 + 2q^4 + q^5) \\ q^5 (1 - 2q + q^2 + 2q^3 + 2q^4 + q^5) \\ q^5 (1 - 2q + q^2 + 2q^3 + 2q^4 + q^5) \\ q^6 (1 - 2q + q^2 + 2q^3 + 2q^4 + q^5) \\ q^6 (1 - 2q + q^2 + 2q^3 + 2q^4 + q^5) \\ q^6 (1 - 2q + q^2 + 2q^3 + 2q^4 + q^5) \\ q^6 (1 - 2q + q^4 + 2q^5 + 2q^4 + q^5) \\ q^6 (1 - q + q^5 + q^6 + q^7) \\ q^6 (1 - q + q^5 + q^6 + q^7) \\ q^6 (1 + q^6 + q^7) \\ q^7 (1 + q^6 + q^7) \\ q^8 (-1 + q^6 + 2q^6 + q^1) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>b</i>           |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|      | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{cases} c + q^{7} \\ q^{7} \\ q^{7} \\ q^{3} \\ q^{3} \\ q^{4} $ |                    |
| 29   | $\begin{array}{c} 1+q\\ q^2(2+3q+2q^2)\\ q^3(1+4q+4q^2+3q^2)\\ q^3(-1-q+3q^2+5q^3+5q^4+q^5)\\ -q^4+2q^7\\ q^5(-1-q+3q^2+2q^4+q^5)\\ q^6(-2+q+q^2+8q^3+6q^4+q^6)\\ q^7(1+q)^2\\ q^7(-1-2q^2+2q^2+6q^3+6q^4+3q^6+q^6)\\ q^7(-1-2q^2+2q^3+6q^4+3q^6+q^6)\\ q^7(-1-q^2+2q^2+2q^3+6q^4+3q^5+q^6)\\ q^7(-1-q^2+2q^3+3q^4+2q^5+q^6)\\ q^6(-1-q+q+2q^2+q^3+q^4)\\ q^8(-1-q^2+q^2+q^3+q^4)\\ q^8(-1-q+q+2q^2+q^4+q^6+q^6+q^6)\\ q^8(1-2q-q^3+q^4+q^5+q^6)\\ q^8(1-q-q^2+q^3+2q^4+q^5+q^6)\\ q^9(1-q-q^2+q^3+2q^4+q^6+q^6+q^6)\\ q^9(1-q^2-q^3+q^4+q^5+q^9)\\ (1-q-q^2-q^3-2q^4+q^5+q^6+q^6+q^6+q^6+q^6+q^6+q^6+q^6+q^6+q^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33 $\frac{1}{q^2(-1+4q^2)}$ $q^3(-1+4q^2+3q^3+q^4)$ $q^3(-1+9q^2+6q^3+6q^4+q^5)$ $q^5(-3+q+2q^2+4q^3+3q^4+q^5)$ $q^6(-3+q+2q^2+4q^3+3q^4+q^5)$ $q^6(-3+q+2q^2+4q^3+3q^4+q^5)$ $q^6(-2+q+2q^2+q^3+q^4+q^5)$ $q^6(-2-q-q^2+2q^4+3q^4+2q^3+q^6)$ $q^6(2-2q-q^2+2q^4+3q^4+5q^6+q^7)$ $q^6(2-2q-q^2+2q^4+3q^6+2q^6+q^7)$ $q^6(2-2q-q^2+2q^4+3q^6+q^6+q^7)$ $q^6(-2+q-q^3-2q^4+3q^4+4q^4+q^6+q^6)$ $q^6(-2+q-q^3-2q^4+3q^6+q^2+q^6+q^7)$ $q^6(-2-q^2-2q^3-2q^4+q^6+2q^7+q^6+q^6+q^7)$ $q^6(-2-q^2-2q^3-2q^4+q^6+2q^7+q^6+q^6+q^6+q^6+q^7)$ $q^6(-2-q^2-2q^3-2q^4+q^6+2q^7+q^6+q^6+q^6+q^6+q^6+q^6+q^6+q^6+q^6+q^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $q^{**}(-1+q^{*})$ |
|      | $\begin{array}{c} 8g^{3} \\ 3+2g^{4} \\ 3+2g^{4} \\ 3+10g^{4} \\ 2g^{3} \\ 1g^{4} \\ 2g^{3} \\ 3+4g^{4} \\ 3+2g^{4}+g^{6} \\ 3+2g^{4}+g^{6} \\ 3+2g^{4}+g^{6} \\ 3+2g^{4}+g^{6} \\ 3+4g^{4} \\ 3+3g^{4}+2g^{7}+g^{9} \\ 3+4g^{7}+2g^{2}+g^{2} \\ 3+4g^{7}+2g^{2}+g^{2}+g^{2} \\ 3+4g^{7}+2g^{2}+g^{2}+g^{2} \\ 3+4g^{7}+2g^{2}+g^{2}+g^{2} \\ 3+4g^{7}+2g^{2}+g^{2}+g^{2}+g^{2}+g^{2} \\ 3+4g^{7}+2g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+g^{2}+$ | 32 or 34  1  9(1+q) $q^2(1+2q+2q^2+q^3+q^4)$ $q^3(1+2q+2q^2+q^4+q^5)$ $q^3(1+2q+q^4+q^5)$ $q^5(1+q+q^4+q^5)$ $q^5(1+q+q^4+q^5)$ $q^5(1+q+q^4+q^5)$ $q^5(1+q+q^4+q^5)$ $q^5(1+q+q^4+q^5)$ $q^5(1+q+q^4+q^5)$ $q^5(1+q+q^4+q^5)$ $q^5(1-q^2+q^4+q^5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $q^{19}(1+q^{9})$  |
| 24   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} q(1+3) \\ -q^2 \\ -q^2 \\ -1 \\ -q^2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $q^{10}(-1+q^0)$   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} i \\ i \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                 |

TABLE 5. The values at unipotent elements of the almost characters of G not obtainable from the Green functions and whose restrictions at  $G_{uni}$  is not 0

 $F_4[\theta^2]$ 

|             |   |       | ผู    | £1 | #2 | . 6 | 3 6 | 4  | £, | 9           | x7           | 88       | 63  | $x_{10}$ | 4   | : : | £12 | <b>x</b> 13 | £14             | <b>x</b> 15    | <b>x</b> 16           | x17             | 4                     |                 | 7      | 7.50 | <b>x</b> 21 | £22 | £23 | £24          | 2.25 | 4                     | 972  | £27             |       |
|-------------|---|-------|-------|----|----|-----|-----|----|----|-------------|--------------|----------|-----|----------|-----|-----|-----|-------------|-----------------|----------------|-----------------------|-----------------|-----------------------|-----------------|--------|------|-------------|-----|-----|--------------|------|-----------------------|------|-----------------|-------|
|             |   |       |       |    |    |     |     |    |    |             |              |          |     |          |     |     |     |             |                 |                |                       |                 |                       |                 |        |      |             |     |     |              |      |                       |      |                 |       |
|             |   | •     |       |    |    |     |     |    |    |             |              |          |     |          |     |     |     |             |                 |                |                       |                 |                       |                 |        |      |             |     |     |              |      |                       |      |                 |       |
| $ F_4  - 1$ |   | •     |       |    | •  | •   | •   |    | •  | •           |              | •        |     |          |     |     |     | •           |                 | •              |                       | •               | •                     | •               | •      | •    | •           | •   | •   | <sub>д</sub> | -93  | •                     | •    | •               |       |
| / T         |   |       | •     | •  |    | •   |     | •  |    | •           |              |          |     | •        |     | •   | •   | $q^6$       | _d <sub>e</sub> | d <sub>e</sub> |                       |                 |                       |                 |        | •    | •           | •   |     |              |      | •                     |      |                 |       |
| 7.          | · |       | •     |    | •  |     |     |    | •  | •           | •            | •        | •   | •        | •   |     | •   | •,          | . •             |                | •                     | •               | •                     |                 | 44     | -94  | 44          | -94 | 44  |              | •    |                       |      |                 |       |
| $r_4 - i$   |   |       |       |    | ,  | •   |     | •  |    |             | •            |          |     | •        | •   | •   | •   | •           |                 |                | •                     |                 |                       | •               |        | •    | •           |     |     |              |      | <i>q</i> <sup>2</sup> | -iq2 | -42             | , 20, |
| r4[i]       | Ŀ | •     |       | •  | •  |     | •   | •  |    |             | •            | •        | •   | •        | •   |     | •   |             |                 |                | •                     | •               |                       |                 |        |      |             | •   |     |              |      | $q^2$                 | iq2  | -q <sup>2</sup> | -102  |
| D2[7]       |   | ٠     | •     |    | •  |     |     |    | •  | $q^6\phi_4$ | $-q^6\phi_4$ | •        |     |          |     | •   | •   |             | •               |                | <i>d</i> <sup>3</sup> | -d <sub>3</sub> | g,                    | -d <sub>3</sub> | $2q^3$ |      | $-2q^3$     |     |     |              | •    |                       |      |                 |       |
| D2[6]       |   |       |       |    |    | •   |     |    |    | 47          | _d_          |          |     |          |     |     |     |             | •               |                | 4.0                   | -q4             |                       | •               |        |      | •           |     | •   | •            |      |                       | •    |                 | •     |
| D2[c]       |   | •     |       |    |    | •   | •   | •  |    | 47          | -47          |          |     |          |     | •   |     |             |                 | •              | •                     | •               | 94                    | -94             |        | •    |             | •   | •   | •            |      |                       |      |                 | •     |
| 22[6]       |   |       | •     |    |    |     | •   |    | •  | 6,6         | 6b-          |          | •   | •        |     | •   |     |             |                 | •              |                       |                 |                       |                 |        | •    |             |     | •   |              |      | •                     | •    |                 |       |
| D2[1]       |   |       | •     |    | •  |     |     | •  |    | 42          | -42          |          | •   | •        |     |     | •   |             |                 |                | 92                    | 7,6             | <b>d</b> <sub>2</sub> | -d <sub>2</sub> | , b ?  |      | -242        |     |     |              |      | 5                     | Ь́   | ď               | 0-    |
|             | ย | $x_1$ | $x_2$ | £3 | Z4 | 33  | 26  | x7 | 8  | 68          | 210          | $x_{11}$ | x12 | $x_{13}$ | £14 | 215 | 216 | $x_{17}$    | x18             | x13            | x20                   | $x_{21}$        | $x_{22}$              | £23             | £24    | x25  | x26         | x27 | £28 | £29          | x30  | $x_{31}$              | £32  | £33             | 134   |

B: p = 3

A: p = 2

| (1/5)            |
|------------------|
| $\Box$           |
| p=2) (           |
| 5                |
| of $\mathcal{G}$ |
| ₹                |
| table            |
| character        |
| unipotent        |
| The              |
| 6.A.             |
| <b>FABLE</b>     |

| B <sub>2</sub> [1] | 9 42 43 4s/2                   | $q \phi_1 \phi_3 (-1 + q^3 - q^4)/2$ | $q \phi_1 \phi_3 (-1 + q^3 - q^4)/2$ | $q(1-2q^3+q^4+q^6)/2$   | $q \phi_1 (-1 - q - q^2 + q^3)/2$            | $-q \phi_1 \phi_3/2$ | $q(1-q^3+2q^4)/2$    | $-q \phi_1 \phi_3/2$         | $q(1-q^3+2q^4)/2$  | $q(1+q^2-2q^3+q^4)/2$ | $q(1+q^2-2q^3-q^4)/2$ | -q \$1 \$2/2         | -q \phi_1 \phi_2/2   | $q(1+q^2-q^3)/2$ | $q(1+q^2-q^3)/2$ | 4/3  | 9 44/2 | $q(1+2q^2)/2$  | 4/5  | $-9 \phi_1 \phi_2/2$   | 4/2       | q(1-2q)/2      | 4/5       | q(1-2q)/2 | 4/5          | 4/2       | 9 (1 - 49)/2 | 4/2       | 9(1+29)/2 | 4/2 | 4/2 | 4/2  | -4/3 | 4/2                                          | -4/2 |
|--------------------|--------------------------------|--------------------------------------|--------------------------------------|-------------------------|----------------------------------------------|----------------------|----------------------|------------------------------|--------------------|-----------------------|-----------------------|----------------------|----------------------|------------------|------------------|------|--------|----------------|------|------------------------|-----------|----------------|-----------|-----------|--------------|-----------|--------------|-----------|-----------|-----|-----|------|------|----------------------------------------------|------|
| [23]               | 9 44 48 412/2                  | $q(1+q^4+q^6+q^7)/2$                 | _                                    | $q(1+q^4+q^6)/2$        |                                              | $-q \phi_1 \phi_3/2$ | $q(1-q^3+2q^4)/2$    | $q(1+q^3+2q^4)/2$            | 9 42 46/2          | $q(1+q^2-q^4)/2$      | 9 43 46/2             | $-9 \phi_1 \phi_3/2$ | 9 42 46/2            | $q(1+q^2-q^3)/2$ | $q(1+q^2+q^3)/2$ | 4/2  | 9 44/2 | $q(1+2q^2)/2$  | 4/2  | $-q \phi_1 \phi_2/2$   | q(1-2q)/2 | 4/2            | 4/2       | q(1+2q)/2 | q(1-2q)/2    | q(1-2q)/2 | q(1+2q)/2    | q(1+2q)/2 | 4/2       | 4/2 | 4/2 | -4/2 | 4/2  | -4/3                                         | 9/2  |
| [2 <sub>1</sub> ]  | 9 44 48 413/2                  | $ q(1+q^4+q^6-q^7)/2 q$              | $q(1+q^4+q^6+q^7)/2$                 | $q(1+q^4+q^6)/2$        | 9 40/2                                       | $q(1+q^3+2q^4)/2$    | 9 42 46/2            | $-q \phi_1 \phi_3/2$         | $q(1-q^3+2q^4)/2$  | $q(1+q^2-q^4)/2$      | 9 43 46/2             | 9 42 46/2            | $-q \phi_1 \phi_3/2$ | $q(1+q^2+q^3)/2$ | $q(1+q^2-q^3)/2$ | 4/2  | 9 44/2 | $q(1+2q^2)/2$  | 4/2  | $-q \phi_1 \phi_2 / 2$ | 4/2       | q(1+2q)/2      | q(1-2q)/2 | 4/2       | q(1-2q)/2    | q(1+2q)/2 | 9 (1 + 29)/2 | q(1-2q)/2 | 4/2       | 4/2 | 4/2 | -4/5 | 4/2  | -4/5                                         | 9/2  |
| [42]               | q \$\phi_2^2 \phi_6^2 \phi_8/2 | $q \phi_2 \phi_6 (1 + q^3 + q^4)/2$  | 9 42 46 (1 + 9 + 94)/2               | 9 (1 + 243 + 64 + 96)/2 | $q \phi_2 (1 - q + q^2 + q^3)/2$             | $q(1+q^3+2q^4)/2$    | 9 42 46/2            | $q(1+q^3+2q^4)/2$            | 9 42 46/2          | $q(1+q^2+2q^3+q^4)/2$ | $q(1+q^2+2q^3-q^4)/2$ | 9 42 46/2            | 9 42 46/2            | $q(1+q^2+q^3)/2$ | $q(1+q^2+q^3)/2$ | 4/2  | 9 44/2 | $q(1+2q^2)/2$  | 4/2  | $-q \phi_1 \phi_2/2$   | q(1+2q)/2 | 4/2            | q(1+2q)/2 | 4/2       | q(1+4q)/2    | 4/2       | 4/2          | 4/2       | q(1-2q)/2 | 4/3 | 4/2 | 4/5  | -4/2 | 4/2                                          | -4/2 |
| [84]               | 9 42 48 412                    | 7 <b>4</b> 8.6                       | d 2 φ 4 φ 8                          |                         |                                              |                      | ٠,                   |                              |                    |                       |                       | •                    |                      |                  | •                |      |        |                |      |                        |           |                | •         |           |              |           |              |           | •         |     | •   |      | •    |                                              | •    |
| [83]               | 9 42 48 412                    | $q^3\phi_4(1+q^4+q^6)$               | في مو مو                             | q3 44 48                | 93 43 46                                     | 8.5                  | 80                   | $q^{3}(1+q^{2}+q^{3}+q^{4})$ | 9 (1 + 9 - 9 + 9 + | 424                   | 434                   | ₹.                   | 49 64                | ح.               | 424              | 2    | ه.     | 80             | 20   | 8.0                    | •         | •              | 6.6       | ۳,        | •            | •         | •            |           | •         |     |     | •    | •    |                                              |      |
| [82]               | 9 42 48 412                    | d3 φ4 φ8                             | <b>4°</b>                            | 484                     | *.                                           |                      |                      | 85                           | ۰.                 |                       |                       |                      |                      |                  |                  |      |        |                |      |                        |           |                | •         |           |              |           |              |           |           |     |     |      |      |                                              |      |
| [81]               | 93 42 48 412                   | $q^3 \phi_4 \phi_8$                  | $q^3 \phi_4 (1 + q^4 + q^6)$         | q3 44 48                | 9 <sup>3</sup> ¢ <sub>3</sub> ¢ <sub>6</sub> | $q^3(1+q^2+q^3+q^4)$ | $q^3(1+q^2-q^3+q^4)$ | 6,6                          | g <sub>0</sub>     | 9342                  | 49 64                 | φ <sub>2</sub> φ     | 43                   | 934              | e <sub>b</sub>   | 8.   | 6.6    | e <sub>b</sub> | e.   | еъ                     | 65        | e <sub>b</sub> |           | •         |              | •         |              |           |           |     |     |      |      |                                              |      |
| [64]               | 910 43 46 412                  | 910 43 4e                            | 9 10 43 4e                           | q10 44                  | 4.0                                          |                      |                      | •                            |                    |                       |                       |                      |                      |                  |                  |      |        |                |      |                        |           |                |           |           |              |           |              |           |           | •   |     | •    |      |                                              |      |
| [91]               | 92 43 46 412                   | 92 43 46 48                          | 9 42 46 46                           | q2 (1+q2+2q4+q6)        | 92(1+92+294)                                 | q2 43 4e             | q2 43 4e             | 92 43 46                     | 92 43 46           | q2 43 4e              | 92 43 46              | 9244                 | 9244                 | 924              | 9.4              | 9244 | 924    | 42             | 43   | 43                     | 42        | 2,6            | 4.5       | 43        | 2.6          | 43        | 43           | 25        | 42        |     |     |      |      |                                              |      |
| $\vdash$           | 924                            |                                      |                                      |                         | •                                            |                      |                      |                              |                    |                       |                       |                      |                      |                  |                  |      |        |                |      | _                      |           | -              | •         |           | -            | ·         | •            | •         | ·         | _   | •   | •    |      | <u>.                                    </u> |      |
| [11]               | _                              |                                      | _                                    | _                       | _                                            | _                    | _                    | -                            | _                  | _                     | -                     | <del>-</del>         | -                    | -                | -                | -    | -      | 1              | -    | _                      | -         | _              | -         | -         | <del>-</del> | 2         | -            | 1         |           | -   | -   |      | 1    | -                                            | 긔    |
| L                  | 2                              | <u> </u>                             | 23                                   | e e                     | 4                                            | #                    | ň                    | 2                            | #                  | 4                     | 2,10                  | 2.1                  | £12                  | £ 13             | 2,4              | 215  | 2,16   | £17            | Z 18 | 2,19                   | £30       | 231            | £23       | 233       | 274          | £28       | 4 2          | 237       | 238       | 739 | 230 | 231  | £32  | 133                                          | £3.  |

TABLE 6.A. The unipotent character table of G(p=2)(2/5)

| [2]                | (13)               | 9 4 46 48 412/8                      | $q^4 \phi_4 \phi_6 (1 - q + q^2 + q^4 - q^5 + 3q^6)/8$ | $q^4 \phi_1 \phi_3 \phi_4 \phi_6 (-1 + q - q^2 - q^3)/8$              | $^{4}\phi_{4}(1-2q+3q^{2}-2q^{3}+2q^{4}$                                                   | $a^4 \phi_1 \phi_4 (-1 + a - 2 a^2)/8$     | -04 43 4-78                       | 04 42 42 42 42 42 42 42 42 42            | $a^4(1-2a+5a^2-a^3+2a^4+3a^5)/8$  | - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2     | -4 + 196 (1 + 34)       | $q^4 \phi_4 (3 - 2q - 3q^2)/6$ | $a^{4}\phi_{1}\phi_{2}(-1+2a)/8$  | $q^4 \phi_1 (-1 + q - 2q^2)/8$      | $-q^4\phi_1(3+q)/8$      | 94 (3 - 2 9 + 3 92)/8 | $q^4(1-2a)/8$              | $q^{4}(3-2a)/8$  | $q^4(5+q^2)/8$  | -0 4 6 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 940102/8                     | -03 62/4          | $q^{3}\phi_{2}/4$  | σ <sup>3</sup> φ <sub>1</sub> /4 | $-q^3 \phi_1/4$    | $-q^3(4+q)/8$ | 04/8  | $a^{3}(4-a)/8$ | 04/8 | 8/40- | 9/4<br>-03/4      | 03/4               | 9273              |   | -02/2             | 1 / F |
|--------------------|--------------------|--------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------|---------------------------------------------|-------------------------|--------------------------------|-----------------------------------|-------------------------------------|--------------------------|-----------------------|----------------------------|------------------|-----------------|--------------------------------------------|------------------------------|-------------------|--------------------|----------------------------------|--------------------|---------------|-------|----------------|------|-------|-------------------|--------------------|-------------------|---|-------------------|-------|
| [6]                | 4 12 12 1 10       | 9. 93.94.98.912/8                    | 9. 434 (1+4+4+4+49+390)/8                              | $q^{2} \phi_{2} \phi_{3} \phi_{4} \phi_{6} (1 + q + q^{2} - q^{3})/8$ | $q^4\phi_4(1+2q+3q^2+2q^3+2q^4+2q^5+2q^6)/8$ $ q^4\phi_4(1-2q+3q^2-2q^3+2q^4-2q^5+2q^6)/8$ | $q^4 \phi_2 \phi_4 (1 + q + 2 q^2)/8$      | -04 61 62 63/8                    | 949306/8                                 | $q^4\phi_2\phi_3(1+3q^2)/8$       | $0^4(1+2a+5a^2+a^3+2a^4-3a^5)/8$            | 046, (3 + 20 - 302) /8  | $q^4\phi_4 (3 + 2q + q^2)/8$   | $-q^4 \phi_1 \phi_2 (1+2q)/8$     | $q^4 \phi_2 (1 + q + 2q^2)/8$       | $q^{4} \phi_{2} (3-q)/8$ | $q^4(3+2q+3q^2)/8$    | $q^4(1+2q)/8$              | $q^4 (3 + 2q)/8$ | $q^4(5+q^2)/8$  | $-q^4 \phi_1 \phi_2/8$                     | 944142/8                     | $q^3\phi_1/4$     | $-q^3\phi_1/4$     | $-q^{3}\phi_{2}/4$               | 9342/4             | $-q^3(4+q)/8$ | 94/8  | $q^{3}(4-q)/8$ | 94/8 | -04/8 | 93/4              | -q <sup>3</sup> /4 | -02/2             | • | q <sup>2</sup> /2 |       |
| [12,]              | 04 44 42 4. 4. 194 | 4 43 4 (1 1 9 - 1 2 2 3 1 9 - 5) (04 | 4 3 (1 + 24 + 4 - 4 + 34 - )/24                        |                                                                       | *                                                                                          | $q^4 \phi_2^2 (1 + 2q) (1 + 2q + 3q^2)/24$ | $q^4 \phi_2^2 \phi_3 (1 + 3q)/24$ | $q^4 \phi_2^2 (1 + 4q + 4q^2 - 3q^3)/24$ | $q^4 \phi_2^2 \phi_3 (1 + 3q)/24$ | $q^4 \phi_2^2 (1 + 4 q + 4 q^2 - 3 q^3)/24$ | $q^4\phi_2^2(1+3q^2)/8$ | $-q^4\phi_1\phi_2^{3}/8$       | $q^4 \phi_2 (1 + 2q) (1 + 3q)/24$ | $q^4 \phi_2 (1 + 2 q) (1 + 3 q)/24$ | 9442/8                   | q4 \phi_2/8           | $q^4 (1 + 2q) (1 + 4q)/24$ | $q^4(1+2q)/8$    | $q^4(5+q^2)/24$ | $-q^4 \phi_1 \phi_2/24$                    | $q^{4} \phi_{1} \phi_{2}/24$ | $q^{3}\phi_{2}/4$ | $-q^{3}\phi_{2}/4$ | q <sup>3</sup> \phi_2/4          | $-q^{3}\phi_{2}/4$ | $q^3(4+q)/8$  | -44/8 | $q^3(-4+q)/8$  | 8/,4 | 9,4/8 | q <sup>3</sup> /4 | -43/4              | q <sup>2</sup> /2 | • | -q2/2             |       |
| B <sub>2</sub> [¢] | 013 d2 d2 da/2     | -013 4. 4.19                         | 13 41 43/2                                             | -4-6163/2                                                             | 9,13/2                                                                                     | •                                          |                                   |                                          | ,                                 | •                                           | 99/2                    | -49/2                          |                                   |                                     |                          |                       |                            |                  |                 |                                            |                              | •                 |                    | •                                |                    | •             |       |                | •    |       |                   | •                  | •                 |   | •                 |       |
| [22]               | 913 de de des /2   | 13 45 4 12/ -                        | 13 4 7 70                                              | -9-41 43/4                                                            | q <sup>13</sup> /2                                                                         |                                            |                                   | •                                        |                                   |                                             | $-q^{9}/2$              | 49/2                           |                                   | •                                   |                          | •                     | •                          | •                |                 | • .                                        |                              |                   | •                  |                                  | •                  | •             | •     | •              |      | •     | •                 | •                  |                   |   |                   |       |
| [24]               | 913 44 de 612/2    |                                      | 13 4 7 70                                              | 4 42 46/4                                                             | q,2/2                                                                                      |                                            | •                                 |                                          |                                   |                                             | -4°/2                   | q <sup>9</sup> /2              |                                   | •                                   |                          | •                     |                            | •                |                 |                                            |                              |                   | •                  |                                  |                    | •             |       | •              |      |       |                   |                    |                   |   |                   |       |
| [45]               | q13 42 42 68/2     |                                      | 13 4. 4. 79                                            | 7 45 46/4                                                             | 4,2/5                                                                                      | •                                          | •                                 | •                                        |                                   | •                                           | 49/2                    | -49/2                          | •                                 |                                     | •                        |                       |                            |                  |                 |                                            | •                            | •                 |                    | •                                | •                  | •             |       | •              |      |       |                   | •                  | •                 | • |                   |       |
|                    | . ~                |                                      |                                                        |                                                                       |                                                                                            |                                            |                                   |                                          |                                   |                                             |                         |                                |                                   |                                     |                          |                       |                            |                  |                 |                                            |                              |                   |                    |                                  |                    |               |       |                |      |       |                   |                    |                   |   |                   |       |

Table 6.A. The unipotent character table of G(p=2)(3/5)

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | W. G                                                | 7.5                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | $F_4^{\mathrm{II}}[1]$                                                                   | [62]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [101]                                               | D2[¢]                                               | 4 (2 ) (2 ) (4                                       |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,   | q4 44 42 48 412/24                                                                       | 94 43 44 46 48/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 42 42 42 46 412/4                                 | 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4             | 9. 92 94 96 98 912/4                                 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | - 1                                                                                      | $q^4 \phi_3 \phi_4 \phi_6 (1 + 2q^2 + 3q^4)/12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 4 4 4 4 4 6 / 4                                   | $q^4 \phi_1 \phi_3 (-1 + q^3 - q^4 - 2q^6 + q^7)/4$ | $ q^4 \phi_2 \phi_6 (1 + q^3 + q^4 + 2q^5 + q^7)/4 $ |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                          | 04 02 de de (1 + 202 + 304)/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04 63 64 62/4                                       | $q^4 \phi_1 \phi_3 (-1 + q^3 - q^4 - q^7)/4$        | $q^4 \phi_2 \phi_6 (1 + q^3 + q^4 - q^7)/4$          |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | -4 41 46 (1 - 24 + 4 + 4 - 6 // 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                      | 4 4 (1 1 2 2 1 6 4 ± 9 06)/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24 42 4. (1 ± 9 n <sup>3</sup> )/4                  |                                                     | $q^4 (1 + 2 q^3 + q^4 + 2 q^6)/4$                    |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | $  \dot{q}, \dot{\phi}_{1}(-1 + 3\dot{q} - 4\dot{q} + 7\dot{q} + 7\dot{q} + 7\dot{q})/3$ | 21 // 67 + 60 + 60 + 1) to 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 .3 .4                                             | 7/6-12-17                                           | $a^4 + (1 - a + a^2 + a^3)/4$                        |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | $q^4 \phi_1^2 (-1 + 2q) (-1 + 2q - 3q^2)/24$                                             | $q^4(1+4q^2+7q^4)/12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $q^{2} \phi_{2}^{2} (1 - q + 2q^{2})/4$             | $q^{-}\phi_{1}(-1-q-q^{-}+q^{-})/4$                 | 4 42 113                                             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | $q^4 \phi_1^2 (1 - 4q + 4q^2 + 3q^3)/24$                                                 | $q^4 \phi_2 \phi_3 (1 - 2q + 3q^2)/12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $q^4 \phi_2 (1 + q + 3q^3 - q^4)/4$                 | $q^{2} \phi_{1}^{2} \phi_{2} \phi_{3}/4$            | 9 4 4 42 43/4                                        |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | $-a^4 \phi_c^2 \phi_c (-1 + 3 a)/24$                                                     | $-q^4\phi_1\phi_6(1+2q+3q^2)/12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 944346/4                                            | $-q^4 \phi_1 \phi_2^2 \phi_6/4$                     | $-q^4\phi_1\phi_2^2\phi_6/4$                         |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 04 42 (1 - 40 + 402 + 303)/24                                                            | $a^4 \phi, \phi, (1-2a+3a^2)/12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left  q^4 \phi_2 (1 + q + 3 q^3 - q^4)/4 \right $ | $-q^{4} \phi_{1} \phi_{3} \phi_{4}/4$               | $q^4(1+q^2+3q^3+4q^4-q^5)/4$                         |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 4 412 / 1 . 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2                                        | 4 4 4 (1 : 9 : 1 3 2) / 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 43 42. /4                                        | $a^4(1+a^2-3a^3+4a^4+a^5)/4$                        | 04 42 44 46/4                                        |  |
| $q \phi_{1}^{2}(1+3q^{2})/8$ $q \phi_{2}^{2}(1+3q^{2})/4$ $q \phi_{2}^{2}(1+3q^{2})/4$ $q \phi_{2}^{2}(1+3q^{2})/4$ $q \phi_{1}(1-2q)(-1+3q)/24$ $q \phi_{2}/4$ $q \phi_{1}(1-2q)(-1+3q)/24$ $q \phi_{2}/8$ $q \phi_{1}/8$ $q \phi_{2}/4$ $q \phi_{2}/4$ $q \phi_{2}/4$ $q \phi_{2}/4$ $q \phi_{2}/4$ $q \phi_{3}/4$ $q \phi_{2}/4$ $q \phi_{3}/4$ $q \phi_$                                                       |     | $-q^{2} \phi_{1}^{2} \phi_{6} (-1 + 3q)/24$                                              | -4. \$1 \(\delta \cdot + 7 \delta + \delta \d | 4 42 4 74                                           | 1/ 1                                                | $a^4(1-2a^3-a^4)/4$                                  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _   | $q^4\phi_1^2(1+3q^2)/8$                                                                  | 9-64 (1+39-)/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9. 02.04/4                                          | */( h - h 7 + 1) - h                                | - / (P P P P P P P P P P P P P P P P P P             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0   | -946342/8                                                                                | $-q^{4}\phi_{1}\phi_{2}\phi_{4}/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94 42 44/4                                          | $q^{*}(1-2q^{3}-q^{*})/4$                           | $a^{*}(1+2a^{*}-a^{*})/4$                            |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | $a^4 \phi_1 (1 - 2 q) (-1 + 3 q)/24$                                                     | $-q^4 \phi_1 \phi_2/12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9442/4                                              | $-q^4 \phi_1 \phi_2/4$                              | $-q^{*}\phi_{1}\phi_{2}/4$                           |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | $a^4 \phi, (1-2 o)(-1+3 o)/24$                                                           | $-q^4 \phi_1 \phi_2 / 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94 42/4                                             | $-q^4 \phi_1 (1+q+2q^2)/4$                          | $q^4 \phi_2 (1 - q + 2q^2)/4$                        |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • • | 04 62/8                                                                                  | 0404/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94 42/4                                             | $-q^4 \phi_1 \phi_2/4$                              | $-q^{4}\phi_{1}\phi_{2}/4$                           |  |
| $q^4(1-4g)/(1-2g)/24$ $q^4(1-2g)/8$ $q^4(1-2g)/8$ $q^4(5+q^2)/24$ $q^4(5+q^2)/24$ $q^4(5+q^2)/12$ $-q^4\phi_1\phi_2/24$ $q^4\phi_1\phi_2/24$ $q^4\phi_1\phi_2/24$ $q^4\phi_1\phi_2/24$ $q^4\phi_1\phi_2/24$ $q^4\phi_1\phi_2/24$ $q^4\phi_1\phi_2/24$ $q^4\phi_1\phi_2/24$ $q^3\phi_1/4$ $-q^3\phi_1/4$ $-q^3\phi_1/4$ $q^3\phi_1/4$ $-q^3\phi_1/4$ $q^3\phi_1/4$ $q^3\phi_1/$ | •   |                                                                                          | 0404/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9462/4                                              | 94 44/4                                             | 944/4                                                |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •   |                                                                                          | $a^4(1-2a)(1+2a)/12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94 (1+29)/4                                         | 94/4                                                | q <sup>4</sup> /4                                    |  |
| $q^{4}(5+q^{2})/24$ $q^{4}(5+q^{2})/24$ $-q^{4}\phi_{1}\phi_{2}/24$ $-q^{4}\phi_{1}\phi_{2}/12$ $-q^{4}\phi_{1}\phi_{2}/12$ $-q^{4}\phi_{1}\phi_{2}/12$ $-q^{4}\phi_{1}\phi_{2}/12$ $-q^{4}\phi_{1}\phi_{2}/12$ $-q^{4}\phi_{1}\phi_{2}/4$ $-q^{3}\phi_{1}/4$ $-q^{3}\phi_{1}/4$ $-q^{3}\phi_{1}/4$ $-q^{3}\phi_{1}/4$ $q^{3}(4+q)/8$ $q^{3}(4+q)/8$ $-q^{4}/8$ $-q^{4}/8$ $q^{3}(-4+q)/8$ $q^{3}(-4+q)/8$ $q^{4}/4$ $-q^{4}/8$ $q^{4}/4$ $-q^{4}/8$ $q^{4}/4$ $-q^{4}/8$ $q^{4}/4$ $-q^{4}/4$ $-q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                          | 04/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a4 (1 + 2 a)/4                                      | 04/4                                                | 94/4                                                 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90  |                                                                                          | 4 / 5 ± 23 / 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -04 4: 4: /4                                        | $-6^4 \phi_1 \phi_2/4$                              | $-q^4 \phi_1 \phi_2/4$                               |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~   |                                                                                          | 21 / h+c) h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 124 14 8                                          | 4.4.4                                               | 0461/4                                               |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •   |                                                                                          | $-q^{-}\phi_{1}\phi_{2}/12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.04/4                                              | * /**                                               | - /                                                  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6   |                                                                                          | $q^{4}\phi_{1}\phi_{2}/12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-q^{2}\phi_{1}\phi_{2}/4$                          | -9 61 62/4                                          | -4-41-42/4                                           |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0   |                                                                                          | $q^3/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     | 4.7.7                                               | 2/.6-                                                |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                          | $-q^{3}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     | $-q^{4}/2$                                          | 4/ړه                                                 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C   |                                                                                          | q <sup>3</sup> /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                     | •                                                    |  |
| $q^{3}(4+q)/8$ $q^{3}(4+q)/4$ $-q^{4}/8$ $q^{4}/4$ $q^{4}/4$ $q^{4}/8$ $q^{4}/4$ $q^{4}/8$ $q^{4}/4$ $q^{4}/8$ $q^{4}/4$ $q^{4}/8$ $q^{4}/4$ $q^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                                                                                          | $-q^{3}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                   | • .                                                 |                                                      |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4   |                                                                                          | $q^3(4+q)/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -44/4                                               | 94/4                                                | 9,7                                                  |  |
| $q^{3}(-4+q)/8 	 q^{3}(-4+q)/4 	 -q^{4}/4  -q^{4}/8 	 q^{4}/4 	 q^{4}/4  q^{4}/8 	 q^{4}/4 	 -q^{4}/4  -q^{3}/4 	 q^{3}/2  q^{3}/2  q^{2}/2 	 q^{3}/2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10  |                                                                                          | -94/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94/4                                                | -94/4                                               | 4/26-                                                |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ဖွ  |                                                                                          | $q^3(-4+q)/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -94/4                                               | 94/4                                                | 4/2                                                  |  |
| $q^4/8$ $q^4/4$ $-q^4/4$ $-q^3/4$ $q^3/4$ $q^3/4$ $q^3/2$ $q^3/2$ $q^3/2$ $q^3/2$ $q^3/2$ $q^3/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                          | $-q^{4}/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94/4                                                | -9*/4                                               | 4/56-                                                |  |
| $-\frac{q^3}{4}$ $\frac{q^3}{4}$ $\frac{q^2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . α |                                                                                          | 94/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -q <sup>4</sup> /4                                  | q*/4                                                | 94/4                                                 |  |
| $q^3/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -q <sup>3</sup> /2                                  |                                                     | •                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | q <sup>3</sup> /2                                   |                                                     |                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                                                     | •                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                   | •                                                   | •                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ຸຕ  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                   | •                                                   | •                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , , |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                                                     | •                                                    |  |

TABLE 6.A. The unipotent character table of G (p=2) (4/5)

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $q^{4}\phi_{3}^{2}\phi_{6}^{2}\phi_{8}\phi_{12}/8$ $q^{4}\phi_{3}^{2}\phi_{6}(1-q^{2}+q^{3}+2q^{4}-q^{3})/8$ $q^{4}\phi_{3}^{2}\phi_{6}(1-q^{2}+q^{3}+2q^{4}-q^{5})/8$ $q^{4}\phi_{3}^{2}(1-q^{2}+2q^{3}+2q^{4}-2q^{5}+2q^{5})/8$ $q^{4}\phi_{3}^{2}(1-q^{2}+2q^{3})/8$ $-q^{4}\phi_{3}^{2}\phi_{6}/8$ $q^{4}\phi_{3}^{2}\phi_{6}/8$ $q^{4}\phi_{3}(3-q)/8$ $q^{4}\phi_{3}(3-q)/8$ $q^{4}\phi_{3}(3+2q)/8$ $q^{4}\phi_{3}(3+2q)/8$ $q^{4}(1+2q)/8$ $q^{4}(1+2q)/8$ $q^{4}(1+2q)/8$ $q^{4}(1+2q)/8$                                                                                             | $q^4\phi_1\phi_2\phi_6\phi_{01/2}/8$ $q^4\phi_1\phi_3\phi_4\phi_6(-1+q-q^2-q^2)/8$ $q^4\phi_4\phi_6(1-q+q^2+q^4-q^5+3q^6)/8$ $q^4\phi_4(1-2q+3q^2-2q^3+2q^4-2q^4+2q^6)/8$ $q^4\phi_1\phi_4(-1+q-2q^3)/8$ $q^4\phi_1\phi_4(-1+q-2q^3)/8$ $q^4\phi_1\phi_4(-1+q-2q^3)/8$ $-q^4\phi_1\phi_6(1+3q^3)/8$ $-q^4\phi_1\phi_6(1+3q^3)/8$ $q^4\phi_1(3-2q+q^3)/8$ $q^4\phi_1(3-2q+q^3)/8$ $q^4\phi_1(3-2q+q^3)/8$ $q^4\phi_1(1-1+q-2q^2)/8$ $q^4\phi_1(1-1+q-2q^2)/8$ $q^4\phi_1(1-2q)/8$                                                                                                                                                                                                                                                                                                                | $q^{4} \phi_{3}^{2} \phi_{5} (1 + q^{2} + q^{2} - 2q^{4} - q^{3})/8$ $q^{4} \phi_{3}^{2} \phi_{5} (-1 + q^{2} + q^{2} - 2q^{4} - q^{3})/8$ $q^{4} \phi_{3}^{2} \phi_{5} (-1 + q^{2} + q^{3} - 2q^{4} - q^{3})/8$ $q^{4} \phi_{3}^{2} (1 - q^{2} - 2q^{3} + 2q^{4} + 2q^{5} + 2q^{5})/8$ $q^{4} \phi_{3}^{2} (1 - q^{2} - 2q^{3})/8$ $q^{4} \phi_{3}^{2} \phi_{5} \phi_{6} / 8$ $q^{4} \phi_{5}^{2} \phi_{5} \phi_{6} / 8$ $q^{4} \phi_{5}^{2} \phi_{5} (1 + 2q)/8$ $q^{4} (1 - 2q)/8$ $q^{4} (1 - 2q)/8$ $q^{4} (1 - 2q)/8$ $q^{4} (1 - 2q)/8$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $q^{4} \phi_{2}^{2} \phi_{6} (1 - q^{2} + q^{3} + 2q^{4} - q^{3})/8$ $q^{4} \phi_{2}^{2} \phi_{6} (1 - q^{2} + q^{3} + 2q^{4} - q^{5})/8$ $q^{5} \phi_{2}^{2} \phi_{6} (1 - q^{2} + 2q^{3} + 2q^{4} - 2q^{5} + 2q^{5})/8$ $q^{4} \phi_{2}^{2} (1 - q^{2} + 2q^{3} + 2q^{4} - 2q^{5} + 2q^{5})/8$ $q^{4} \phi_{2}^{2} (1 - q^{2} + 2q^{3})/8$ $-q^{4} \phi_{1} \phi_{2}^{2} \phi_{2}/8$ $-q^{4} \phi_{1} \phi_{2}^{2} \phi_{3}/8$ $q^{4} \phi_{2}^{2} (3 - q^{4} + 5q^{2})/8$ $-q^{4} \phi_{1} \phi_{2} (1 + 2q)/8$ $q^{4} \phi_{2} (3 - q)/8$ $q^{4} \phi_{2} (3 - q)/8$ $q^{4} \phi_{2} (3 - q)/8$ $q^{4} \phi_{3} (3 - q)/8$ $q^{4} \phi_{3} (3 - q)/8$ $q^{4} \phi_{3} (3 - q)/8$ $q^{4} \phi_{1} (3 - q)/8$ $q^{4} \phi_{2} (3 - q)/8$ $q^{4} \phi_{3} (3 - q)/8$ $q^{4} \phi_{1} (3 - q)/8$ $q^{4} (1 + 2q)/8$ $q^{4} (1 + 2q)/8$ $q^{4} (1 + 2q)/8$ $q^{4} (1 + 2q)/8$ | $q^{4}\phi_{1}\phi_{2}\phi_{4}\phi_{6}(-1+q-q^{2}-q^{3})/8$ $q^{4}\phi_{4}\phi_{6}(1-q+q^{2}+q^{4}-q^{5}+3q^{5})/8$ $q^{4}\phi_{4}(1-2q+3q^{2}-2q^{3}+2q^{4}-2q^{3}+2q^{6})/8$ $q^{4}\phi_{1}(-1+q-2q^{2})/8$ $q^{4}\phi_{1}\phi_{2}(-1+q-2q^{2})/8$ $q^{4}\phi_{1}\phi_{2}(-1+q-2q^{2})/8$ $q^{4}\phi_{1}\phi_{2}(-1+q-2q^{2})/8$ $q^{4}\phi_{2}\phi_{2}(-1+2q^{2})/8$ $q^{4}\phi_{1}(-1+q-2q^{2})/8$ $q^{4}(3-2q+3q^{2})/8$                                      | $q^{4}\phi_{3}^{3}\phi_{2}(-1+q^{2}+q^{2}-2q^{4}-q^{5})/8$ $q^{4}\phi_{3}^{3}\phi_{2}(-1+q^{2}+q^{2}-2q^{4}-q^{5})/8$ $q^{4}\phi_{3}^{2}(1-q^{2}-2q^{3}+2q^{4}+2q^{4}+2q^{5}-8q^{6})/8$ $q^{4}\phi_{3}^{2}(1-q^{2}-2q^{3})/8$ $-q^{4}\phi_{3}^{2}\phi_{2}/8$ $q^{4}\phi_{3}^{2}\phi_{2}\phi_{8}/8$ $q^{4}\phi_{3}^{2}\phi_{2}\phi_{8}/8$ $q^{4}\phi_{3}^{2}\phi_{2}\phi_{8}/8$ $q^{4}\phi_{3}^{2}\phi_{2}\phi_{8}/8$ $q^{4}\phi_{3}^{2}\phi_{2}\phi_{1}/8$ $q^{4}\phi_{3}^{2}\phi_{2}\phi_{1}/8$ $q^{4}\phi_{1}\phi_{2}(1+2q)/8$                                                                              |
| 4<br>9 <sup>4</sup> ¢ <sub>2</sub> (1 + 9 + 9<br>9 <sup>4</sup> ¢ <sub>2</sub> (1 + 29 + 39 <sup>2</sup> + 9<br>9 <sup>4</sup> ¢ <sub>2</sub> ¢ <sub>2</sub> (1 + 29 + 59<br>9 <sup>4</sup> ¢ <sub>2</sub> (3 + 9<br>9 <sup>4</sup> ¢ <sub>2</sub> (3 + 9)<br>9 <sup>4</sup> ¢ <sub>3</sub> (3 + 9)<br>9 <sup>4</sup> ¢ <sub>4</sub> (4 + 9)<br>9 <sup>4</sup> | $q^{4}\phi_{3}^{2}\phi_{6}(1-q^{2}+q^{3}+2q^{4}-q^{8})/8$ $q^{6}\phi_{3}^{2}\phi_{6}(1-q^{2}+2q^{3}+2q^{4}-2q^{5}+2q^{8})/8$ $q^{4}\phi_{2}^{2}(1-q^{2}+2q^{3}-2q^{5}+2q^{8})/8$ $-q^{4}\phi_{1}\phi_{2}^{2}\phi_{2}/8$ $-q^{4}\phi_{1}\phi_{2}^{2}\phi_{2}/8$ $q^{4}\phi_{2}^{2}\phi_{3}/8$ $q^{4}\phi_{2}^{2}\phi_{3}/8$ $q^{4}\phi_{2}^{2}(3-q^{4}+5q^{2})/8$ $q^{4}\phi_{2}^{2}(3-q^{4}+5q^{2})/8$ $-q^{4}\phi_{1}\phi_{2}(1+2q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}(1+2q)/8$ $q^{4}(1+2q)/8$                                                                                                                                                                                       | $q^{4}\phi_{4}\phi_{6}(1-q+q^{2}+q^{4}-q^{5}+3q^{6})/8$ $q^{4}\phi_{4}(1-2q+3q^{2}-2q^{3}+2q^{4}-2q^{5}+2q^{6})/8$ $q^{4}(1-2q+5q^{2}-q^{3}+2q^{4}+3q^{5})/8$ $q^{4}(1-2q+5q^{2}-q^{3}+2q^{4}+3q^{5})/8$ $-q^{4}\phi_{1}\phi_{2}(1+3q^{2})/8$ $q^{4}\phi_{1}(1-2q+3q^{2})/8$ $q^{4}\phi_{1}(2-2q+3q^{2})/8$ $q^{4}\phi_{1}(1+q-2q^{2})/8$ $q^{4}(1-2q)/8$ $q^{4}(1-2q)/8$ $q^{4}(1-2q)/8$ $q^{4}(1-2q)/8$ $q^{4}(1-2q)/8$                                                                                                                                                                                                                                     | $q^{4} \phi_{3}^{2} \phi_{5} (-1 + q^{2} + q^{3} - 2q^{4} - q^{5})/8$ $q^{4} \phi_{1}^{2} (1 - q^{2} - 2q^{3} + 2q^{4} + 2q^{5} + 2q^{5})/8$ $q^{4} \phi_{1}^{2} (1 - q^{2} - 2q^{3})/8$ $-q^{4} \phi_{1}^{2} \phi_{2}/8$ $q^{4} \phi_{1}^{2} \phi_{2} \phi_{6}/8$ $q^{4} \phi_{1}^{2} \phi_{2} \phi_{6}/8$ $q^{4} \phi_{1}^{2} \phi_{2} \phi_{6}/8$ $q^{4} \phi_{1}^{2} \phi_{2} \phi_{3}/8$ $q^{4} \phi_{1}^{2} \phi_{2} (3 + q)/8$ $q^{4} \phi_{1}^{2} \phi_{2} (-1 + 2q)/8$ $q^{4} \phi_{1} \phi_{2} (-1 + 2q)/8$ $-q^{4} \phi_{1} (3 + q)/8$ $q^{4} (1 - 2q)/8$ $q^{4} (1 - 2q)/8$ $q^{4} (3 - 2q)/8$                                                                                                                                                                                                                                                                                                                                    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $q^6$ )/8 $q^4 \phi_2^2 (1 - q^2 + 2q^3 + 2q^4 - 2q^5 + 2q^6)/8$<br>$q^4 \phi_2^2 (1 - q^2 + 2q^3)/8$<br>$-q^4 \phi_1 \phi_2^2 \phi_2/8$<br>$-q^4 \phi_1 \phi_2^2 \phi_3/8$<br>$-q^4 \phi_1 \phi_2^2 \phi_3/8$<br>$q^4 \phi_2^2 \phi_3/8$<br>$q^4 \phi_1 \phi_2^2 (-3 + q)/8$<br>$q^4 \phi_1 \phi_1 (1 + 2q)/8$<br>$-q^4 \phi_1 \phi_2 (1 + 2q)/8$<br>$q^4 \phi_2 (3 - q)/8$<br>$q^4 \phi_2 (3 - q)/8$                                                                                                                                                                                                                                                                                 | $q^{4}\phi_{4}\left(1-2q+3q^{2}-2q^{3}+2q^{4}-2q^{5}+2q^{6}\right)/8$ $q^{4}\left(1-2q+5q^{2}-q^{3}+2q^{4}+3q^{5}\right)/8$ $q^{4}\left(1-2q+5q^{2}-q^{3}+2q^{4}+3q^{5}\right)/8$ $-q^{4}\phi_{1}\phi_{6}\left(1+3q^{2}\right)/8$ $-q^{4}\phi_{2}\phi_{2}/8$ $q^{4}\phi_{1}\left(3-2q-3q^{2}\right)/8$ $q^{4}\phi_{1}\left(1-1+q-2q^{2}\right)/8$ $q^{4}\phi_{1}\left(1-1+q-2q^{2}\right)/8$ $q^{4}\phi_{1}\left(1-1+q-2q^{2}\right)/8$ $q^{4}\phi_{1}\left(1-1+q-2q^{2}\right)/8$ $q^{4}\phi_{1}\left(1-1+q-2q^{2}\right)/8$ $q^{4}\phi_{1}\left(1-1+q-2q^{2}\right)/8$ $q^{4}\phi_{1}\left(1-1+q-2q^{2}\right)/8$ $q^{4}\left(1-2q^{2}\right)/8$ | $q^{4}\phi_{1}^{2}(1-q^{2}-2q^{3}+2q^{4}+2q^{5})/8$ $q^{4}\phi_{1}^{2}(1-q^{2}-2q^{3})/8$ $-q^{4}\phi_{1}^{2}\phi_{2}/8$ $q^{4}\phi_{1}^{2}\phi_{2}/8$ $q^{4}\phi_{1}^{2}\phi_{2}/8$ $q^{4}\phi_{1}^{2}\phi_{2}/8$ $q^{4}\phi_{1}^{2}\phi_{2}/8$ $q^{4}\phi_{1}^{2}\phi_{2}/8$ $q^{4}\phi_{1}^{2}\phi_{2}/8$ $q^{4}\phi_{1}^{2}\phi_{2}/8$ $q^{4}\phi_{1}^{2}\phi_{2}/8$ $q^{4}\phi_{1}^{2}(1+2q)/8$ $q^{4}\phi_{1}\phi_{2}(1+2q)/8$ $q^{4}\phi_{1}\phi_{2}(1-2q)/8$ $q^{4}(1-2q)/8$ $q^{4}(1-2q)/8$ $q^{4}(3-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $q^4 \phi_2^2 (1-q^2+2q^3)/8$ $-q^4 \phi_1 \phi_2^2 \phi_2/8$ $-q^4 \phi_1 \phi_2^2 \phi_3/8$ $q^4 \phi_2^2 \phi_4/8$ $q^4 \phi_2^4 \phi_3^4 \phi_3/8$ $q^4 \phi_2^4 (3-4q+5q^2)/8$ $q^4 \phi_2^4 (3-4q+5q^2)/8$ $-q^4 \phi_1 \phi_2^4 (1+2q)/8$ $q^4 \phi_2 (3-q)/8$ $q^4 (1+2q)/8$ $q^4 (1+2q)/8$ $q^4 (1+2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $q^{4} \phi_{1} (-1 + q - 2q^{2})/8$ $q^{4} (1 - 2q + 5q^{2} - q^{3} + 2q^{4} + 3q^{5})/8$ $-q^{4} \phi_{1} \phi_{2} (1 + 3q^{2})/8$ $-q^{4} \phi_{2} \phi_{2} \phi_{3} / 8$ $q^{4} \phi_{3} \phi_{3} \phi_{4} / 8$ $q^{4} \phi_{4} (3 - 2q - 3q^{2})/8$ $q^{4} \phi_{4} (3 - 2q - 3q^{2})/8$ $q^{4} \phi_{4} (3 - 2q + q^{2})/8$ $q^{4} \phi_{1} (-1 + q - 2q^{2})/8$ $q^{4} \phi_{1} (-1 + q - 2q^{2})/8$ $q^{4} \phi_{1} (3 - 2q + q^{2})/8$ $q^{4} \phi_{1} (3 - 2q + q^{2})/8$ $q^{4} (1 - 2q)/8$                                                                                                                                                                                                                                                                                                                       | $q^{4} \phi_{1}^{2} (1 - q^{2} - 2q^{3})/8$ $-q^{4} \phi_{1}^{2} \phi_{2}/8$ $q^{4} \phi_{1}^{2} \phi_{2} \phi_{6}/8$ $-q^{4} \phi_{1}^{2} \phi_{2}/8$ $q^{4} \phi_{2}^{2} \phi_{2} \phi_{6}/8$ $q^{4} \phi_{2}^{2} (3 + q)/8$ $q^{4} \phi_{2}^{2} (3 + q + 5q^{2})/8$ $q^{4} \phi_{1} \phi_{2} (-1 + 2q)/8$ $q^{4} \phi_{1} \phi_{2} (-1 + 2q)/8$ $-q^{4} \phi_{1} (3 + q)/8$ $q^{4} (1 - q)/8$ $q^{4} (3 - 2q)/8$ $q^{4} (3 - 2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| + q <sup>4</sup> )/4<br>+ q <sup>4</sup> )/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $q^{4}(1-2q+5q^{2}-q^{3}+2q^{4}+3q^{5})/8$ $-q^{4}\phi_{1}\phi_{6}(1+3q^{2})/8$ $-q^{4}\phi_{2}\phi_{3}/8$ $q^{4}\phi_{3}(3-2q+3q^{2})/8$ $q^{4}\phi_{4}(3-2q+q^{2})/8$ $q^{4}\phi_{4}(3-2q+q^{2})/8$ $q^{4}\phi_{4}(3-2q+q^{2})/8$ $q^{4}\phi_{1}(3-2q+q^{2})/8$ $q^{4}\phi_{1}(3-2q+q^{2})/8$ $q^{4}\phi_{1}(3-2q+3)/8$ $q^{4}\phi_{1}(3-2q)/8$ $q^{4}(1-2q)/8$ $q^{4}(1-2q)/8$ $q^{4}(1-2q)/8$ $q^{4}(1-2q)/8$ $q^{4}(1-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} -q^4 \phi_1^2 \phi_2/8 \\ q^4 \phi_1^2 \phi_2/8 \\ q^4 \phi_1^2 \phi_2/8 \\ q^4 \phi_1^2 \phi_2 \phi_6/8 \\ q^4 \phi_2^2 \phi_2 \phi_6/8 \\ q^4 \phi_2^2 \phi_2 \phi_6/8 \\ q^4 \phi_2^2 \phi_2 \phi_2/8 \\ q^4 \phi_1 \phi_2 (-1 + 2 \phi)/8 \\ q^4 \phi_1 \phi_2 (-1 + 2 \phi)/8 \\ -q^4 \phi_1 (3 + \phi)/8 \\ q^4 (1 - 2 \phi)/8 \\ q^4 (1 - 2 \phi)/8 \\ q^4 (3 - 2 \phi)/8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| + q <sup>4</sup> )/4<br>+ q <sup>4</sup> )/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-g^{4} \phi_{1} \phi_{2} (1 + 3 q^{2})/8$ $-q^{4} \phi_{2}^{3} \phi_{3}/8$ $q^{4} \phi_{2}^{3} \phi_{2} \phi_{2}/8$ $q^{4} \phi_{1} (3 - 2q - 3q^{2})/8$ $q^{4} \phi_{1} (3 - 2q + q^{2})/8$ $q^{4} \phi_{1} (1 + q - 2q^{2})/8$ $q^{4} \phi_{1} (1 + q - 2q^{2})/8$ $q^{4} \phi_{1} (3 - 2q + 3q^{2})/8$ $q^{4} \phi_{1} (3 - 2q + 3q^{2})/8$ $q^{4} (1 - 2q)/8$ $q^{4} (1 - 2q)/8$ $q^{4} (1 - 2q)/8$ $q^{4} (2 - 2q)/8$ $q^{4} (3 + q^{2})/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $q^{4}\phi_{1}^{2}\phi_{2}\phi_{6}(8)$ $-q^{4}\phi_{1}^{2}\phi_{2}\phi_{6}(8)$ $-q^{4}\phi_{1}^{2}\phi_{2}\phi_{6}(8)$ $q^{4}\phi_{1}^{2}\phi_{2}\phi_{6}(8)$ $q^{4}\phi_{1}^{2}\phi_{2}(3+q)/8$ $q^{4}\phi_{1}^{2}\phi_{2}(1+2q)/8$ $q^{4}\phi_{1}\phi_{2}(-1+2q)/8$ $-q^{4}\phi_{1}(3+q)/8$ $q^{4}(1-2q)/8$ $q^{4}(1-2q)/8$ $q^{4}(3-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-q^4\phi_2^2\phi_3/8$ $-q^4\phi_2^2\phi_2/8$ $q^4\phi_4(3-2q-3q^2)/8$ $q^4\phi_4(3-2q+q^2)/8$ $q^4\phi_4(1-q-2q^2)/8$ $q^4\phi_1(-1+q-2q^2)/8$ $q^4(3-q^2)/8$ $q^4(3-q^2)/8$ $q^4(1-2q)/8$ $q^4(1-2q)/8$ $q^4(1-2q)/8$ $q^4(1-2q)/8$ $q^4(1-2q)/8$ $q^4(1-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-q^4 \phi_1^2 \phi_2 \theta_3$ $-q^4 \phi_1^2 \phi_2 \theta_3 \theta_4$ $q^4 \phi_1^2 \phi_2 \phi_3 \theta_4$ $q^4 \phi_1^2 \phi_2 (3 + q_1) \theta$ $q^4 \phi_2 (3 + q_1) \theta$ $q^4 \phi_2 (1 + 2 q_1) \theta$ $q^4 \phi_2 (1 + 2 q_1) \theta$ $q^4 \phi_3 (3 + q_1) \theta$ $q^4 (3 + q_1) \theta$ $q^4 (3 - 2 q_1) \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20 (S) 24 (P) 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $q^{4}\phi_{3}^{2}\phi_{6}/8$<br>$q^{4}\phi_{4}\dot{\phi}_{2}^{2}(-3+q)/8$<br>$q^{4}\phi_{2}^{2}(3-4q+5q^{2})/8$<br>$-q^{4}\phi_{1}\phi_{2}(1+2q)/8$<br>$-q^{4}\phi_{1}\phi_{2}(1+2q)/8$<br>$q^{4}\phi_{2}(3-q)/8$<br>$q^{4}\phi_{2}(3-q)/8$<br>$q^{4}\phi_{2}(3-q)/8$<br>$q^{4}(1+2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $q^{4}\phi_{1}^{2}\phi_{2}\phi_{6} 8$<br>$q^{4}\phi_{4}(3-2q-3q^{2})/8$<br>$q^{4}\phi_{4}(3-2q+q^{2})/8$<br>$q^{4}\phi_{1}(-1+q-2q^{2})/8$<br>$q^{4}\phi_{1}(-1+q-2q)/8$<br>$q^{4}(3-2q+3q^{2})/8$<br>$q^{4}(3-2q+3q^{2})/8$<br>$q^{4}(3-2q)/8$<br>$q^{4}(3-2q)/8$<br>$q^{4}(3-2q)/8$<br>$q^{4}(3-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $q^4\phi_3^2\phi_2\phi_6/8$<br>$q^4\phi_3^2\phi_2(3+q)/8$<br>$q^4\phi_2^2(3+4q+5q^2)/8$<br>$q^4\phi_1\phi_2(-1+2q)/8$<br>$q^4\phi_1\phi_2(-1+2q)/8$<br>$-q^4\phi_1(3+q)/8$<br>$-q^4\phi_1(3+q)/8$<br>$q^4(3-2q)/8$<br>$q^4(3-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8) 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $q^4\phi_1\phi_2^2(-3+q)/8$<br>$q^4\phi_2^2(3-4q+5q^2)/8$<br>$-q^4\phi_1\phi_2(1+2q)/8$<br>$-q^4\phi_1(3-q)/8$<br>$q^4\phi_2(3-q)/8$<br>$q^4\phi_2(3-q)/8$<br>$q^4\phi_2(3-q)/8$<br>$q^4\phi_2(3-q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $q^4\phi_4 (3-2q-3q^2)/8$<br>$q^4\phi_4 (3-2q+q^2)/8$<br>$q^4\phi_1 (-1+q-2q^2)/8$<br>$q^4\phi_1\phi_2 (-1+2q)/8$<br>$q^4 (3-2q+3q^2)/8$<br>$-q^4\phi_1 (3+q)/8$<br>$q^4 (1-2q)/8$<br>$q^4 (3-2q)/8$<br>$q^4 (3-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $q^4\phi^2\phi_1(3+g)/8$<br>$q^4\phi^2(3+4g+5q^2)/8$<br>$g^4\phi_1\phi_2(-1+2g)/8$<br>$g^4\phi_1\phi_2(-1+2g)/8$<br>$-g^4\phi_1(3+g)/8$<br>$-g^4\phi_1(3+g)/8$<br>$g^4(1-2g)/8$<br>$g^4(1-2g)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E) 24 20 1 20 1 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $q^4\phi_2^2 (3-4q+5q^2)/8$<br>$-q^4\phi_1 \phi_2 (1+2q)/8$<br>$-q^4\phi_1 \phi_2 (1+2q)/8$<br>$q^4\phi_2 (3-q)/8$<br>$q^4\phi_2 (3-q)/8$<br>$q^4\phi_1 (3-q)/8$<br>$q^4\phi_1 (1+2q)/8$<br>$q^4(1+2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $q^4\phi_4 (3-2q+q^2)/8$<br>$q^4\phi_1 (-1+q-2q^2)/8$<br>$q^4\phi_1\phi_2 (-1+2q)/8$<br>$q^4 (3-2q+3q^2)/8$<br>$-q^4\phi_1 (3+q)/8$<br>$q^4 (1-2q)/8$<br>$q^4 (3-2q)/8$<br>$q^4 (5+q^2)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $q^4\phi_1^2\left(3+4q+5q^2\right)/8$<br>$g^4\phi_1^2\left(3+4q+5q^2\right)/8$<br>$g^4\phi_1\phi_2\left(-1+2q\right)/8$<br>$-g^4\phi_1\left(3+q\right)/8$<br>$-q^4\phi_1\left(3+q\right)/8$<br>$q^4\left(1-2q\right)/8$<br>$q^4\left(3-2q\right)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1) c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-q^{4} \phi_{1} \phi_{2} (1+2q)/8$ $-q^{4} \phi_{1} \phi_{2} (1+2q)/8$ $q^{4} \phi_{2} (3-q)/8$ $q^{4} \phi_{2} (3-q)/8$ $q^{4} (1+2q)/8$ $q^{4} (1+2q)/8$ $q^{4} (3+2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $q^4\phi_1 (-1+q-2q^2)/8$<br>$q^4\phi_1\phi_2 (-1+2q)/8$<br>$q^4(3-2q+3q^2)/8$<br>$-q^4\phi_1(3+q)/8$<br>$q^4(1-2q)/8$<br>$q^4(3-2q)/8$<br>$q^4(5+q^2)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $q^{4} + q_{2} (-1 + 2q)/8$<br>$q^{4} + q_{2} (-1 + 2q)/8$<br>$-q^{4} + (3 + q)/8$<br>$-q^{4} + (3 + q)/8$<br>$q^{4} (1 - 2q)/8$<br>$q^{4} (3 - 2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-q^{4}\phi_{1}\phi_{2}(1+2q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}\phi_{2}(3-q)/8$ $q^{4}(1+2q)/8$ $q^{4}(1+2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $q^4 \phi_1 \phi_2 (-1 + 2q)/8$<br>$q^4 (3 - 2q + 3q^2)/8$<br>$-q^4 \phi_1 (3 + q)/8$<br>$q^4 (1 - 2q)/8$<br>$q^4 (3 - 2q)/8$<br>$q^4 (5 + q^2)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $q^{4} \phi_{4} \phi_{2} (-1 + 2 q)/8$<br>$-q^{4} \phi_{1} (3 + q)/8$<br>$-q^{4} \phi_{1} (3 + q)/8$<br>$q^{4} (1 - 2 q)/8$<br>$q^{4} (3 - 2 q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $q^{4}\phi_{2}(3-q)/8$<br>$q^{4}\phi_{2}(3-q)/8$<br>$q^{4}(1+2q)/8$<br>$q^{4}(3+2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $q^4 (3 - 2q + 3q^2)/8$<br>$-q^4 \phi_1 (3 + q)/8$<br>$q^4 (1 - 2q)/8$<br>$q^4 (3 - 2q)/8$<br>$q^4 (3 - 2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-q^{4}\phi_{1}(3+q)/8$ $-q^{4}\phi_{1}(3+q)/8$ $q^{4}(1-2q)/8$ $q^{4}(3-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $q^4 \phi_2 (3 - q)/8$<br>$q^4 (1 + 2q)/8$<br>$q^4 (3 + 2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-q^{4}\phi_{1}(3+q)/8$ $q^{4}(1-2q)/8$ $q^{4}(3-2q)/8$ $q^{4}(5+q^{2})/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-q^{4}\phi_{1}(3+q)/8$ $q^{4}(1-2q)/8$ $q^{4}(3-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $q^4(1+2q)/8$<br>$q^4(3+2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $q^4 (1-2q)/8$<br>$q^4 (3-2q)/8$<br>$q^4 (5+q^2)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $q^4 (1-2q)/8$<br>$q^4 (3-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>T</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $q^4(3+2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $q^4 (3-2q)/8$<br>$q^4 (5+q^2)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $q^4(3-2q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $q^4 (5 + q^2)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $q^{*}(5+q^{2})/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $q^4(5+q^2)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-q^4 \phi_1 \phi_2/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-q^{4}\phi_{1}\phi_{2}/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-q^{4}\phi_{1}\phi_{2}/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $-q^3 \phi_2/4$ $q^3 \phi_2/4$ $q^3 \phi_2/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 940102/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94 41 42/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 944142/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| q3 \phi_2/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-q^{3}\phi_{2}/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $q^{3} \phi_{1}/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $q^3\phi_1/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| V/ '4' E'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93 42/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-q^{3}\phi_{1}/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-q^3 \phi_1/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E/1A 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -93 42/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-q^{3}\phi_{2}/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $q^3\phi_1/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -03 41/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93 42/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $q^{3} \phi_{2} / 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-q^3 \phi_1/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $-q^4/4$ $-q^3(4+q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $q^3(-4+3q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-q^3(4+q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $q^3(-4+3q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -394/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8/*p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -34/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $-q^4/4$ $q^3(4-q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $q^3(4+3q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $q^3(4-q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $q^3(4+3q)/8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -394/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8/\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3 94/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -94/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34*/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8/*p-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 9 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $q^{3}/2$ $q^{3}/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -93/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -q <sup>3</sup> /4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $-q^3/2$ $-q^3/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -43/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | q <sup>3</sup> /4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $-q^{2}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $q^{2}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $q^2/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-q^{2}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| q <sup>2</sup> /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-q^2/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-q^2/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $q^{2}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Table 6.A. The unipotent character table of G(p=2)(5/5)

|     | B <sub>2</sub> [r]           | [61]                             | $F_4[\theta], F_4[\theta^2]$ | [43]                                               | $B_2[\epsilon']$                             | $F_4[i]$                        | $F_4[-i]$                       |
|-----|------------------------------|----------------------------------|------------------------------|----------------------------------------------------|----------------------------------------------|---------------------------------|---------------------------------|
| H 0 | 94 42 42 43 46 48/4          | 94 43 48 48 412/3                | 9 4 4 4 4 4 4 4 48/3         | 94 42 44 48 48 412/4                               | 94 42 43 44 48 412/4                         | 94 41 42 43 46/4                | 94 41 42 43 46/4                |
| ñ   | -94 41 42 43 46 48/4         | $q^4 \phi_3 \phi_6 (1 + 2q^4)/3$ | -94 43 43 44/3               | $q^4 \phi_2 \phi_6 (1 + q^3 + q^4 - q^7)/4$        | $q^4 \phi_1 \phi_3 (-1 + q^3 - q^4 - q^7)/4$ | -q4 43 43 43 46/4               | -q4 43 43 43 46/4               |
| 22  | -04 01 02 03 06 08/4         | $q^4 \phi_3 \phi_6 (1 + 2q^4)/3$ | -94 63 63 64/3               | $q^4 \phi_2 \phi_6 (1 + q^3 + q^4 + 2q^6 + q^7)/4$ |                                              | -94 43 43 45 46/4               | -q4 43 43 43 46/4               |
| 133 | $q^4(1+q^4+2q^8)/4$          |                                  | -94 63 63 64/3               | $q^4(1+2q^3+q^4+2q^6)/4$                           | $q^4 (1 - 2q^3 + q^4 + 2q^6)/4$              | 94 42 42/4                      | 94 42 42/4                      |
| H   | -04 \$1 \$2 \$4/4            | $q^4(1+q^2+4q^4)/3$              | 94 42 42/3                   | $q^4 \phi_2 (1 - q + q^2 + q^3)/4$                 | $q^4 \phi_1 (-1 - q - q^2 + q^3)/4$          | 94 42 42/4                      | 94 42 42/4                      |
| 25  | -94 \$1 \$3 \$4/4            |                                  | 94 42 42/3                   | $q^4 (1 + q^2 + 3q^3 + 4q^4 - q^5)/4$              | -94 41 43 44/4                               | 94 42 42 43/4                   | 94 42 42 43/4                   |
| T.6 | 94 42 44 46/4                | 94 43 46/3                       | 94 42 42/3                   | 9442446/4                                          | $q^4(1+q^2-3q^3+4q^4+q^5)/4$                 | $-q^4 \phi_1 \phi_2^2 \phi_6/4$ | -94 \$1 \$2 \$6/4               |
| £7  | -q4 \$1 \$3 \$4/4            | 94 43 46/3                       | 94 42 42/3                   | 94 42 42 43/4                                      | 94 42 42 43/4                                | q4 42 42 43/4                   | 94 43 42 43/4                   |
| Z8  | 0 42 4. 46/4                 | 94 43 46/3                       | 94 42 42/3                   | $-q^4\phi_1\phi_2^2\phi_6/4$                       | $-q^4 \phi_1 \phi_2^2 \phi_6/4$              | $-q^4\phi_1\phi_2^2\phi_6/4$    | $-q^4 \phi_1 \phi_2^2 \phi_6/4$ |
| 2,0 | 94 (3+94)/4                  |                                  |                              | $q^4 (1 - 2q^3 - q^4)/4$                           | $q^4 (1 + 2q^3 - q^4)/4$                     | 94 42 42/4                      | 94 42 42/4                      |
| 210 | 94 (3 - 492 - 394)/4         | ٠                                |                              | $q^4 (1 + 2 q^3 - q^4)/4$                          | $q^4 (1 - 2q^3 - q^4)/4$                     | 94 43 43/4                      | 94 42 42/4                      |
| 211 | $-q^{4}\phi_{1}\phi_{2}/4$   | $q^4 (1 + 2 q^2)/3$              | $-q^4 \phi_1 \phi_2/3$       | $q^4 \phi_2 (1 - q + 2 q^2)/4$                     | $-q^4 \phi_1 (1 + q + 2q^2)/4$               | $-q^{4}\phi_{1}\phi_{2}/4$      | $-q^4\phi_1\phi_2/4$            |
| x12 | $-q^{4} \phi_{1} \phi_{2}/4$ | $q^4 (1 + 2q^2)/3$               | $-q^4 \phi_1 \phi_2/3$       | $-q^{4}\phi_{1}\phi_{2}/4$                         | $-q^4\phi_1\phi_2/4$                         | $-q^{4} \phi_{1} \phi_{2}/4$    | $-q^4\phi_1\phi_2/4$            |
| £13 | $q^4(3-q^2)/4$               |                                  |                              | 94 44/4                                            | 94 44/4                                      | $-q^{4}\phi_{1}\phi_{2}/4$      | $-q^4 \phi_1 \phi_2/4$          |
| £14 | $q^4(3-q^2)/4$               | •                                |                              | $-q^4\phi_1\phi_2/4$                               | $-q^4\phi_1\phi_2/4$                         | $-q^4 \phi_1 \phi_2/4$          | $-q^4\phi_1\phi_2/4$            |
| £15 | 94/4                         | $q^4 (1 + 2 q^2)/3$              | $-q^4 \phi_1 \phi_2/3$       | 94/4                                               | 94/4                                         | 94/4                            | 94/4                            |
| £16 | 3 94/4                       | ٠                                |                              | 94/4                                               | q <sup>4</sup> /4                            | 94/4                            | 94/4                            |
| x17 | $q^4(5+q^2)/4$               | 94 41 42/3                       | 9441 42/3                    | $-q^4\phi_1\phi_2/4$                               | $-q^4\phi_1\phi_2/4$                         | $-q^{4}\phi_{1}\phi_{2}/4$      | -q4 41 42/4                     |
| 218 | $-q^4 \phi_1 \phi_2/4$       | $-q^{4}\phi_{1}\phi_{2}/3$       | $-q^4 \phi_1 \phi_2/3$       | 94 44/4                                            | 94 44/4                                      | 94 44/4                         | 944/4                           |
| £19 | $q^4 \phi_1 \phi_2/4$        | $q^4(2+q^2)/3$                   | $q^4(2+q^2)/3$               | $-q^4 \phi_1 \phi_2/4$                             | $-q^4\phi_1\phi_2/4$                         | $-q^4\phi_1\phi_2/4$            | -q4 \phi_1 \phi_2/4             |
| 230 | q <sup>3</sup> /2            | ٠                                |                              |                                                    |                                              |                                 |                                 |
| x21 | -93/2                        | ٠                                |                              |                                                    |                                              | •                               | •                               |
| £22 | q <sup>3</sup> /2            | •                                |                              | -94/2                                              | 94/2                                         |                                 |                                 |
| £23 | -43/2                        | •                                |                              | 94/2                                               | $-q^{4}/2$                                   | •                               |                                 |
| £24 | $q^3(4-q)/4$                 | •                                | •                            | 94/4                                               | 94/4                                         | -94/4                           | -94/4                           |
| £25 | 94/4                         | •                                | •                            | -94/4                                              | -94/4                                        | 94/4                            | 94/4                            |
| £26 | $-q^3(4+q)/4$                | •                                | •                            | 94/4                                               | 94/4                                         | -94/4                           | -94/4                           |
| £27 | 94/4                         | •                                |                              | -94/4                                              | -94/4                                        | 94/4                            | 94/4                            |
| £28 | -94/4                        | ٠                                | •                            | 94/4                                               | 94/4                                         | -94/4                           | -4/4                            |
| £29 |                              | ٠                                | •                            |                                                    |                                              | •                               |                                 |
| £30 |                              | •                                |                              |                                                    | •                                            |                                 | •                               |
| £31 | •                            | •                                | •                            | •                                                  | •                                            | . '                             | . •                             |
| £32 |                              | •                                |                              |                                                    | •                                            | i q²                            | -i q <sup>2</sup>               |
| £33 | •                            | •                                |                              |                                                    | •                                            |                                 | . :                             |
| £34 |                              | •                                | ·                            | •                                                  |                                              | -i q²                           | iq²                             |

Table 6.B. The unipotent character table of  $G\ (p=3)\ (1/5)$ 

| _                  |                              |                              |                                  |                                  |                             |                              |                      |                     |                        |                        |                    |                |                               |                |                    |                 |                |                       |                    |              |              |                |                |     |     |     |     |     |
|--------------------|------------------------------|------------------------------|----------------------------------|----------------------------------|-----------------------------|------------------------------|----------------------|---------------------|------------------------|------------------------|--------------------|----------------|-------------------------------|----------------|--------------------|-----------------|----------------|-----------------------|--------------------|--------------|--------------|----------------|----------------|-----|-----|-----|-----|-----|
| B <sub>2</sub> [1] | $q\phi_1^2\phi_3^2\phi_8/2$  | $q\phi_1\phi_3$              |                                  | $q(1-2q^3+2q^4+q^6)/2$           | $ q\phi_1(-1-q-q^2+q^3)/2 $ | $-q\phi_1\phi_3/2$           | $q(1-q^3+2q^4)/2$    | 94243/2             | $-q\phi_{1}\phi_{3}/2$ | $-q\phi_{1}\phi_{4}/2$ | $q(1+q+q^2-q^3)/2$ | $-q\phi_1/2$   | $q\phi_1^2/2$                 | q 44/2         | $q\phi_1(-1+2q)/2$ | $q(1+q+2q^2)/2$ | $-q\phi_1/2$   | 942/2                 | $-q\phi_1\phi_2/2$ | $-q\phi_1/2$ | $-q\phi_1/2$ | $-q\phi_1/2$   | 942/2          |     | . 0 |     | •   | •   |
| [21]               | · 94448412/2                 | $q(1+q^4+q^6+q^7)/2$         | 904012/2                         | $q(1+2q^4+q^6)/2$                | 948/2                       | $q(1+q^3+2q^4)/2$            | 94246/2              | $9\phi_1^2\phi_3/2$ | 94246/2                | $q(1-q+q^2+q^3)/2$     | 94241/2            | $-q\phi_1/2$   | $q\phi_1^2/2$                 | 944/2          | $q\phi_1(-1+2q)/2$ | $q(1+q+2q^2)/2$ | $-q\phi_1/2$   | 942/2                 | $-q\phi_1\phi_2/2$ | $q\phi_2/2$  | $-q\phi_1/2$ | $q\phi_2/2$    | $-q\phi_1/2$   |     | 6   |     |     | . • |
| [23]               | 94448412/2                   | $q(1+q^4+q^6-q^7)/2$         | $q(1+2q^4+q^6)/2$                | 944412/2                         | 948/2                       | $-q\phi_1\phi_3/2$           | $q(1-q^3+2q^4)/2$    | 9424e/2             | $-q\phi_1\phi_3/2$     | $q(1+q+q^2-q^3)/2$     | $-q\phi_1\phi_4/2$ | 942/2          | 942/2                         | 944/2          | $q\phi_2(1+2q)/2$  | $q(1-q+2q^2)/2$ | $q\phi_2/2$    | $-q\phi_1/2$          | $-q\phi_1\phi_2/2$ | $-q\phi_1/2$ | $q\phi_2/2$  | $-q\phi_{1}/2$ | 942/2          | •   |     | •   |     |     |
| [42]               | $q\phi_2^2\phi_6^2\phi_8/2$  | $q\phi_2\phi_6(1+q^3+q^4)/2$ | $q(1+2q^3+2q^4+q^6)/2$           | q4242/2                          | $q\phi_2(1-q+q^2+q^3)/2$    | $q(1+q^3+2q^4)/2$            | 94246/2              | $q\phi_2^2\phi_6/2$ | 94246/2                | 94244/2                | $q(1-q+q^2+q^3)/2$ | 942/2          | $q \phi_2^2 / 2$              | 944/2          | $q\phi_2(1+2q)/2$  | $q(1-q+2q^2)/2$ | 942/2          | $-q\phi_1/2$          | $-q\phi_1\phi_2/2$ | 942/2        | 942/2        | 942/2          | $-q\phi_{1}/2$ | 5   | •   |     |     | •   |
| [84]               | q9 44 48 412                 | 9 44 48                      | q 9 64                           | q <sup>9</sup> <b>6</b> 4        | ф                           | 6,6                          | 49                   |                     |                        |                        |                    |                |                               |                |                    |                 |                |                       |                    |              |              |                |                |     | •   |     |     |     |
| [83]               | 93 44 48 412                 | 93 44 ds                     | $q^3 \phi_4 (1 + q^3 + q^4)$     | $q^3 \phi_4 (1 - q^3 + q^4)$     | 93 43 4c                    | g <sub>3</sub>               | q3                   | $q^3(2+q^2+q^4)$    | g.                     | 243                    | •                  | 243            | 393                           | е,             | 4 q3               |                 | 2 93           |                       | 8.6                | •            | е,           | •              |                |     |     |     | •   | •   |
| [82]               | 9 42 48 412                  | 9.00 P                       | $q^9 \phi_2 \phi_4$              | -43 41 44                        | 6.b                         |                              |                      | 6.6                 | •                      |                        | •                  | ٠.             |                               | •              |                    |                 |                | •                     |                    | •            |              | •              |                |     | •   |     |     | •   |
| [81]               | $q^3\phi_4^2\phi_8\phi_{12}$ | $q^3 \phi_4 (1 + q^4 + q^6)$ | 93 44 48                         | 9 44 48                          | 934346                      | $q^3(1+q^2+q^3+q^4)$         | $q^3(1+q^2-q^3+q^4)$ | 6.8                 | q3 44                  | 994                    | 94                 | e <sub>b</sub> | es.                           | e <sub>3</sub> | g <sub>9</sub>     | 8.6             | 8.6            | 93                    | q3                 | 6.5          | •            |                | •              | •   | •   | •   | •   | •   |
| [64]               | 910 43 46 412                | 910 43 4c                    | q 10 ф3                          | q10 фe                           | <b>q</b> 10                 | •                            |                      | •                   |                        |                        |                    | •              |                               |                |                    | •               | •              | •                     | :                  | •            |              |                |                |     | •   |     |     |     |
|                    | q2 43 46 412                 | q² φ3 φε φε                  | $q^2 \phi_3 (1 - q + q^2 + q^4)$ | $q^2 \phi_6 (1 + q + q^2 + q^4)$ | $q^2(1+q^2+2q^4)$           | q <sup>2</sup> \phi_3 \phi_6 | 924346               | 92 43 46            | q <sup>2</sup> \phi_4  | $q^2(1+2q^2)$          | 92                 | q2 44          | q <sup>2</sup> φ <sub>4</sub> | $q^2 \phi_4$   | g <sup>2</sup>     | q <sup>2</sup>  | q <sup>2</sup> | <i>d</i> <sub>2</sub> | 42                 | 42           | 42           | 43             | 42             | •   | •   | •   |     |     |
| Ξ                  | 42                           |                              |                                  | ·                                |                             |                              |                      | •                   |                        | •                      |                    |                |                               | -              |                    |                 |                |                       | •                  |              |              |                |                |     |     |     |     |     |
| Ξ                  | _                            | _                            | -                                | _                                | _                           | _                            | _                    | -                   | _                      | _                      | _                  | -              | -                             | -              | _                  | _               | _              | -                     | _                  | _            | -            | _              | _              | _   | _   | -   | _   | -   |
| $\perp$            | ដ                            | ž,                           | £2                               | ដ                                | 7                           | ñ                            | Z.                   | £7                  | £,                     | 6                      | £10                | 2,11           | £12                           | £13            | 2.                 | £ 15            | £16            | £17                   | z 18               | £13          | £20          | £21            | £22            | £23 | £24 | £25 | 226 | £27 |

Table 6.B. The unipotent character table of  $G\ (p=3)\ (2/5)$ 

|      | [48]           | [54]            | [23]                           | $B_2[\epsilon]$                   | [12 <sub>1</sub> ]                                    | [93]                                                                                    | [13]                                                     |
|------|----------------|-----------------|--------------------------------|-----------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|
| £0   | q13 42 42 48/2 | 913 44 48 412/2 | 913 44 48 412/2 913 42 43 48/2 | q13 42 43 48/2                    | 94 42 43 48 412/24                                    | 94 43 42 48 412/8                                                                       | 9 4 4 4 6 4 4 12/8                                       |
| ij   |                |                 |                                | $\phi_3/2 - q^{13}\phi_1\phi_3/2$ | $q^4 \phi_2^3 \phi_3 (1 + 2q + q^2 - q^3 + 3q^5)/24$  | $q^4 \phi_2 \phi_3 \phi_4 \phi_6 (1 + q + q^2 - q^3)/8$                                 | $q^4 \phi_1 \phi_3 \phi_4 \phi_6 (-1 + q - q^2 - q^3)/8$ |
| #2   | 913            | •               | 913                            |                                   | $q^4 \phi_2^3 \phi_3 \phi_4 (1 + 2q)/24$              | $q^4 \phi_2^2 \phi_3 \phi_4 (1 - q + 2 q^2)/8$                                          | $ q^4\phi_4(1-2q+3q^2+q^3-2q^4+q^5+2q^6)/8$              |
| £3.  |                | 913             | ٠                              | 913                               | $q^4 \phi_2^3 (1 + 3q + 4q^2 - q^3 - 3q^4 + 2q^5)/24$ | $q^4\phi_2^3(1+3q+4q^2-q^3-3q^4+2q^5)/24 \mid q^4\phi_4(1+2q+3q^2-q^3-2q^4-q^5+2q^9)/8$ | $q^4 \phi_1^2 \phi_4 \phi_6 (1 + q + 2q^2)/8$            |
| ŭ    |                | •               |                                |                                   | $q^4 \phi_2^2 (1 + 2q) (1 + 2q + 3q^2)/24$            | $q^4 \phi_2 \phi_4 (1 + q + 2q^2)/8$                                                    | $q^4 \phi_1 \phi_4 (-1 + q - 2q^2)/8$                    |
| 1,5  |                | •               |                                |                                   | $q^4 \phi_2^2 \phi_3 (1 + 3 q)/24$                    | -94 42 42 43/8                                                                          | -q4 43 43/8                                              |
| 1,0  | •              |                 |                                |                                   | $q^4 \phi_2^2 (1 + 4q + 4q^2 - 3q^3)/24$              | 94946/8                                                                                 | 94474246/8                                               |
| £7   |                | •               | •                              | •                                 | 944243/6                                              | q4 43 44/2                                                                              | 94 44 46/2                                               |
| #    |                |                 |                                | •                                 | $q^4 \phi_2 (1 + 2q) (1 + 3q)/24$                     | $-q^4 \phi_1 \phi_2 (1+2q)/8$                                                           | $q^4 \phi_1 \phi_2 (-1 + 2q)/8$                          |
| £3   |                | •               | •                              | •                                 | 94 43/4                                               | $q^4 \phi_2 (3-q)/4$                                                                    | $-q^4\phi_1(3+q)/4$                                      |
| £10  |                |                 | •                              |                                   |                                                       |                                                                                         |                                                          |
| +    | •              | •               |                                |                                   | $q^4 \phi_2 (1 + 2q)/6$                               | 94 42/2                                                                                 | $-q^{4}\phi_{1}/2$                                       |
| 212  | ٠              | ٠               |                                |                                   | q* 42/2                                               | $q^4(3+q)/2$                                                                            | $q^4(3-q)/2$                                             |
| 213  |                | •               |                                |                                   |                                                       |                                                                                         |                                                          |
| 4    |                |                 |                                |                                   | $q^4(23+q^2)/24$                                      | $q^4(23+q^2)/8$                                                                         | $q^4(23+q^2)/8$                                          |
| 2,15 |                |                 |                                |                                   | $q^{4} \phi_{1} \phi_{2}/24$                          | 94 41 42/8                                                                              | 944142/8                                                 |
| 2    |                |                 |                                |                                   | $-q^{4} \phi_{1} \phi_{2}/24$                         | $-q^4 \phi_1 \phi_2/8$                                                                  | $-q^4\phi_1\phi_2/8$                                     |
| £17  |                |                 |                                |                                   | $-q^4\phi_1\phi_2/24$                                 | $-q^4\phi_1\phi_2/8$                                                                    | $-q^{4}\phi_{1}\phi_{2}/8$                               |
| £18  | •              | •               |                                |                                   | 94 41 42/24                                           | 94 41 42/8                                                                              | 94 41 42/8                                               |
| £19  |                |                 |                                |                                   |                                                       | •                                                                                       | ٠                                                        |
| £20  | •              |                 |                                |                                   |                                                       |                                                                                         |                                                          |
| £21  |                |                 |                                |                                   |                                                       | ٠                                                                                       | ·                                                        |
| £22  |                | •               | •                              |                                   |                                                       |                                                                                         | •                                                        |
| £23  |                |                 |                                |                                   | •                                                     | •                                                                                       | •                                                        |
| £24  |                |                 |                                |                                   | •                                                     |                                                                                         |                                                          |
| £28  |                |                 | •                              | •                                 | 2q²/3                                                 |                                                                                         |                                                          |
| £ 26 | •              |                 |                                |                                   | $-q^{2}/3$                                            |                                                                                         |                                                          |
|      | •              |                 |                                |                                   | -92/3                                                 | •                                                                                       |                                                          |

Table 6.B. The unipotent character table of G(p=3)(3/5)

| L            | F <sup>1</sup> [1]                                     | [62]                                            | [161]                               | $B_2[\epsilon'']$                                 | [4]                                               |
|--------------|--------------------------------------------------------|-------------------------------------------------|-------------------------------------|---------------------------------------------------|---------------------------------------------------|
| ů            | $q^4 \phi_1^4 \phi_2^6 \phi_8 \phi_{12}/24$            | $q^4 \phi_3^2 \phi_4^2 \phi_6^2 \phi_8/12$      | 94 42 42 42 42/4                    | $q^4 \phi_1^2 \phi_3^2 \phi_4 \phi_8 \phi_{12}/4$ | $q^4 \phi_2^2 \phi_4 \phi_6^2 \phi_8 \phi_{12}/4$ |
| r,           | $-q^4 \phi_1^3 \phi_6 (1 - 2q + q^2 + q^3 - 3q^5)/24$  | $q^4 \phi_3 \phi_4 \phi_6 (1 + 2q^2 + 3q^4)/12$ | 94 42 44 46/4                       | $q^4 \phi_1 \phi_3 (-1 + q^3 - q^4 - q^7)/4$      | $q^4 \phi_2 \phi_6 (1 + q^3 + q^4 - q^7)/4$       |
| £2           | $q^4 \phi_1^3 (-1 + 3q - 4q^2 - q^3 + 3q^4 + 2q^5)/24$ | 4.2                                             | $q^4 \phi_2^2 \phi_4 (1 + 3 q^3)/4$ | $q^4 \phi_1^2 \phi_2 \phi_3 \phi_4/4$             | $q^4(1+3q^3+3q^4+4q^6+q^7)/4$                     |
| £3           | $q^4 \phi_1^3 \phi_4 \phi_6 (-1 + 2 q)/24$             |                                                 | $q^4 \phi_2^3 \phi_4 \phi_6/4$      | $q^4(1-3q^3+3q^4+4q^6-q^7)/4$                     | $-q^4 \phi_1 \phi_2^2 \phi_6 \phi_4/4$            |
| 17           | $q^4 \phi_1^2 (-1 + 2q) (-1 + 2q - 3q^2)/24$           | $q^4(1+4q^2+7q^4)/12$                           | $q^4 \phi_2^3 (1 - q + 2 q^2)/4$    | $q^4 \phi_1 (-1 - q - q^2 + q^3)/4$               | $q^4 \phi_2 (1 - q + q^2 + q^3)/4$                |
| 23           | $q^4 \phi_1^2 (1 - 4q + 4q^2 + 3q^3)/24$               | $q^4 \phi_2 \phi_3 (1 - 2 q + 3 q^2)/12$        | $q^4 \phi_2 (1+q+3q^3-q^4)/4$       | $q^4 \phi_1^2 \phi_2 \phi_3/4$                    | $q^4 \phi_1^2 \phi_2 \phi_3/4$                    |
| 16           | $-q^4 \phi_1^2 \phi_6 (-1 + 3q)/24$                    | $-q^4 \phi_1 \phi_6 (1 + 2q + 3q^2)/12$         | $q^4 \phi_2^3 \phi_6/4$             | $-q^4 \phi_1 \phi_2^2 \phi_6/4$                   | $-q^4\phi_1\phi_2^2\phi_6/4$                      |
| #7           | 94 42 46/6                                             | $q^4 \phi_3 \phi_6/3$                           | $q^4 \phi_2^2 \phi_6/2$             | $q^4\phi_1^2\phi_3/2$                             | $q^4 \phi_2^2 \phi_6/2$                           |
| 18           | $q^4 \phi_1 (1-2q) (-1+3q)/24$                         | $-q^4\phi_1\phi_2/12$                           | $q^4 \phi_2^2/4$                    | $-q^4 \phi_1 \phi_2/4$                            | $-q^4 \phi_1 \phi_2/4$                            |
| 8            | $q^4\phi_2^2/4$                                        | 94 44/2                                         | $q^4 \phi_2^2/2$                    | $-q^4 \phi_1 \phi_2/2$                            | $-q^4\phi_1\phi_2/2$                              |
| £10          | •                                                      | •                                               | •                                   | •                                                 | •                                                 |
| <b>x</b> 111 |                                                        | $-q^4 \phi_1 \phi_2/3$                          | $q^4 \phi_2/2$                      | $-q^4\phi_1/2$                                    | $q^4 \phi_2/2$                                    |
| x12          | $-q^4\phi_1/2$                                         | <b>4</b>                                        | $q^4 \phi_2/2$                      | $-q^4\phi_1/2$                                    | $q^4 \phi_2/2$                                    |
| £13          |                                                        | •                                               | $q^4 \phi_2/2$                      | $q^4 \phi_2/2$                                    | $-q^4 \phi_1/2$                                   |
| £14          |                                                        | $q^4 (23 + q^2)/12$                             | $-q^{4} \phi_{1} \phi_{2}/4$        | $-q^4 \phi_1 \phi_2/4$                            | $-q^4\phi_1\phi_2/4$                              |
| £15          |                                                        | $q^4 \phi_1 \phi_2/12$                          | $-q^4 \phi_1 \phi_2/4$              | $-q^4\phi_1\phi_2/4$                              | $-q^4 \phi_1 \phi_2/4$                            |
| £16          |                                                        | $-q^4 \phi_1 \phi_2/12$                         | $q^4 (3+q^2)/4$                     | $q^4(3+q^2)/4$                                    | $q^4(3+q^2)/4$                                    |
| £17          |                                                        | $-q^4 \phi_1 \phi_2 / 12$                       | $q^4 \phi_1 \phi_2/4$               | $q^4 \phi_1 \phi_2/4$                             | $q^4 \phi_1 \phi_2/4$                             |
| £18          | $q^4 \phi_1 \phi_2/24$                                 | $q^4 \phi_1 \phi_2/12$                          | $-q^4 \phi_1 \phi_2/4$              | $-q^4\phi_1\phi_2/4$                              | $-q^4 \phi_1 \phi_2/4$                            |
| £19          |                                                        | ·                                               | •                                   | •.                                                | •                                                 |
| £20          | •                                                      | •                                               | •                                   | •                                                 | ••                                                |
| £21          | •                                                      | •                                               | •                                   | •                                                 | •                                                 |
| £22          | •                                                      | •,                                              | •                                   |                                                   | •                                                 |
| £23          | •                                                      | •                                               | •                                   |                                                   | •                                                 |
| £24          |                                                        |                                                 | •                                   | •                                                 | •                                                 |
| £25          | 2 q <sup>2</sup> /3                                    | -242/3                                          | • .                                 | •                                                 | · · · · · · · · · · · · · · · · · · ·             |
| x26          |                                                        | $q^{2}/3$                                       | •                                   | •                                                 | •                                                 |
| £27          | -                                                      | $q^{2}/3$                                       |                                     |                                                   |                                                   |

Table 6.B. The unipotent character table of G(p=3)(4/5)

| $F_4[-1]$ $q^4 \phi_1^4 \phi_2^3 \phi_2^4 \phi_{12}/4$     | [93]<br>94 63 64 68 612/8                                                             | [41]<br>q <sup>4</sup> ¢ <sub>2</sub> <sup>2</sup> ¢ <sub>6</sub> ¢ <sub>6</sub> ¢ <sub>12</sub> /8    | [12]<br>q* 02 46 40 12/8                                                                                     | F.[1]<br>q 4 6 6 6 6 1 / 8<br>4 3 1 ( 1 - 2 - 3 0 4 - 5 / 6 |
|------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| q' \phi_1 \phi_3 \phi_4/4<br>-q^4 \phi_1^3 \phi_3 \phi_4/4 | $q^4 \phi_3 \phi_4 (1+q+q+q+q+q+q+q+q)/8$<br>$q^4 \phi_3 \phi_4 (1+q+q^2-q^3+2q^4)/8$ | $q^4 \phi_2^2 (1 - q^2 + q^4 + 2q^2 - q^7)/6$<br>$q^4 \phi_2^2 (1 - q^2 + q^3 + 4q^4 - 3q^5 + 2q^6)/8$ | $q^{-}\phi_{4}\phi_{6}(1-q+q^{-}+q^{-}-q^{-}+5q^{-})/6$<br>$q^{4}\phi_{1}^{2}\phi_{3}\phi_{4}(1-q+2q^{2})/8$ |                                                             |
| $-q^4 \phi_1^2 \phi_4 (-1 + 3q^3)/4$                       | $q^4 \phi_2^2 \phi_4 \phi_6 (1 + q + 2 q^2)/8$                                        | $q^4 \phi_2^4 \phi_6 (1 - q^2 + 2 q^3)/8$                                                              | $q^4 \phi_4 \phi_6 (1 - q + q^2 + q^3 + 2q^4)/8$                                                             | $q^4 \phi_1^2 (1 - q^2 - q^3 + 4 q^4 + 3 q^5 + 2 q^6)/8$    |
| $-q^4 \phi_1^3 (1 + q + 2q^2)/4$                           | $q^4 \phi_2 \phi_4 (1 + q + 2 q^2)/8$                                                 | $q^4 \phi_2^2 (1 - q^2 + 2 q^3)/8$                                                                     | $q^4 \phi_1 \phi_4 (-1 + q - 2q^2)/8$                                                                        | $q^4 \phi_1^2 (1 - q^2 - 2 q^3)/8$                          |
| _                                                          | $q^4 \phi_2 \phi_3 (1 + 3q^2)/8$                                                      | $-q^4 \phi_1 \phi_2^2 \phi_3/8$                                                                        | $q^4(1-2q+5q^2-q^3+2q^4+3q^5)/8$                                                                             | -q4 \$43 \$3/8                                              |
| 3+94)/4                                                    | $q^4\phi_1(-1+q+3q^3+q^4)/4$ $q^4(1+2q+5q^2+q^3+2q^4-3q^5)/8$                         | q4 43 46/8                                                                                             | $-q^4 \phi_1 \phi_6 (1+3q^2)/8$                                                                              | 94 43 42 46/8                                               |
| $q^4 \phi_1^2 \phi_3/2$                                    |                                                                                       | •                                                                                                      |                                                                                                              |                                                             |
| q4 42/4                                                    | $q^4 \phi_2 (1 + q + 2q^2)/8$                                                         | $-q^4 \phi_1 \phi_2 (1 + 2 q)/8$                                                                       | $q^4 \phi_1 (-1 + q - 2q^2)/8$                                                                               | $q^4 \phi_1 \phi_2 (-1 + 2 q)/8$                            |
| q4 43/2                                                    | 94 42/4                                                                               | 94 42/4                                                                                                | $q^4 \phi_2^2/4$                                                                                             | q <sup>4</sup> φ <sub>1</sub> <sup>2</sup> /4               |
|                                                            | $q^4 \phi_4/2$                                                                        | $-q^4\phi_1\phi_2/2$                                                                                   | 94 44/2                                                                                                      | $-q^4 \phi_1 \phi_2/2$                                      |
| $-q^4\phi_1/2$                                             |                                                                                       | •                                                                                                      |                                                                                                              | •                                                           |
|                                                            |                                                                                       |                                                                                                        |                                                                                                              |                                                             |
|                                                            | $q^4 \phi_2/2$                                                                        | $q^4 \phi_2/2$                                                                                         | $-q^4 \phi_1/2$                                                                                              | $-q^4 \phi_1/2$                                             |
| $-q^4\phi_1\phi_2/4$                                       | 944142/8                                                                              | 94 41 42/8                                                                                             | q* \phi_1 \phi_2/8                                                                                           | 9441 42/8                                                   |
| ₹                                                          | $q^4(7+q^2)/8$                                                                        | $q^4 (7 + q^2)/8$                                                                                      | $q^4(7+q^2)/8$                                                                                               | $q^4 (7 + q^2)/8$                                           |
| $1^4(3+q^2)/4$                                             | $-q^4\phi_1\phi_2/8$                                                                  | $-q^4\phi_1\phi_2/8$                                                                                   | $-q^4\phi_1\phi_2/8$                                                                                         | $-q^4\phi_1\phi_2/8$                                        |
|                                                            | $-q^4\phi_1\phi_2/8$                                                                  | $-q^{4}\phi_{1}\phi_{2}/8$                                                                             | $-q^{4}\phi_{1}\phi_{2}/8$                                                                                   | -q4 \phi_1 \phi_2/8                                         |
| -q4 41 42/4 ·                                              | 944142/8                                                                              | 944142/8                                                                                               | 94 41 42/8                                                                                                   | q* \phi_1 \phi_2/8                                          |
|                                                            |                                                                                       | •                                                                                                      |                                                                                                              | •                                                           |
|                                                            | ·                                                                                     |                                                                                                        | •                                                                                                            | ٠                                                           |
|                                                            |                                                                                       |                                                                                                        | •                                                                                                            | •                                                           |
|                                                            | •                                                                                     | •                                                                                                      |                                                                                                              | . •                                                         |
|                                                            |                                                                                       |                                                                                                        |                                                                                                              | ·                                                           |
|                                                            |                                                                                       | •                                                                                                      | •                                                                                                            |                                                             |
|                                                            |                                                                                       |                                                                                                        |                                                                                                              |                                                             |
|                                                            |                                                                                       |                                                                                                        | •                                                                                                            | •                                                           |
|                                                            | •                                                                                     | •                                                                                                      | •                                                                                                            | ٠                                                           |

TABLE 6.B. The unipotent character table of G(p=3)(5/5)

|                | B <sub>2</sub> [r]                                      | [61]                                       | $F_4[	heta]$                      | $F_4[	heta^2]$                    | [43]                                               | $B_2[\epsilon']$                                    | $F_4[i], F_4[-i]$                        |
|----------------|---------------------------------------------------------|--------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------------------|-----------------------------------------------------|------------------------------------------|
| H <sub>0</sub> | $q^4 \phi_1^2 \phi_2^2 \phi_3^2 \phi_6^2 \phi_8/4$      | $q^4 \phi_3^2 \phi_6^2 \phi_8 \phi_{12}/3$ | 9 4 4 4 4 4 4 4 4 4 4 8/3         | 94 41 42 42 48/3                  | 94 42 44 46 48 412/4                               | 94 42 43 44 48 412/4                                | 94 41 42 43 46/4                         |
| r,             | $-q^{4} \phi_{1} \phi_{2} \phi_{3} \phi_{6} \phi_{8}/4$ | $q^4 \phi_3 \phi_6 (1 + 2 q^4)/3$          | $-q^4 \phi_1^3 \phi_2^3 \phi_4/3$ | $-q^4 \phi_1^3 \phi_2^3 \phi_4/3$ | $q^4 \phi_2 \phi_6 (1 + q^3 + q^4 + 2q^6 + q^7)/4$ | $q^4 \phi_1 \phi_3 (-1 + q^3 - q^4 - 2q^6 + q^7)/4$ | $-q^4 \phi_1^3 \phi_2^3 \phi_3 \phi_6/4$ |
| £2             | $q^4 \phi_1^2 \phi_3 (1 + q + q^2 + q^3 + 2q^4)/4$      | $q^4 \phi_3$ (1                            | $-q^4 \phi_1^3 \phi_2^3 \phi_4/3$ | $-q^4 \phi_1^3 \phi_2^3 \phi_4/3$ | $q^4 \phi_4 (1 - q^2 + q^3 + 2q^4 - q^5)/4$        | $q^4 \phi_1^2 \phi_3 (1 + q + q^2 - q^3)/4$         | $-q^4 \phi_1^3 \phi_2^2 \phi_3/4$        |
|                |                                                         | 40                                         | $-q^4 \phi_1^3 \phi_2^3 \phi_4/3$ | $-q^4 \phi_1^3 \phi_2^3 \phi_4/3$ | $q^4 \phi_2^2 \phi_6 (1 - q + q^2 + q^3)/4$        | $q^4 \phi_4 (1 - q^2 - q^3 + 2 q^4 + q^5)/4$        | 94 42 43 46/4                            |
|                |                                                         |                                            | $q^4 \phi_1^2 \phi_2^2/3$         | $q^4 \phi_1^2 \phi_2^2/3$         | $q^4 \phi_2 (1 - q + q^2 + q^3)/4$                 | $q^4 \phi_1 (-1 - q - q^2 + q^3)/4$                 | $q^4 \phi_1^2 \phi_2^2/4$                |
| 25             | -94 41 43 44/4                                          | 944346/3                                   | $q^4 \phi_1^2 \phi_2^2/3$         | $q^4 \phi_1^2 \phi_2^2/3$         | $q^4(1+q^2+3q^3+4q^4-q^5)/4$                       | $-q^4\phi_1\phi_3\phi_4/4$                          | q 4 42 42 43/4                           |
| 16             | 94 42 44 46/4                                           | 94 43 46/3                                 | $q^4 \phi_1^2 \phi_2^2/3$         | $q^4 \phi_1^2 \phi_2^2/3$         | $q^4 \phi_2 \phi_4 \phi_6/4$                       | $q^4 (1 + q^2 - 3q^3 + 4q^4 + q^5)/4$               | $-q^4 \phi_1 \phi_2^2 \phi_6/4$          |
| £7             | •                                                       | 940306/3                                   | $q^4 \phi_1^2 \phi_2^2/3$         | $q^4 \phi_1^2 \phi_2^2/3$         | •                                                  | •                                                   |                                          |
| 28             | $-q^4\phi_1\phi_2/4$                                    | $q^4 (1 + 2q^2)/3$                         | $-q^4 \phi_1 \phi_2/3$            | $-q^4 \phi_1 \phi_2/3$            | $q^4 \phi_2 (1 - q + 2 q^2)/4$                     | $-q^4 \phi_1 (1 + q + 2 q^2)/4$                     | $-q^4 \phi_1 \phi_2/4$                   |
| £3             | $-q^4 \phi_1 \phi_2/2$                                  | •                                          | •                                 | •                                 | •                                                  | •                                                   | •                                        |
| £10            | **                                                      | •                                          |                                   | ٠                                 | q* 44/2                                            | 9*44/2                                              | $-q^{4}\phi_{1}\phi_{2}/2$               |
| $x_{11}$       | •                                                       | $q^4 (1 + 2q^2)/3$                         | $-q^4 \phi_1 \phi_2/3$            | $-q^4 \phi_1 \phi_2/3$            | •                                                  | •                                                   |                                          |
| £12            | •                                                       | •                                          | •                                 | •                                 | •                                                  | •                                                   | •                                        |
| £13            | 40                                                      | •                                          |                                   | •                                 |                                                    | •                                                   |                                          |
| £14            | $q^4 \phi_1 \phi_2/4$                                   | 940142/3                                   | $q^4 \phi_1 \phi_2/3$             | $q^4 \phi_1 \phi_2/3$             | $-q^4\phi_1\phi_2/4$                               | $-q^{4}\phi_{1}\phi_{2}/4$                          | $-q^4\phi_1\phi_2/4$                     |
| £15            | $q^4(7+q^2)/4$                                          | $q^4\phi_1\phi_2/3$                        | $q^4 \phi_1 \phi_2/3$             | $q^4 \phi_1 \phi_2/3$             | $-q^{4}\phi_{1}\phi_{2}/4$                         | $-q^4\phi_1\phi_2/4$                                | $-q^{4} \phi_{1} \phi_{2}/4$             |
| £16            | $-q^4\phi_1\phi_2/4$                                    | $-q^4 \phi_1 \phi_2/3$                     | $-q^4 \phi_1 \phi_2/3$            | $-q^4 \phi_1 \phi_2/3$            | 94 41 42/4                                         | 94 41 42/4                                          | $q^4 \phi_1 \phi_2/4$                    |
| £17            | $-q^{4}\phi_{1}\phi_{2}/4$                              | -94 41 42/3                                | $-q^4 \phi_1 \phi_2/3$            | $-q^4 \phi_1 \phi_2/3$            | $q^4(3+q^2)/4$                                     | $q^4 (3+q^2)/4$                                     | $q^4(3+q^2)/4$                           |
| £18            | 94 41 42/4                                              | $q^4(2+q^2)/3$                             | $q^4(2+q^2)/3$                    | $q^4(2+q^2)/3$                    | $-q^4 \phi_1 \phi_2/4$                             | $-q^{4}\phi_{1}\phi_{2}/4$                          | $-q^4 \phi_1 \phi_2/4$                   |
| £19            |                                                         | -                                          |                                   | •                                 | •                                                  | •                                                   | •                                        |
| £20            | •                                                       | •                                          |                                   | •                                 |                                                    | •                                                   | •                                        |
| £21            | •                                                       | •                                          | •                                 |                                   | •                                                  | •                                                   | •                                        |
| £22            | •                                                       | •                                          | •                                 | •                                 | •                                                  | •                                                   |                                          |
| £23            | •                                                       | •                                          |                                   |                                   | •                                                  | •                                                   |                                          |
| £24            | •                                                       | •                                          |                                   | •                                 | •                                                  |                                                     | •                                        |
| £25            | •                                                       | -242/3                                     | q <sup>2</sup> /3                 | d <sub>2</sub> /3                 | •                                                  | •                                                   | •                                        |
| £26            | •                                                       | 92/3                                       | $(1+3\theta)q^2/3$                | $(1+3\theta^2)q^2/3$              | •                                                  |                                                     |                                          |
| 1232           | •                                                       | 92/3                                       | $(1+3\theta^2)q^2/3$              | $(1+3\theta)q^2/3$                |                                                    | •                                                   |                                          |

TABLE 7. The table  $g_{\alpha}$ .  $\frac{z_1}{4}$   $\frac{z_2}{4}$   $\frac{z_3}{4}$   $\frac{z_4}{4}$   $\frac{z_5}{4}$   $\frac{z_5}{4}$ 

The values at uninotent elements of the almost characters of  $Sp(8, 2^n)$  grouped according to families (1/2)

|                        | 4.0 | $\binom{13}{1}$       | $\binom{12}{2}$            | $\binom{013}{13}$     | $\binom{01234}{1234}$ | $\binom{0124}{123}$ | $\binom{0123}{124}$    |          | $\binom{01234}{12}$   | $\binom{023}{12}$                              | $\binom{012}{23}$     | $\binom{123}{02}$   | $\binom{0123}{2}$ |
|------------------------|-----|-----------------------|----------------------------|-----------------------|-----------------------|---------------------|------------------------|----------|-----------------------|------------------------------------------------|-----------------------|---------------------|-------------------|
| n <sup>0</sup>         | _   | $q^3 \phi_4^2 \phi_8$ | $q^4 \phi_3 \phi_6 \phi_8$ | $q^5 \phi_4^2 \phi_8$ | $q^{16}$              | _œ                  | $q^{10} \phi_3 \phi_6$ | $q^{12}$ | •                     | $a_{\varphi} \circ \phi \circ \phi \circ \phi$ | $q^8 \phi_8$          | $q^7 \phi_4 \phi_8$ | •                 |
| $u_1$                  |     | 93 43 44 46           | 94 43 46                   | $q^5 \phi_4$          |                       | <sub>6</sub> Ь      |                        | $q^{12}$ | •                     | $\phi_{\varphi} \phi_{3} \phi_{\varphi}$       |                       | $q^7 \phi_3 \phi_6$ | •                 |
| n <sub>2</sub>         | _   | $q^3 \phi_4^2$        | 94 43 46                   | $q^5 \phi_4^2$        | •                     | <sub>6</sub> Ь      | $q^{10}$               | •        | •                     | $q^6 \phi_4$                                   | $q^8$                 | 4                   | •                 |
| u3                     | -   | $q^3\phi_4^2$         | $q^4 \phi_4$               | $q^5 \phi_4$          | •                     | ф                   |                        | •        |                       | $q^6 \phi_4$                                   | •                     | $q^7$               |                   |
| n4                     | _   | $q^3\phi_4$           | 40                         | $q^5 \phi_4$          | •                     | •                   | •                      | • .      | •                     | g <sub>o</sub> b                               | <i>d</i> <sup>8</sup> | •                   |                   |
| u5                     |     | $q^3(1+2q^2)$         | $q^4 \phi_4$               | q <sub>5</sub>        | •,                    | •                   | •                      | •        | •                     | $q^6$                                          | •                     | $d^{2}$             |                   |
| 9n                     |     | $q^3 \phi_4$          | •                          |                       |                       | •                   | •                      | •        | <i>d</i> <sup>7</sup> | •                                              | •                     | •                   | $q^5$             |
| 2n                     | _   | $q^3 \phi_4$          | •                          |                       | , •                   | •                   | •                      |          | _b_                   | •                                              | •.                    | •                   | $-q^5$            |
| 871                    | -   | $q^3 \phi_4$          | 44                         | $q^5$                 | •                     | •                   | •                      |          | •                     | $q^6$                                          | •                     | •                   | •                 |
| 6 <b>n</b>             | -   | $q^3$                 | 42                         | <i>q</i> <sup>5</sup> | •,                    | •                   | •                      |          | •                     | •                                              | •                     | •                   | •                 |
| <b>u</b> 10            | _   | $q^3$                 | 4₽                         | $q^5$                 | , •                   | •                   | •                      | •        | . •                   | •                                              | •                     | •                   | •                 |
| <b>u</b> 111           |     | $q^3$                 | •                          | •                     |                       | •                   | •                      | •        | •                     | •                                              | •                     | •                   | ٠                 |
| u12                    | -   | g-3                   | 40                         | .•                    | , •                   | •                   | •                      | ٠.       | •                     | •                                              | •                     | •                   |                   |
| u13                    | -   | $q^3$                 | •                          | •                     | •                     |                     | •                      | •        | •                     | •                                              |                       | •                   | $q^5$             |
| <i>u</i> 14            |     | $q^3$                 | •                          |                       |                       | •                   | •                      | •        |                       | •                                              | •                     | •                   | <u>-</u> 42       |
| u15                    |     | $q^3$                 | •                          | •                     | •,                    | •                   | •                      | •        | •                     | •                                              | v •                   | •                   | •                 |
| <b>u</b> 16            | -   | •                     | •                          | ٠                     | . • .                 | •                   | •                      | •        |                       | ٠                                              | •                     | •                   |                   |
| u17                    | -   | •                     | •                          | •                     | . ,•                  | •                   | •                      | •        |                       | •                                              | ÷                     | •                   | •                 |
| u18                    | -   | •                     | ٠                          | •                     | •                     | •                   | •                      | •        |                       | •                                              | • .                   | •                   |                   |
| <i>u</i> <sub>19</sub> | ÷   |                       | •                          |                       | •                     | •                   | •                      | •        |                       | •                                              | ·                     |                     | •                 |
| n20                    | -   | •                     | •                          | •                     | •                     | •.                  | •                      | •        |                       | •                                              | : •                   |                     | •                 |
| <i>u</i> 21            |     | •                     | •                          | •                     | • ,                   | •                   | •                      | •        |                       | •                                              | •                     | •                   | •                 |
| u <sub>22</sub>        | _   | •                     | •                          | •                     | .•                    |                     | •                      | •        | •                     | ٠                                              | •                     | •                   | ٠                 |
| u23                    | -   | •                     | •                          | •                     | •                     |                     |                        | •        |                       | •                                              | •                     | • .                 | •                 |
| u24                    | _   | •                     | ·                          | •                     | •                     | •                   |                        | •        | •                     | ٠                                              | •                     |                     | •                 |

TABLE 8. The values at unipotent elements of the almost characters of Sp(8, 2") grouped according to families (2/2) u2 u3 u4 u6 u6 u9 u9 u11 u112

TABLE 9. The values at unipotent elements of the unipotent characters of  $Sp(8, 2^n)$  that belong to the 4-element families (1/2)

| $\exists$      | (123)                       | $\binom{0123}{124}$                     | (1234)<br>(012)     | (01234)                     | (023)<br>(12)                               | (012)<br>(23)                  | (123)                       | $\binom{0123}{2}$           | $\binom{014}{12}$           | $\binom{012}{14}$                | $\binom{124}{01}$         | (0124)                              |
|----------------|-----------------------------|-----------------------------------------|---------------------|-----------------------------|---------------------------------------------|--------------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------------|---------------------------|-------------------------------------|
| 0<br>20        | $q^9\phi_2^2\phi_4\phi_6/2$ | $q^9\phi_3\phi_8/2$ $q^9\phi_6\phi_8/2$ | $q^9\phi_6\phi_8/2$ | $q^9\phi_1^2\phi_3\phi_4/2$ | $q^6\phi_3\phi_4\phi_8/2$                   | $q^6\phi_4\phi_6\phi_8/2$      | $q^6\phi_2^2\phi_6\phi_8/2$ | $q^6\phi_1^2\phi_3\phi_8/2$ | $q^4\phi_3\phi_4^2\phi_6/2$ | $q^4\phi_3\phi_6\phi_8/2$        | $q^4\phi_3\phi_6\phi_8/2$ | $q^4\phi_1^2\phi_2^2\phi_3\phi_6/2$ |
| ร์             | q9 42 46/2                  | $ -q^9\phi_1\phi_3/2 q^9\phi_2\phi_6/2$ | 994246/2            | $-q^9\phi_1\phi_3/2$        | $q^6\phi_2\phi_3\phi_6/2$                   | $-q^6\phi_1\phi_3\phi_6/2$     | q6424346/2                  | $-q^6\phi_1\phi_3\phi_6/2$  | 9443446/2                   | $-q^4\phi_1\phi_2\phi_3\phi_6/2$ | 9443446/2                 | $-q^4\phi_1\phi_2\phi_3\phi_6/2$    |
| u2             | $q^9\phi_2/2$               | $q^9\phi_2/2$                           | $-q^9\phi_1/2$      | $-q^9\phi_1/2$              | $q^{6}(1+q+2q^{2})/2   q^{6}(1-q+2q^{2})/2$ | $q^6(1-q+2q^2)/2$              | $q^6\phi_2/2$               | $-q^6\phi_1/2$              | $q^4\phi_4(1+2q^2)/2$       | $q^4(1+q^2+2q^4)/2$              | $q^4\phi_4/2$             | $-q^4\phi_1\phi_2/2$                |
| ຊິ             | q <sup>9</sup> /2           | 9/2                                     | 9/2                 | q <sup>9</sup> /2           | $q^6\phi_3/2$                               | $q^6\phi_6/2$                  | $q^6\phi_3/2$               | $q^6\phi_6/2$               | $q^4 \phi_4^2/2$            | $q^4\phi_8/2$                    | $q^4\phi_4^2/2$           | $q^4\phi_8/2$                       |
| ž              | •                           |                                         | •                   | ·                           | $q^6\phi_4/2$                               | 964/2                          | $-q^6\phi_1\phi_2/2$        | $-q^6\phi_1\phi_2/2$        | 944/2                       | $q^4\phi_4/2$                    | $-q^4\phi_1\phi_2/2$      | $-q^4\phi_1\phi_2/2$                |
| ž,             |                             |                                         | •                   | •                           | $q^6\phi_2/2$                               | $-q^6\phi_1/2$                 | $q^6\phi_2/2$               | $-q^6\phi_1/2$              | 944/2                       | $-q^4\phi_1\phi_2/2$             | $q^4\phi_4/2$             | $-q^4\phi_1\phi_2/2$                |
| 92             | q <sup>7</sup> /2           | -47/2                                   | -47/2               | q <sup>7</sup> /2           | q <sup>5</sup> /2                           | $-q^{5}/2$                     | $-q^{5}/2$                  | $q^5/2$                     | 444                         | -q <sup>6</sup>                  | •                         | *5                                  |
| 147            | -q <sup>7</sup> /2          | 97/2                                    | q <sup>7</sup> /2   | -47/2                       | $-q^{5}/2$                                  | q <sup>5</sup> /2              | q <sup>5</sup> /2           | -45/2                       |                             | 46                               | 444                       | 96-                                 |
| 87             |                             | ·                                       |                     | •                           | q <sup>6</sup> /2                           | q <sup>6</sup> /2              | q <sup>6</sup> /2           | q <sup>6</sup> /2           | 94/2                        | q*/2                             | 94/2                      | 94/2                                |
| s <sup>2</sup> | •                           | ,                                       | •                   | •                           | •                                           |                                | •                           | •                           | $q^4\phi_2/2$               | $q^4\phi_2/2$                    | $-q^4\phi_1/2$            | $-q^4\phi_1/2$                      |
| u10            |                             | •                                       |                     | •                           |                                             | •                              | •                           | •                           | $-q^4\phi_1/2$              | $-q^4\phi_1/2$                   | $q^4\phi_2/2$             | $q^4\phi_2/2$                       |
| u111           |                             | •                                       | •                   | •                           | •                                           | •                              | •                           | •                           | 94/2                        | q <sup>4</sup> /2                | q <sup>4</sup> /2         | q <sup>4</sup> /2                   |
| u12            |                             | •                                       | •                   | •                           | •                                           |                                | •                           | •                           | •                           |                                  |                           | ٠                                   |
| u13            | •                           |                                         |                     | ٠                           | $q^{5}/2$                                   | -d <sub>2</sub> / <sub>2</sub> | -q <sup>5</sup> /2          | q <sup>5</sup> /2           | q4/2                        | $-q^{4}/2$                       | -94/2                     | 94/2                                |
| u14            |                             |                                         | •                   |                             | $-q^{5}/2$                                  | q <sup>5</sup> /2              | q <sup>5</sup> /2           | -45/2                       | -q <sup>4</sup> /2          | 94/2                             | 94/2                      | $-q^{4}/2$                          |
| uıs            |                             | •                                       |                     | •                           | •                                           | •                              | •                           |                             | •                           | •                                |                           | ٠                                   |
| <b>u</b> 16    | •                           |                                         | •                   | •                           | ٠                                           | •                              |                             | •                           | ٠                           |                                  |                           | ٠                                   |
| u17            | •                           |                                         |                     | ٠                           | •                                           | •                              | •                           | •                           | q <sup>3</sup> /2           | $-q^{3}/2$                       | $-q^{3}/2$                | q <sup>3</sup> /2                   |
| u18            | •                           |                                         |                     | •                           | •                                           | ٠                              |                             | •                           | $-q^{3}/2$                  | $q^3/2$                          | q <sup>3</sup> /2         | $-q^{3}/2$                          |
| 419            |                             | ·                                       | •                   |                             | •                                           | •                              |                             | •                           | •.                          | •                                | •                         | ·                                   |
| n20            |                             | •                                       |                     | ٠                           | •                                           | •                              | •                           | •                           |                             | •                                | •                         | •                                   |
| u21            |                             | •                                       |                     | •                           |                                             | •                              | •                           |                             |                             | •                                | •                         | •                                   |
| n23            | •                           | •                                       | •                   | •                           | •                                           | •                              |                             | •                           | •                           |                                  | •                         | •                                   |
| u23            |                             |                                         | •                   | •                           | •                                           | •                              |                             |                             |                             | •                                |                           | •                                   |
| <b>424</b>     |                             |                                         |                     | •                           |                                             | •                              | •                           | ,                           |                             |                                  |                           | •                                   |

Table 9. The values at unipotent elements of the unipotent characters of  $Sp(8, 2^n)$  that belong to the 4-element families (2/2)

|        | (03)                                                            | (3)                      | (23)                                                       | (-03)                         | (4)                       | (t)<br>(*)               | (14)                                    | (014)                     |
|--------|-----------------------------------------------------------------|--------------------------|------------------------------------------------------------|-------------------------------|---------------------------|--------------------------|-----------------------------------------|---------------------------|
|        | 9243448/2                                                       | $\frac{3}{6}$            | $q^2\phi_4\phi_6\phi_8/2$                                  | $q^2\phi_1^2\phi_3\phi_8/2$   | $q\phi_2^2\phi_4\phi_6/2$ | $q\phi_6\phi_8/2$        | $q\phi_3\phi_8/2$                       | $q\phi_1^2\phi_3\phi_4/2$ |
| <br>รี | $q^2\phi_3(1+q^2-q^3+q^4)/2\bigg  q^2\phi_2\phi_6(1+q-q)\bigg $ |                          | $q^3)/2 \left  q^2 \phi_6 (1 + q^2 + q^3 + q^4)/2 \right $ | $q^2\phi_1\phi_3(-1+q-q^3)/2$ | 9424346/2                 | $-q\phi_1\phi_3\phi_6/2$ | $q\phi_2\phi_3\phi_6/2$                 | $-q\phi_1\phi_3\phi_6/2$  |
|        | $q^2(\phi_2\phi_3\phi_6+q^2\phi_4)/2$                           | $q^2\phi_2(1+q^3+q^4)/2$ | $q^2(-\phi_1\phi_3\phi_6+q^2\phi_4)/2$                     | $q^2\phi_1(-1+q^3-q^4)/2$     | $q\phi_2(1+q^2+q^3)/2$    | $q(1-q+q^2+q^4)/2$       | $q(1+q+q^2+q^4)/2$                      | $q\phi_1(-1-q^2+q^3)/2$   |
|        | $q^2(1+q+2q^2+q^4)/2$                                           | $q^2(1+q+q^4)/2$         | $q^2(1-q+2q^2+q^4)/2$                                      | $q^2(1-q+q^4)/2$              | $q\phi_5/2$               | 9410/2                   | $q\phi_5/2$                             | 9¢10/2                    |
|        | $q^2\phi_3\phi_4/2$                                             | $q^2\phi_2^2\phi_6/2$    | $q^2\phi_4\phi_6/2$                                        | $q^2\phi_1^2\phi_3/2$         | 94241/2                   | $q(1-q+q^2+q^3)/2$       | $q(1+q+q^2-q^3)/2$                      | $-q\phi_1\phi_4/2$        |
|        | $q^2(1+q+2q^2)/2$                                               | $q^2\phi_2/2$            | $q^2(1-q+2q^2)/2$                                          | $-q^2\phi_1/2$                | 94244/2                   | $-q\phi_1\phi_4/2$       | 94244/2                                 | $-q\phi_1\phi_4/2$        |
|        | $q^2(1+q^2+q^3)/2$                                              | $q^2(1-q^2-q^3)/2$       | $q^2(1+q^2-q^3)/2$                                         | $q^2(1-q^2+q^3)/2$            | $q(1+q+2q^2+q^3)/2$       | $q(1-q-q^3)/2$           | $q(1+q+q^3)/2$                          | $q(1-q+2q^2-q^3)/2$       |
|        | $q^2(1+q^2-q^3)/2$                                              | $q^2(1-q^2+q^3)/2$       | $q^2(1+q^2+q^3)/2$                                         | $q^2(1-q^2-q^3)/2$            | $q(1+q+q^3)/2$            | $q(1-q+2q^2-q^3)/2$      | $q(1-q+2q^2-q^3)/2$ $q(1+q+2q^2+q^3)/2$ | $q(1-q-q^3)/2$            |
|        | $q^2(1+q+2q^2)/2$                                               | $q^2\phi_2/2$            | $q^2(1-q+2q^2)/2$                                          | $-q^2\phi_1/2$                | $q\phi_3/2$               | q4e/2                    | $q\phi_3/2$                             | $q\phi_6/2$               |
|        | $q^2(1+q+2q^2)/2$                                               | $q^2(1+q+2q^2)/2$        | $-q^2\phi_1/2$                                             | $-q^2\phi_1/2$                | $q(1+q+2q^2)/2$           | $q(1-q+2q^2)/2$          | $q\phi_2/2$                             | $-q\phi_1/2$              |
|        | $q^2\phi_2/2$                                                   | $q^2\phi_2/2$            | $q^2(1-q+2q^2)/2$                                          | $q^2(1-q+2q^2)/2$             | $q\phi_2/2$               | $-q\phi_1/2$             | $q(1+q+2q^2)/2$                         | $q(1-q+2q^2)/2$           |
|        | $q^{2}/2$                                                       | q <sup>2</sup> /2        | $q^2/2$                                                    | $q^2/2$                       | $q\phi_3/2$               | $q\phi_6/2$              | $q\phi_3/2$                             | q \phi_2                  |
|        | $q^2\phi_2/2$                                                   | $q^2\phi_2/2$            | $-q^2\phi_1/2$                                             | $-q^2\phi_1/2$                | $q\phi_2/2$               | $-q\phi_1/2$             | $q\phi_2/2$                             | $-q\phi_1/2$              |
|        | $q^2\phi_4/2$                                                   | $-q^2\phi_1\phi_2/2$     | $q^2\phi_4/2$                                              | $-q^2\phi_1\phi_2/2$          | $q\phi_3/2$               | $q(1-q-q^2)/2$           | $q(1+q-q^2)/2$                          | $q\phi_6/2$               |
|        | $q^2\phi_4/2$                                                   | $-q^2\phi_1\phi_2/2$     | $q^2\phi_4/2$                                              | $-q^2\phi_1\phi_2/2$          | $q(1+q-q^2)/2$            | 946/2                    | $q\phi_3/2$                             | $q(1-q-q^2)/2$            |
|        | $q^{2}/2$                                                       | $q^{2}/2$                | $q^2/2$                                                    | q <sup>2</sup> /2             | q\phi_1/2                 | $-q\phi_1/2$             | $q\phi_2/2$                             | $-q\phi_1/2$              |
|        | $q^2\phi_2/2$                                                   | $q^2\phi_2/2$            | $-q^2\phi_1/2$                                             | $-q^2\phi_1/2$                | $q\phi_2/2$               | $q\phi_2/2$              | $-q\phi_1/2$                            | $-q\phi_1/2$              |
|        | $q^2/2$                                                         | -42/2                    | $-q^{2}/2$                                                 | $q^{2}/2$                     | q(1+2q)/2                 | q(1-2q)/2                | 9/2                                     | 9/2                       |
|        | $-q^{2}/2$                                                      | $q^{2}/2$                | $q^2/2$                                                    | $-q^{2}/2$                    | 9/2                       | 9/2                      | q(1+2q)/2                               | q(1-2q)/2                 |
|        | $q^{2}/2$                                                       | $q^2/2$                  | $q^2/2$                                                    | $q^{2}/2$                     | 942/2                     | $q\phi_2/2$              | $-q\phi_1/2$                            | $-q\phi_1/2$              |
|        | $q^{2}/2$                                                       | $q^{2}/2$                | $q^{2}/2$                                                  | $q^2/2$                       | $-q\phi_1/2$              | $-q\phi_1/2$             | $q\phi_2/2$                             | $q\phi_2/2$               |
|        | $q^{2}/2$                                                       | -92/2                    | $-q^2/2$                                                   | $q^{2}/2$                     | 9/2                       | 9/2                      | 9/2                                     | 9/2                       |
|        | $-q^{2}/2$                                                      | q <sup>2</sup> /2        | $q^2/2$                                                    | $-q^{2}/2$                    | 9/2                       | 9/2                      | 9/2                                     | 9/2                       |
|        |                                                                 |                          |                                                            |                               | 9/2                       | -4/2                     | -4/2                                    | 9/2                       |
|        |                                                                 | ,                        | •                                                          | •                             | -9/2                      | 9/2                      | 9/2                                     | -4/2                      |

#### References

- [A] D. ALVIS, Induced/Restrict matrices for exceptional Weyl groups, preprint, M.I.T. (1981).
- [Ca] R. CARTER, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley (1985).
- [CIK] C. Curtis, N. Iwahori and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (B, N)-pairs, Publ. Math. I.H.E.S. 40 (1971), 81–116.
- [CR1] C. Curtis and I. Reiner, Methods of Representation Theory Vol. I, Wiley (1981).
- [CR2] —, Methods of Representation Theory Vol. II, Wiley (1987).
- [DL] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.
- [Go] Y. Gom, Character tables of commutative Hecke algebras associated with finite Chevalley groups of exceptional type, Comm. Algebra 22 (1994), 4361-4372.
- [Ka1] N. KAWANAKA, Unipotent elements and characters of finite Chevalley groups, Osaka J. Math. 12 (1975), 523-554.
- [Ka2] ——, Generalized Gelfand-Graev representations of exceptional simple algebraic groups over a finite field I, Invent. Math. 84 (1986), 575-616.
- [Ka3] ——, Shintani lifting and Gelfand-Graev representations, The Arcata Conference on Representations of Finite Groups, Vol. 47, Part 1 (1986), 148-163.
- [Ko] T. Kondo, The characters of the Weyl group of type  $F_4$ , J. Fac. Sci. Univ. Tokyo 11 (1965), 145–153.
- [Lo] J. LOOKER, The complex irreducible characters of Sp(6, q), q even, Ph.D thesis, Univ. of Sydney (1977).
- [Lu1] G. Lusztig, Characters of Reductive Groups over a Finite Field, Ann. of Math. Stud. 107 (1984), Princeton Univ. Press.
- [Lu2] ——, Character sheaves I-V, Adv. in Math. **56** (1985), 193-237; **57** (1985), 226-265; **57** (1985), 266-315; **59** (1986), 1-63; **61** (1986), 103-155.
- [Lu3] ——, On the character values of finite Chevalley groups at unipotent elements, J. of Algebra 104 (1986), 146–194.
- [Lu4] ——, Green functions and character sheaves, Ann. of Math. 131 (1990), 355-408.
- [Ma] G. Malle, Green functions for groups of type  $E_6$  and  $F_4$  in characteristic 2, Comm. Algebra 21 (1993), 747–798.
- [Mar] R. MARCELO, The unipotent characters of the Chevalley group  $F_4(p^n)$ , p=2 or 3, at unipotent elements, Doctor of Science thesis, Sophia Univ. (1994).
- [Shi1] K. Shinoda, The conjugacy classes of Chevalley groups of type  $(F_4)$  over finite fields of characteristic 2, J. Fac. Sci. Univ. Tokyo 21 (1974), 133–159.
- [Shi2] ——, Table of Green functions of Chevalley groups of type  $(F_4)$  over finite fields of characteristic 2, unpublished.
- [Sho1] T. Shoji, The conjugacy classes of Chevalley groups of type  $(F_4)$  over finite fields of characteristic  $p \neq 2$ , J. Fac. Sci. Univ. Tokyo 21 (1974), 1-17.
- [Sho2] —, On the Green polynomials of a Chevalley group of type  $F_4$ , Comm. Algebra 10 (1982), 505-543.
- [Sho3] ——, Geometry of orbits and Springer correspondence, Astérisque 168 (1988), 61–140.
- [Sho4] ——, Character sheaves and almost characters of reductive groups I and II, Adv. in Math. 111 (1995), 244–313; 111 (1995), 314–354.
- [Sp1] N. SPALTENSTEIN, Classes Unipotentes et Sous-Groupes de Borel, Lecture Notes in Math. 946 (1982), Springer.
- [Sp2] ——, On the generalized Springer correspondence for exceptional groups, Algebraic Groups and Related Topics, Adv. Stud. Pure Math. 6 (1985), Kinokuniya/North-Holland 289-316.

[Y] J. YAMAGISHI, On Green polynomials of Sp(8, q),  $q = 2^n$ , Master of Science thesis, Sophia Univ. (1986) (in Japanese).

Present Address:

DEPARTMENT OF MATHEMATICS, SOPHIA UNIVERSITY, KIOICHO, CHIYODA-KU, TOKYO, 102 JAPAN.