
TOKYO J. MATH.
VOL. 18, No. 2, 1995

Values of the Unipotent Characters of the Chevalley Group
of Type $F_{4}$ at Unipotent Elements

Reginaldo M. MARCELO and Ken-ichi SHINODA

Sophia University

\S 0. Introduction.

Let $G$ be a connected reductive algebraic group with connected center and split
over a finite field $F_{q}$ of characteristic $p$ , and $F$ the corresponding Frobenius morphism.
Then the subgroup $G=G^{F}$ of $G$ consisting of elements fixed by $F$ is a finite Chevalley
group. The table consisting of the values at unipotent elements of the unipotent char-
acters of $G$ which we shall simply call the unipotent character table of $G$, is an essential
part of the character table of $G$ .

If $G$ has type $F_{4}$ and $p$ is good for $G$ (that is, $p\geq 5$), the problem of completing
the unipotent character table of $G$ is reduced to the determination of the values of one
almost character; this was settled independently by N. Kawanaka [Ka2, Ka3] and G.
Lusztig ([Lu3], cf. Remark 4.3 of this paper also). The purpose of this paper is to form
the table in the cases $p=2$ or 3. And since the unipotent character table when $p\geq 5$ can
be obtained at once from that when $p=3$ (cf. Remark 4.5), we could actually form this
table as well.

Through the Fourier transform matrix introduced by G. Lusztig [Lul], the deter-
mination of the values of irreducible characters of $G$ is equivalent to the determination
of the values of almost characters. And the almost characters are closely related to
another set of class functions on $G$ called the characteristic functions associated with
character sheaves of $G$ , also due to Lusztig [Lu2]. In fact, he conjectured that if $p$ is
almost good for $G$ the characteristic functions coincide with the almost characters up
to multiplication by a scalar. In [Sho4], T. Shoji proved Lusztig’s conjecture in the
case where $G$ has connected center; moreover, he showed that for $G$ of type $F_{4}$ , Lusztig’s
conjecture also holds when $p=3$ , and a weaker version of it holds when $p=2$ (cf.
Theorem 1.7).

Now, $G=F_{4}(p^{n})$ has 37 unipotent characters and using known results, we can
compute the values at unipotent elements of 30 of the corresponding almost characters.
Our problem therefore is to determine the values of the remaining 7 almost characters,
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all of which belong to a 21-element family. By Shoji’s result (Theorem 1.7), 5 (resp.,
3) of these 7 can be expressed as a scalar multiple of a characteristic function or a linear
combination of 2 characteristic functions, and the rest are $0$ at the unipotent elements.
Since the values of the characteristic functions at unipotent elements can be determined’
using the same algorithm Lusztig devised in [Lu2, V, \S 24], as proved by Shoji in [Sho4,
I], the values of the undetermined almost characters can be expressed in terms of the
scalars appearing in Theorem 1.7. And our work is done once we find the values of
these scalars.

We can choose a parabolic subgroup $P$ of $G$ so that 5 of the 11 irreducible characters
in $1_{P}^{G}$ will lie in the 21-element family of unipotent characters. We construct the Hecke
algebra $\ovalbox{\tt\small REJECT}(G, P)$ and form its character table. For a unipotent character $\chi$ belonging
to $1_{P}^{G}$ and a unipotent element $x$ of $G,$ $\chi(x)$ can then be computed using the character
formula Theorem 2.3, provided we know $|\mathscr{C}\cap D_{i}|$ for all $D_{i}\in P\backslash G/P$, where $\mathscr{C}$ is the
unipotent conjugacy class containing $x$ .

On the other hand, we can also compute $\chi(x)$ by transforming the 21-element family
of almost characters to the corresponding unipotent characters using the appropriate
Fourier transform matrix. We do this for $\chi\in 1_{P}^{G}$ and a unipotent element $x\in G$ . Equating
this with the value obtained above through Hecke algebras, and repeating this for the
appropriate $\chi’ s$ and $x’ s$ , we obtain equations involving the scalars in Theorem 1.7.

We actually succeed in finding the values of all the scalars we want to determine
when $p=3$ , and all except two ($c$ and $c_{7}$) when $p=2$ . In either case, we obtain the values
of the yet undetermined almost characters, thus completing the unipotent character
table ofG $=F_{4}(p^{n}),$ $p=2or3$ . And as remarked in (4.5), this will allow us to form the
corresponding table for the case $p\geq 5$ .

As a consequence, we improve Shoji’s result vis-a-vis Lusztig’s conjecture when
$G=F_{4}(2^{n})-namely$ , that the conjecture holds for one more pair ofcharacteristic function
and almost character.

The rest of the paper goes as follows. In \S 1 we look into the unipotent characters
and almost characters and how they are classified into families, particularly for the case
$G=F_{4}(p^{n})$ . Here we state Shoji’s result conceming Lusztig’s conjecture relating almost
characters with characteristic functions for $G=F_{4}(p^{n})$ .

In \S 2 we form the Hecke algebra $\ovalbox{\tt\small REJECT}(G, P)$ for a certain maximal parabolic subgroup
$P$ of $G=F_{4}(p^{n})$ and determine its character table. We state the character formula
(Theorem 2.3) relating irreducible characters of $G$ with those of $\ovalbox{\tt\small REJECT}(G, P)$; we note that
it involves a factor $|\mathscr{C}\cap D_{i}|$ where $\mathscr{C}$ is a unipotent class in $G$ and $D_{i}$ a double coset in
$P\backslash G/P$ . We compute this number in \S 3.

In \S 4, we determine the unknown almost character values of $G=F_{4}(p^{n}),$ $p=2$ or
3, leading us into the completion of the unipotent character table of $G=F_{4}(p^{n}),$ $p$

* Actually, when $p=2$, one characteristic function, $\chi_{A_{4}}$ , cannot be computed. But its restriction map
$\chi_{A_{4}}^{\prime}$ (see Theorem 1.7) can be determined and this would tum out to be sufficient for our purpose.
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arbitrary. \S 5 lists our results given in table form. We also include, omitting the details,
the unipotent character table of $Sp(8,2^{n})$ which can be formed from the Green functions
[Y] and the generalized Green functions.

Throughout the paper, $G$ will denote a connected reductive algebraic group with
connected center and split over a finite field $F_{q}$ of characteristic $p$, unless otherwise
specified; $F:G\rightarrow G$ will be the corresponding Frobenius morphism. $G$ will denote the
subgroup $G^{F}$ consisting of elements of $G$ fixed by $F$. Similarly, for subgroups $T,$ $P,$ $B$,
$U$ , etc., of $G$ , the corresponding subgroups of $G$ will be written $T,$ $P,$ $B,$ $U$, etc.

Card $S=|S|$ denotes the cardinality of a set $S$. If $H$ is a group and $S\subset H,$ $N_{H}(S)$

(resp., $Z_{H}(S)$) or simply $N(S)$ (resp., $Z(S)$) is the normalizer (resp., centralizer) of $S$ in
$H$. If $H$ is finite, Irr $H$ denotes the irreducible characters of $H$ over $C,$ $C(H/\sim)$ the space
of class functions onHover C, and $\langle\psi, \phi\rangle_{H}$ the inner product of $\psi,$ $\phi\in C(H/\sim)$ given
by $\langle\psi, \phi\rangle_{H}=\frac{1}{|H|}\sum_{h\in H}\psi(h)\overline{\phi(h)}$ , sometimes simply written $\langle\psi, \phi\rangle$ .

If $H$ is an algebraic group, $H^{o}$ will denote the connected component of $H$ containing
the identity element and $A_{H}(u)=Z_{H}(u)/Z_{H}(u)^{o}$ for $u\in H_{uni}$ , where $H_{unI}$ stands for the set
of unipotent elements in $H$.

When we take $G=F_{4}(p^{n})$ , we follow the notations in [Shil] and [Shol] for the
unipotent conjugacy classes. The simple roots $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3},$ $\alpha_{4}$ correspond to the vertices
of the Dynkin diagram of the Lie algebra of type $F_{4}$ as follows:

o–O-$=0-0$
$\alpha_{1}$ $\alpha_{2}$ $\alpha_{3}$ $\alpha_{4}$

Finally, we mention that the main parts of this paper are contained in the Doctor
of Science thesis of the first named author [Mar].

\S 1. Unipotent characters, almost characters, and characteristic functions.

Let $G$ be as in the introduction and $F$ the corresponding Frobenius map. Fix a
prime $l\neq p$ and let $Q_{l}$ be the algebraic closure of the field of l-adic numbers. Then for
an F-stable maximal torus $T$ and $\theta\in IrrT$, the generalized character $R_{T}^{G}(\theta)$ is defined by
Deligne and Lusztig in [DL].

In particular, when $\theta$ is the trivial representation of $T$, we obtain the unipotent
characters of $G$ .

(1.1) DEFINITION. An irreducible character $\chi$ of $G$ is said to be unipotent if
$\langle R_{T}^{G}(1), \chi\rangle\neq 0$ .

In [Lul], Lusztig showed that the unipotent characters can be classified into fam-
ilies and each family $\mathscr{F}$ can be parametrized in terms of a certain finite group $\Gamma$ which
must be one of
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1, $(Z/2Z)^{n}$ , $S_{3}$ , $S_{4}$ , and $S_{5}$ ,

(where $S_{n}$ denotes the symmetric group of degree $n$). Specifically,

$\mathscr{F}M(\Gamma)=\underline{1:1}\{(x, \sigma);x\in\Gamma, \sigma\in IrrZ_{\Gamma}(x)\}/\sim$ .
An operation $\{$ , $\}$ is defined on $M(\Gamma)$ so that the $|\mathscr{F}|\times|\mathscr{F}|$ -matrix with entries

$\{(x, \sigma), (y, \tau)\}$ for $(x, \sigma),$ $(y, \tau)\in M(\Gamma)$ is unitary and hermitian. Lusztig calls such a
matrix a Fourier transform matrix. Now, for each $\chi_{\langle x.\sigma)}\in \mathscr{F}$ an almost character $R_{\{x,\sigma)}$

is defined as follows:

$R_{\langle x,\sigma)}=\sum_{(y,\tau)\in M(\Gamma)}\Delta(\chi_{\langle y.\tau)})\{(x, \sigma), (y, \tau)\}\chi_{\langle y,\tau)}$

where $\Delta(\chi_{\langle y,\tau)})=\pm$ ] is the modification conceming exceptional characters ofWeyl groups
of type $E_{7}$ and $E_{8}$ (cf. [Lul, 4.21]).

Extending this definition to all irreducible characters, we obtain an orthonormal
basis for the space $C(G/\sim)$ of class functions on $G$ . Since the transition matrix from
this basis to that consisting of irreducible characters of $G$ is known and is invertible,
the problem of determining the values of the irreducible characters is reduced to
determining the values of the almost characters.

To describe the situation for the case $G=F_{4}(p^{n})$ more precisely, we recall the
following definition:

(1.2) DEFINITION. $\chi\in IrrG$ is cuspidal if for every proper parabolic subgroup $P$

of $G$ , the truncation map $T_{P/U}(\chi)=0$ where $U$ is the unipotent radical of $P$ and

$(T_{P/U}(\chi))(p)=\frac{1}{|U|}\sum_{u\in U}\chi(up)$ $(p\in P)$ .

(1.3) THEOREM. [Lul, Theorems 4.23, 8.6] $G=F_{4}(p^{n})$ has 37 unipotent characters
that can be classified as follows: (Here, $B$ is a fixed Borel subgroup of $G.$)
(1) 25 characters appearing in $1_{B}^{G}$ and denoted by $[\chi]$ where $\chi\in IrrW,$ $W$ the Weyl group

of $G$ ;
(2) 5 characters in $\delta_{P}^{G}$ where $\delta$ is the unique unipotent cuspidal character of $M$ with $M$

Levi subgroup of a parabolic subgroup $P$ of $G$ of type $B_{2}$ ;
(3) 7 cuspidal characters in $G$ .

For the 25 characters of $W=W(F_{4})$ , we follow the usual notation–that is, using
Kondo’s table in [Ko], the isolated characters of degree 4, 12 and 16 are denoted $4_{1}$ ,
$12_{1}$ , and $16_{1}$ , respectively, the 4 other characters of degree 4 are denoted $4_{2},4_{3},4_{4}$ ,
and $4_{5}$ in this sequence; the other characters of the same degree $d$ are denoted $d_{1},$ $d_{2}$ ,
etc., as they appear in the table. On the other hand, the 5 characters in (2) are denoted
$B_{2}[\chi]$ where $\chi\in IrrN(M)/M$ . Now $N(M)/M\cong W(B_{2})\cong D_{4}$ , the dihedral group of order
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8 which can be naturally embedded in $S_{4}$ . Irr $W(B_{2})=\{1, \epsilon, \epsilon^{\prime}, \epsilon^{\prime\prime}, r\}$ where 1 and $r$ are
the trivial and the degree-2 characters, respectively, and for a transposition $h_{2}$ and a
4-cycle $h_{4}$ in $W(B_{2}),$ $\epsilon^{\prime}(h_{2})=\epsilon^{\prime}(h_{4})=-1,$ $\epsilon^{\prime\prime}(h_{2})=1,$ $\epsilon^{\prime\prime}(h_{4})=-1$ , and $\epsilon=\epsilon^{\prime}\cdot\epsilon^{\prime\prime}$ . We denote
the 7 cuspidal unipotent characters in $G$ by $F_{4}[\theta],$ $F_{4}[\theta^{2}],$ $F_{4}[\iota],$ $F_{4}[-\iota],$ $F_{4}^{1}[1],$ $F_{4}^{11}[1]$ ,
and $F_{4}[-1]$ where $\theta$ (resp., $\iota$) is a fixed primitive cube (resp., fourth) root of 1 in C.

(1.4) THEOREM. [Lul, 4.10] The unipotent characters of $G=F_{4}(p^{n})$ belong to 11
families: eight l-element families, two 4-element families, and one 21-element family.

We list below the 37 unipotent characters opposite their labeling in the family they
belong (for the nontrivial families) [loc. cit., p. 371]. We note in particular that the 7
cuspidal characters lie in the 21-element family. For the notations, see [loc. cit.,
pp. 79, 80].

l-element families
$[1_{1}]$ $[1_{4}]$

$[9_{1}]$ $[9_{4}]$

$[8_{1}]$ $[8_{2}]$

$[8_{3}]$ $[8_{4}]$

4-element families
$[4_{2}]$ , $[4_{5}]\leftrightarrow(1,1)$

$[2_{3}]$ , $[2_{4}]\leftrightarrow$ $(1, \epsilon)$

$[2_{1}],$ $[2_{2}]\leftrightarrow(g_{2},1)$

$B_{2}[1],$ $B_{2}[\epsilon]\leftrightarrow(g_{2}, \epsilon)$

21-element family
$[12_{1}]$ $\leftrightarrow(1,1)$ $B_{2}[\epsilon^{\prime\prime}]\leftrightarrow(g_{2}, \epsilon^{\prime})$ $[6_{1}]$ $\leftrightarrow$ $(g_{3},1)$

$[9_{3}]$ $\leftrightarrow(1, \lambda^{1})$ $[4_{4}]$ $\leftrightarrow(g_{2}, \epsilon^{\prime\prime})$ $F_{4}[\theta]$ $\leftrightarrow$ $(g_{3}, \theta)$

$[1_{3}]$ $\leftrightarrow(1, \lambda^{2})$ $[9_{2}]$ $\leftrightarrow(g_{2}^{\prime},1)$ $F_{4}[\theta^{2}]\leftrightarrow(g_{3}, \theta^{2})$

$F_{4}^{u}[1]$ $\leftrightarrow(1, \lambda^{3})$ $F_{4}^{I}[1]\leftrightarrow(g_{2}^{\prime}, \epsilon)$ $[4_{3}]$ $\leftrightarrow$ $(g_{4},1)$

$[6_{2}]$ $\leftrightarrow(1, \sigma)$ $[1_{2}]$ $\leftrightarrow(g_{2}^{\prime}, \epsilon^{\prime})$ $B_{2}[\epsilon^{\prime}]$ $\leftrightarrow(g_{4}, -1)$

$[16_{1}]$ $\leftrightarrow(g_{2},1)$ $[4_{1}]$ $\leftrightarrow(g_{2}^{\prime}, \epsilon^{\prime\prime})$ $F_{4}[i]$ $\leftrightarrow$ $(g_{4}, i)$

$F_{4}[-1]\leftrightarrow(g_{2}, \epsilon)$ $B_{2}[r]\leftrightarrow(g_{2}^{\prime}, r)$ $F_{4}[-i]\leftrightarrow(g_{4}, -i)$

Again, let us consider the general case for G. In [Lu3], Lusztig defines character
sheaves as certain complexes of perverse sheaves on G. A character sheaf $A$ is said to
be F-stable if $A$ is isomorphic to the inverse image $F^{*}A$ . For each F-stable character
sheaf $A$ and an isomorphism $\varphi:F^{*}A$ ; $A$ , a function $\chi_{A,\varphi}\in C(G/\sim)$ , called the char-
acteristic function associated with $A$ and $\varphi$ , is defined. Now, Lusztig proves:

(1.5) THEOREM. [Lu2] Suppose $p$ is almost goodfor G–that is, $p$ is goodfor each
factor of exceptional type.

(i) { $\chi_{A,\varphi_{A}}$ : A F-stable character sheaf on $G,$ $\varphi_{A}$ : $F^{*}A\rightarrow\sim A$ appropriately chosen}
is an orthonormal basis for $C(G/\sim)$ .

(ii) Each $\chi_{A,\varphi_{A}}$ is computable.

In Lusztig’s program of determining the values of all irreducible characters of $G$ ,
it then remains to find the transition matrix from the characteristic functions to the
irreducible characters, for the case $p$ is almost good for G. He was able to determine
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part of this matrix in [Lu4] (for certain groups, including $G=F_{4}(p^{n})^{*}$ with $p\geq 5$), and
this submatrix tumed out to be sufficient to form the unipotent character table of $G$

(cf. Remark 4.3).
Now Lusztig made the following conjecture:

(1.6) CONJECTURE. [Lusztig] If $p$ is almost good for $G$, then the characteristic
functions coincide with the almost characters of $G$ up to scalar.

In [Sho4], Shoji proves that Lusztig’s conjecture holds if $G$ has connected center.
Moreover, when $G=F_{4}(p^{n})$ , he shows that it also holds when $p=3$ and a weaker version

of it holds when $p=2$ . We state Shoji’s results for the cases that we need.
For the rest of the section let $G$ be of type $F_{4}$ . We note that of the 37 almost

characters, 25 could be determined from the Green functions (restrictions of $R_{\Gamma}^{G}(1)$ to
the set $G_{uni}$ of unipotent elements of $G$ ) which can be computed due to the algorithm

in [Lu2, V, \S 24] as extended by [Sho4, I, Theorems 2.2 and 7.4]. In particular, it
follows that the restrictions on $p$ and $p^{n}$ for the table of Green functions in [Sho2] can
be replaced by $p\geq 3$ . If$p=2$ , G. Malle [Ma] determined the Green functions of $G$ ; also,

one of the authors computed them [Shi2] using the results in [Lo] and Table 7 in \S 5
and with several assumptions that are now assured by [Sho4].

If $p=2$ , the 5 almost characters in Theorem 1.3(2) could be determined through

the generalized Green functions associated with the Levi subgroup of type $B_{2}$ , which
can be computed as (ordinary) Green functions using the table in [Sp2] p. 330. We

note that the linear combinations of almost characters $B_{2}[1]+B_{2}[\epsilon^{\prime\prime}]+B_{2}[r]$ and
$B_{2}[\epsilon]+B_{2}[\epsilon^{\prime}]+B_{2}[r]$ can be calculated directly, again using [Lo] and Table 7. The 5
almost characters thus obtained are exhibited in Table 5. $A$ . If $p\geq 3$ , these 5 almost
characters are zero at unipotent elements.

So we just need to determine the values of the 7 remaining almost characters,

corresponding to the cuspidal characters of $G$ . For this, we look into the following

character sheaves of $G$ : (For notations on unipotent classes of $G$ , we follow [Spl]; for
representatives $x_{i}$ , [Shil] and [Shol]; and for character sheaves $A_{i}$ , [Sho4].)

A. When $p=2$ :
$A_{j}\leftrightarrow(u, \rho_{j})(j=1,2),$ $u=x_{31}$ a regular unipotent element of $G$ and $\rho_{1},$ $\rho_{2}$

linear characters of $A_{G}(u)$ such that $\rho_{1}(\overline{u})=i$ and $\rho_{2}(\overline{u})=-i$ where
$\langle\overline{u}\rangle=A_{G}(u)\cong Z/4Z$ ;

$A_{3}\leftrightarrow(u, \rho),$ $u=x_{29}$ unipotent element of type $F_{4}(a_{1}),$ $\rho$ the nontrivial
character of $A_{G}(u)\cong Z/2Z$ ;

$A_{4}\leftrightarrow(u, \rho),$ $u=x_{24}$ unipotent element of type $F_{4}(a_{2}),$ $\rho$ the sign character
of $A_{G}(u)\cong D_{4}$ ;

$A_{5}\leftrightarrow(u, \rho),$ $u=x_{17}$ unipotent element of type $F_{4}(a_{3}),$ $\rho$ the sign character
of $A_{G}(u)\cong S_{3}$ .

$\tau$ He initially assumes $p^{n}\equiv 1(mod 12)$ , then suggests that this assumption can be extended to $p\geq 5$ .



UNIPOTENT CHARACTERS OF THE CHEVALLEY GROUP 309

B. When $p=3$ :
$A_{j}\leftrightarrow(u, p_{j})(j=1,2),$ $u=x_{25}$ a regular unipotent element of $G$ and $\rho_{1},$ $\rho_{2}$

linear characters of $A_{G}(u)$ such that $\rho_{1}(\overline{u})=\theta$ and $\rho_{2}(\overline{u})=\theta^{2}(\theta$ a
primitive cube root of 1) where $\langle\overline{u}\rangle=A_{G}(u)\cong Z/3Z$ ;

$A_{3}\leftrightarrow(u, \rho),$ $u=x_{14}$ unipotent element of type $F_{4}(a_{3}),$ $\rho$ the sign character
of $A_{G}(u)\cong S_{4}$ .

C. When $p\geq 5$ :
$A_{1}\leftrightarrow(u, \rho),$ $u=x_{14}$ unipotent element of type $F_{4}(a_{3}),$ $\rho$ the sign character

of $A_{G}(u)\cong S_{4}$ .

(1.7) THEOREM. [Sho4, I, Theorems 6.3, 7.5] Following the notations above, $we$

have:
A. If$p=2$ , then there exist $c_{i}\in Q_{l}(1\leq i\leq 7)$ with $|c_{i}|=1$ for $i=1,2,3$ , such that

$R_{\langle g_{4},i)}=c_{1}\chi_{A_{1}}$ , $R_{\langle g_{4}.-i)}=c_{2}\chi_{A_{2}}$ , $R_{\langle g_{2},\epsilon)}=c_{3}\chi_{A_{3}}$ ,

$R_{\langle g_{2}^{\prime},\epsilon)}=c_{4}\chi_{A_{4}}+c_{5}\chi_{A_{5}}$ , and $R_{(1,\lambda^{3})}=c_{6}\chi_{A_{4}}+c_{7}\chi_{A_{5}}$ .
Moreover, $\chi_{A_{4}}=\chi_{A_{4}}^{\prime}+c\chi_{A_{5}}$ for some $c\in\overline{Q}_{l}$ where $\chi_{A_{4}}^{\prime}\in C(G/\sim)$ obtained by restricting
$\chi_{A_{4}}$ on $\mathscr{C}^{F}$ where $\mathscr{C}$ is the unipotent class of $G$ corresponding to $A_{4}$ .
B. If$p=3$ , then there exist $c_{i}\in Q_{l}$ with $|c_{i}|=1,$ $i=1,2,3$ such that

$R_{\langle g_{3},\theta)}=c_{1}\chi_{A_{1}}$ , $R_{\langle g_{3},\theta^{2})}=c_{2}\chi_{A_{2}}$ and $R_{(1,\lambda^{3})}=c_{3}\chi_{A_{3}}$ .
C. If $p\geq 5$ , then there exists $c_{1}\in Q_{l}$ with $|c_{1}|=1$ such that

$R_{\langle 1,\lambda^{3})}=c_{1}\chi_{A_{1}}$ .

(1.8) REMARKS. (i) The almost characters listed in the preceding theorem cor-
respond to cuspidal characters. Those almost characters corresponding to cuspidal
characters not listed are $0$ at all unipotent elements.

(ii) By Lusztig’s algorithm for Theorem 1.5 (ii) (when $p\geq 5$) and its extension by
Shoji, we can assume the $following^{*}$ :

$A:p=2$

s The unipotent elements at which a character function is $0$ are omitted.
$r$ In place of $\chi_{A_{4}}$ , we can determine only its restriction map $\chi_{A_{4}}^{\prime}$ (cf. Theorem 1.7).
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$B:p=3$ $C:p\geq 5$

We notice that $\chi_{A_{3}}$ of $p=3$ coincides with $\chi_{A_{1}}$ of $p\geq 5$ .
(iii) Yamagishi has determined the Green functions of $Sp(8,2^{n})$ under certain

assumptions [Y] which can now be removed due to Theorem 2.2 in [Sho4]. Since no
cuspidal characters exist in this case, we can form the unipotent character table as soon
as we know the values of the generalized Green functions associated with the Levi
subgroup of type $B_{2}$ . The values of the almost characters and unipotent characters thus
obtained are given in Tables 8 and 9.

\S 2. The Hecke algebra.

From the last section our problem of constructing the unipotent character table
of $G=F_{4}(p^{n})$ is reduced to finding the values of certain scalars. For this purpose
we form linear equations involving these scalars by computing the values of certain
unipotent characters in the 21-element family at unipotent elements in two ways. The
first way is by transforming the almost characters into unipotent characters by using
the $21\times 21$ -Fourier transform matrix’ and then applying Theorem 1.7.

The second way is through the Hecke algebras and is discussed in this sectipn.
Let $G$ be the finite group of Lie type corresponding to $G$ as in the last section.

Suppose $P$ is a subgroup of $G$ . Let $e=|P|^{-1}\sum_{x\in P}x$, a primitive idempotent in the group
algebra $CG$ . Then we define the Hecke algebra $\ovalbox{\tt\small REJECT}=\ovalbox{\tt\small REJECT}(G, P)$ associated with $G$ and $P$

to be the subalgebra $eCGe$ of $CG$ .
If we set

ind $x=|P:^{X}P\cap P|$ $(x\in G)$ , $\{D_{j}\}_{1\leq j\leq r}=P\backslash G/P$ ,

$D_{j}=Px_{j}P(1\leq j\leq r)$ , and $a_{j}=(indx_{j})ex_{J}e(1\leq j\leq r)$ ,

then $\{a_{j} ; 1\leq j\leq r\}$ is a basis of $\ovalbox{\tt\small REJECT}$ called the standard basis of $\ovalbox{\tt\small REJECT}$

We enumerate three results on Hecke algebras that we shall need later. For their
proof, please refer to [CR1].

r This matrix is in [Ca, p. 456] but the entry corresponding to $\{(1, \sigma), (g_{3},1)\}$ should be $-1/3$ .
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(2.1) PROPOSITION. [CR1, Theorem 11.25] Let $\ovalbox{\tt\small REJECT}$ be the Hecke algebra associated
with a finite group $G$ and subgroup $P$ .

(i) Let $\zeta\in IrrG$ and $\zeta|_{\ovalbox{\tt\small REJECT}}$ the restriction of $\zeta$ to $\ovalbox{\tt\small REJECT}$ Then $\zeta|_{\ovalbox{\tt\small REJECT}}\neq 0lf$ and only $\iota f$

$\langle\zeta, 1_{P}^{G}\rangle\neq 0$ .
(ii) The map from $\{\zeta\in IrrG:\langle\zeta, 1_{P}^{G}\rangle\neq 0\}$ to the set of irreducible characters of $\ovalbox{\tt\small REJECT}$

given by $\zeta\mapsto\zeta|_{X^{\rho}}$ is a bijection. Under this map, $\deg(\zeta|_{\ovalbox{\tt\small REJECT}})=\langle\zeta, 1_{P}^{G}\rangle$ .
(2.2) THEOREM. [CR1, Theorem 11.32] (i) The central primitive idempotents

$\{e\epsilon_{i} : \langle\zeta^{i}, 1_{P}^{G}\rangle\neq 0\}$ of $\ovalbox{\tt\small REJECT}$ are given by

$e\epsilon_{i}=\zeta^{i}(1)\cdot|G:P|^{-1}\sum_{j=1}^{r}$ $($ind $x_{j})^{-1}\zeta^{\ddagger}(a_{j}\wedge)a_{j}$ ,

where $\overline{a_{j}}=(indx_{j})ex_{j}^{-1}e$ for $1\leq j\leq r$ .
(ii) (Orthogonality relations) For $\varphi,$

$\varphi^{\prime}$ irreducible characters of $\ovalbox{\tt\small REJECT}$,

$\sum_{j=1}^{r}$ $($ind $x_{j})^{-1}\varphi(a_{j}\wedge)\varphi^{\prime}(a_{j})=\left\{\begin{array}{ll}0 & if \varphi\neq\varphi^{\prime},\\\varphi(e)\cdot|G;P|\cdot\zeta(1)^{-1} & \iota f\varphi=\varphi^{\prime}=\zeta|_{\ovalbox{\tt\small REJECT}}.\end{array}\right.$

(2.3) THEOREM. [CR1, Theorem 11.34] If $\zeta\in IrrG,$ $\langle\zeta, 1_{P}^{G}\rangle\neq 0$ , and $\zeta|_{x}=\varphi$ , then

$\zeta(t)=\frac{|Z_{G}(t)|\cdot.\{\sum_{j=1}^{r}(indx_{j})^{-1}\varphi(a_{j})|\mathscr{C}\cap D_{j}|\}}{|P|\{\sum_{j=1}^{r}(indx_{j})^{-1}\varphi(a_{j}\wedge)\varphi(a_{j})\}}$

where $\mathscr{C}$ is the conjugacy class of $G$ that contains $t\in G$ .
For the rest of the section, let $G=F_{4}(p^{n})$ . Then the Weyl group $W$ of $G$ has the

generating set $\{s_{1}, s_{2}, s_{3}, s_{4}\}$ where $s_{i}$ is the reflection corresponding to the root $\alpha_{i}$

$(1\leq i\leq 4)$ . Let $J=\{s_{1}, s_{2}, s_{4}\}$ and $P=P_{J}$ and $W_{J}$ the parabolic subgroups corresponding
to $J$ of $G$ and $W$, respectively. Since $\ovalbox{\tt\small REJECT}(G, P)\cong\ovalbox{\tt\small REJECT}(W, W_{J})$ (cf. [CIK]), and the de-
composition of $1_{W_{J}}^{W}$ is explicitly determined (cf. [A]), we know that $\ovalbox{\tt\small REJECT}$ is 17-dimensional,

$\ovalbox{\tt\small REJECT}\cong\underline{C\oplus C\oplus\cdots\oplus C}\oplus M_{2}(C)\oplus M_{2}(C)$ ,

9copies

and that (see \S 1 for the notations):

$1_{P}^{G}=[1_{1}]+[4_{2}]+[12_{1}]+[16_{1}]+[6_{1}]+[8_{3}]+[2_{1}]+[9_{2}]+[4_{3}]+2[8_{1}]+2[9_{1}]$ .
It then follows from Proposition 2.1 (ii) that $\ovalbox{\tt\small REJECT}$ has 9 characters of degree 1 and 2
characters of degree 2. We also note that 5 of the 11 characters in $1_{P}^{G}$ lie in the 21-element
family of unipotent characters of $G$ .

For $P\backslash G/P$ we choose the representatives $w_{i}$ as given in Table 1 and then form
the standard basis elements of $\ovalbox{\tt\small REJECT}:a_{i}=|P|^{-1}\sum_{x\in D_{i}}x,$ $1\leq i\leq 17$ .

For simplicity, suppose that the irreducible characters of $G$ in $1_{P}^{G}$ are $\zeta^{1},$ $\zeta^{2},$
$\cdots,$

$\zeta^{11}$

corresponding to the irreducible characters $\varphi^{1},$ $\varphi^{2},$
$\cdots,$

$\varphi^{11}$ , respectively, of $\ovalbox{\tt\small REJECT}$ where
$\varphi_{10}$ and $\varphi_{11}$ have degree 2.
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We notice that to apply the character formula (2.3) on $\zeta$ in $1_{P}^{G}$ , we need to know
two sets of values, namely $\varphi(a_{j})$ and $|\mathscr{C}\cap D_{j}|,$ $1\leq j\leq 17$ . Theorem 2.4 takes care of the
first; the second is discussed in the next section.

(2.4) THEOREM. The character table of $\ovalbox{\tt\small REJECT}(G, P)$ is as given in Table 3.

The rest of the section will be devoted to the proof of this theorem. First we note
that for $1\leq i,j\leq 17,$ $a_{i}a_{j}=\sum_{k=1}^{r}p_{i_{J}}^{k}a_{k}$, for $ p_{ij}^{k}\in$ C. Let $B_{i}=(p_{ij}^{k})_{(j.k)}$ . $B_{2}$ and $B_{3}$ in particular
can be formed without much difficulty (cf. [Go]).

(2.5) REMARK. Suppose $\varphi$ is an irreducible character of $\ovalbox{\tt\small REJECT}$ of degree 1. Then
$\varphi(a_{1})=1$ and $\varphi(a_{i})\varphi(a_{j})=\varphi(a_{i}a_{j})=\sum_{k=1}^{r}p_{ij}^{k}\varphi(a_{k})$ , and so

$\varphi(a_{i})\left(\begin{array}{l}1\\\varphi(a_{2})\\|\\\varphi(a_{r})\end{array}\right)=B_{i}\left(\begin{array}{l}1\\\varphi(a_{2})\\|\\\varphi(a_{r})\end{array}\right)$ .

Thus ${}^{t}(\varphi(a_{1})\varphi(a_{2})\cdots\varphi(a_{r}))$ , the transpose of $(\varphi(a_{1})\varphi(a_{2})\cdots\varphi(a_{r}))$ , is an eigenvector
of $B_{i}$ associated with the eigenvalue $\varphi(a_{i}),$ $1\leq i\leq r$ .

We look at $B_{2}=(p_{2j}^{k})_{\{j.k)}$ . Using Mathematica 2.0 for DEC RISC, we obtain:

(2.6) PROPOSmON. $B_{2}$ has the eigenvalues
(i) $-1-q+q^{2},$ $-1-q,$ $q(1+2q+2q^{2}+q^{3}),$ $-1+q+3q^{2}+2q^{3}$ , and $-1-q+$

$3q^{2}$ , each ofmultiplicity 1;

(ii) $\frac{q\sqrt{q(4+9q+4q^{2})}-2+3q^{2}+2q^{3}}{2}$ and $\frac{-q\sqrt{q(4+9q+4q^{2})}-2+3q^{2}+2q^{3}}{2}$

both ofmultiplicity 2;
(iii) $-1+2q^{2}+q^{3}$ ofmultiplicity 3; and
(iv) $-1-q-q^{2}$ ofmultiplicity 5.

Let us determine the degree 1 characters of $\ovalbox{\tt\small REJECT}$ Suppose ${}^{t}(1\alpha_{2}\cdots\alpha_{17})$ is an
eigenvector of $B_{2}$ with eigenvalue $\alpha_{2}$ one of those listed in the last proposition. If $\alpha_{2}$

has multiplicity 1 then this eigenvector is uniquely determined; for the other cases, it
involves $m-1$ parameters where $m$ is the multiplicity of $\alpha_{2}$ . For this eigenvector to give
rise to a character of $\ovalbox{\tt\small REJECT}$, the following must also hold according to Remark 2.5:

$\alpha_{3}\left(\begin{array}{l}1\\\alpha_{2}\\|\\\alpha_{17}\end{array}\right)=B_{3}\left(\begin{array}{l}1\\\alpha_{2}\\|\\\alpha_{17}\end{array}\right)$ .

In fact, even if we know only the 2nd, 3rd, 5th, and 6th rows, for example, of $B_{3}$ , we
will obtain exactly 9 solutions for $(1 \alpha_{2}\cdots\alpha_{17})$ : one each from the multiplicity 1 and
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multiplicity 3 eigenvalues and three from that having multiplicity 5. And since $\ovalbox{\tt\small REJECT}$ has
exactly 9 characters of degree 1, the 9 eigenvectors we just obtained should give us
these 9 characters of $\ovalbox{\tt\small REJECT}$ .

To determine the two degree 2 irreducible characters of $\ovalbox{\tt\small REJECT}$, we first form a linear
combination of these two. By Theorem 2.2 (i):

$e=\sum_{i=1}^{11}e\epsilon_{i}=|G:P|^{-1}$( $\sum_{i=1}^{11}\zeta^{i}(1)\sum_{j=1}^{17}$ $($ind $x_{j})^{-1}\varphi^{i}(a_{j}\wedge)a_{j}$).
This implies

$|G:P|^{-1}\sum_{j=1}^{17}$ $($ind $x_{j})^{-1}(\zeta^{10}(1)\varphi^{10}+\zeta^{11}(1)\varphi^{11})(a_{j}\wedge)a_{j}$

$=e-|G:P|^{-1}\sum$: $($ind $x_{j})^{-1}(\sum_{i=1}^{9}\zeta^{i}(1)\varphi^{i})(a_{j}\wedge)a_{j}$ .

We then obtain

(2.8) $(\zeta^{10}(1)\varphi^{10}+\zeta^{11}(1)\varphi^{11})(a_{j})=-\sum_{i=1}^{9}(\zeta^{i}(1)\varphi^{i})(a_{j})$ $(2\leq j\leq 17)$ .

Now, the values of the degree 1 irreducible characters $\varphi^{1},$
$\cdots,$

$\varphi^{9}$ of $\ovalbox{\tt\small REJECT}$ are already
known from the computations above and the degrees of $\zeta^{1},$

$\cdots,$
$\zeta^{11}$ are known in [Lul].

Thus, as soon as we know one of $\varphi^{10}$ and $\varphi^{11}$ , the other can be determined from (2.8).

Suppose $\rho^{i}$ is the irreducible matrix representation of $\ovalbox{\tt\small REJECT}$ affording the character
$\varphi^{i}(1\leq i\leq 11)$ . Then

$\rho^{10}(a_{i})=\left(\begin{array}{ll}\alpha_{i} & \beta_{i}\\\gamma_{i} & \delta_{i}\end{array}\right)$

with $\alpha_{i},$
$\beta_{i},$

$\gamma_{i},$
$\delta_{i}\in C$ , for $1\leq i\leq 17$ . Then $\varphi^{10}(a_{i})=a_{i}+\delta_{i}(1\leq i\leq 17)$ and we may assume

$\rho^{10}(a_{1})=\left(\begin{array}{ll}l & 0\\0 & 1\end{array}\right)$ and $p^{10}(a_{2})=\left(\begin{array}{ll}\alpha_{2} & \beta_{2}\\0 & \delta_{2}\end{array}\right)$ .

Now $B_{2}$ is the matrix of the regular representation of $\alpha_{2}$ and $B_{2}$ is similar to

$(\oplus_{i=1}^{9}\rho^{i}(a_{2}))\oplus\rho^{10}(a_{2})\oplus p^{10}(a_{2})\oplus\rho^{11}(a_{2})\oplus\rho^{11}(a_{2})$ .

Taking into account the multiplicities of the eigenvalues of $B_{2}$ , we can conclude that
$\alpha_{2}\neq\delta_{2}$ and both have multiplicity 2. Thus in the matrix representation above we may
assume $\beta_{2}=0$ . We then have

$\rho^{10}(a_{2}a_{j})=\sum_{k=1}^{17}p_{2j}^{k}p^{10}(a_{k})=\sum_{k=1}^{17}p_{2}^{k}\left(\begin{array}{lll} & \alpha_{k} & \beta_{k}\\J & \gamma_{k} & \delta_{k}\end{array}\right)$ , and

$\rho^{10}(a_{2}a_{j})=\rho^{10}(a_{2})\rho^{10}(a_{j})=\left(\begin{array}{ll}\alpha_{2} & 0\\0 & \delta_{2}\end{array}\right)\left(\begin{array}{ll}\alpha_{j} & \beta_{j}\\\gamma_{j} & \delta_{j}\end{array}\right)=\left(\begin{array}{ll}\alpha_{2}\alpha_{j} & \alpha_{2}\beta_{j}\\\delta_{2}\gamma_{j} & \delta_{2}\delta_{j}\end{array}\right)$ .

Thus
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$\alpha_{2}(\alpha_{17}\alpha_{2}1]=B_{2}\left(\begin{array}{l}1\\\alpha_{2}\\|\\\alpha_{17}\end{array}\right)$ , and $\delta_{2}\left(\begin{array}{l}1\\\delta_{2}\\|\\\delta_{17}\end{array}\right)=B_{2}\left(\begin{array}{l}1\\\delta_{2}\\|\\\delta_{17}\end{array}\right)$ .

Now for $2\leq j\leq 17$ , substituting the values of $\zeta^{i}(1)$ and $\varphi^{i}(a_{j})(1\leq i\leq 9)$ in the
right-hand side of (2.8), we obtain a rational integer. We can then conclude that $\{\alpha_{2}, \delta_{2}\}$

must be either $\{-1-q-q^{2}, -1+2q^{2}+q^{3}\}$ or {the two eigenvalues of multiplicity 2 in
Proposition 2.6}. Computing the eigenvectors ${}^{t}(1\alpha_{2}\cdots\alpha_{17})$ and ${}^{t}(1\delta_{2}\cdots\delta_{17})$ associ-
ated with $\alpha_{2}$ and $\delta_{2}$ , respectively, we obtain $\varphi^{10}$ ; $\varphi^{11}$ can then be determined at once
using (2.8).

\S 3. $|\mathscr{C}\cap D_{i}|$ .

Let $G$ be a finite group of Lie type corresponding to the connected reductive
algebraic group $G$ and Frobenius map $F:G\rightarrow G$ . Let $W$ be the Weyl group of G. Then
$W$ is a finite Coxeter group with a presentation $\langle s_{1}, s_{2}, \cdots, s_{l} : s_{i}^{2}=1, (s_{i}s_{j})^{m_{ij}}=1, i\neq j\rangle$

where $m_{ij}$ is the order of $s_{i}s_{j}$ . Let $J\subset\{s_{1}, s_{2}, \cdots, s_{l}\}$ and $ W_{J}=\langle J\rangle$ , the standard para-
bolic subgroup of $W$ corresponding to $J$. We then have

(3.1) PROPOSITION. [CR2, Theorem 64.38] Let $I,J\subset\{s_{1},s_{2}, \cdots, s_{l}\}$ . Then every
double coset $W_{I}wW_{J}\in W_{I}\backslash W/W_{J}$ contains a unique element $x$ ofminimal length satisfying:
For every $y\in W_{I}xW_{J}$, there exist $u\in W_{I}$ and $v\in W_{J}$ such that $y=uxv$ and $l(uxv)=l(u)+$

$l(x)+l(v)$ .

(3.2) REMARK. An element $x\in W_{I}wW_{J}$ satisfying the property stated in Proposi-
tion 3.1 is called a distinguished coset representative. We denote by $D_{IJ}$ the set of all
such coset representatives for $W_{I}\backslash W/W_{J}$ .

Suppose that $U,$ $B,$ $H,$ $N$, and $W=N/H$ are the subgroups associated with $G$ as a
group with split BN-pair. Moreover, let $(\Phi, \Delta)$ be the root system of $W$ with $\Phi^{+}$ (resp.,
$\Phi^{-})$ the set of positive (resp., negative) roots with respect to a fixed ordering. For $\alpha\in\Phi$,
let $U_{\alpha}=\{x_{\alpha}(t);t\in F_{q}\}$ ; for $w\in W,$ $ U_{w}^{+}=\langle U_{\alpha} : \alpha\in\Phi^{+}, w(\alpha)\in\Phi^{+}\rangle$ and $U_{w}^{-}=\langle U_{\alpha}$ : $\alpha\in\Phi^{+}$ ,
$ w(\alpha)\in\Phi^{-}\rangle$ . Suppose, as above, that $W$ has presentation \langle $s_{1},$ $s_{2},$ $\cdots,$ $s_{l}$ : $s_{i}^{2}=1,$ $(s_{i}s_{j})^{m_{ij}}=$

$1,$ $ i\neq j\rangle$ . Fix $J\subset\{s_{1}, s_{2}, \cdots, s_{l}\}$ . Let $ W_{J}=\langle J\rangle$ and $P_{J}=BW_{J}B$, the standard parabolic
subgroups associated with $J$ of $W$ and $G$ , respectively. Then we have the following
refinement of the Bruhat decomposition [CR2, Theorem 65.4]:

(3.3) PROPOSITION. Following the notations above,

$G=\bigcup_{w\in D_{J}}U_{w^{-1}}^{-}wP_{J}$ .
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Suppose $D_{JJ}=\{w_{1}, w_{2}, \cdots, w_{r}\}$ . Let $D_{i}=P_{J}w_{i}P_{J}$ for $1\leq i\leq r$ . For $x,$ $g\in G$ , let $x^{g}=$

$g^{-1}xg$ . For a fixed $x\in G$ , let $\mathscr{C}=\{x^{g} : g\in G\}$ , the conjugacy class of $G$ that contains $x$ ,
and $Z=Z_{G}(x)$ . We wish to determine $|\mathscr{C}\cap D_{i}|$ for $1\leq i\leq r$ .

By Proposition 3.3, we get:

Card $\{g\in G:x^{g}\in D_{i}\}=|Z|$ . Card $\{Zg\in Z\backslash G:x^{g}\in D_{i}\}=|Z|\cdot|\mathscr{C}\cap D_{i}|$

$=Card\{(u, w, p):w\in D_{\phi J}, u\in U_{w^{-1}}^{-}, p\in P_{J}, x^{uwp}\in D_{i}\}$ .

Since $x^{uwp}\in D_{i}$ if and only if $x^{uw}\in D_{i}$ , we have:

(3.4) COROLLARY. For $x\in G$ contained in the conjugacy class $\mathscr{C}$,

$|\mathscr{C}\cap D_{i}|=\frac{|P_{J}|}{|Z_{G}(x)|}\cdot Card\{(u, w):w\in D_{\phi J}, u\in U_{w^{-1}}^{-}, x^{uw}\in D_{i}\}$ .

By the last corollary, to determine $|\mathscr{C}\cap D_{i}|$ for a fixed $x\in G$ , we just have to know
which double coset $D_{i}$ contains $x^{uw}$ for each $w\in D_{\phi J}$ and $u\in U_{w^{-1}}^{-}$ . To carry this out we
note the following:
1. For each $w\in D_{\phi J},$ $u\in U_{w^{-1}}^{-}$ , suppose $x^{u}=x_{u,w^{-1}}^{-}x_{u,w^{-1}}^{+}$ where $x_{u,w^{-1}}^{+}\in U_{w^{-1}}^{+}$ and

$x_{u,w^{-1}}^{-}\in U_{w^{-1}}^{-}$ . Since $Px^{uw}P=P(x_{u,w^{-1}}^{-})^{w}(x_{u,w^{-1}}^{+})^{w}P=P(x_{u,w^{-1}}^{-})^{w}P$ , we may ignore
$x_{u,w^{-1}}^{+}$ .

2. If $(x_{u,w^{-1}}^{-})^{w}=x_{u,w}^{1}w^{\prime}x_{u,w}^{2}$ with $x_{u,w}^{1},$ $x_{u,w}^{2}\in P$ and $w^{\prime}\in W$, then $P(x_{u,w^{-1}}^{-})^{w}P=Pw^{\prime}P$ .
Therefore $Px^{uw}P=Pw^{\prime}P$ and $x^{uw}$ is in the double coset $D_{i}$ if and only if $w^{\prime}\in D_{i}$ .
Let us now consider $G=F_{4}(p^{n})$ . As in the previous section we take $J=\{s_{1}, s_{2}, s_{4}\}$

and form the parabolic subgroup $W_{J}$ of $W$. Tables 1 and 2 give the sets $D_{\phi J}$ and $D_{JJ}$

of distinguished coset representatives for $W/W_{J}$ and $W_{J}\backslash W/W_{J}$ , respectively.
Also, let $P=P_{J}$ be the corresponding parabolic subgroup of $G$ , and $D_{i}=Pw_{i}P$

$(1\leq i\leq 17)$ , the double cosets ofG over P.
We apply the procedure outlined above. For example, if $p=2,$ $x=x_{31}$ (cf. [Shil])

a regular unipotent element, and $w=w_{33}\in D_{\phi J}$ (cf. Table 2), an element $u\in U_{w^{-1}}^{-}$ is of
the form

$u=x_{4}(t_{1})x_{3}(t_{2})x_{3+4}(t_{3})x_{2+4}(t_{4})x_{1-2-3+4}(t_{5})x_{1-2+3+4}(t_{6})x_{1+2+3+4}(t_{7})x_{1+4}(t_{8})$

where $t_{j}\in F_{q},$ $1\leq j\leq 8$ (for the other notations, please refer to [Shil]); in this case we
can show that:

$x^{uw}\in D_{14}\Leftrightarrow t_{1}+t_{1}^{2}=0$ and $x^{uw}\in D_{15}\Leftrightarrow t_{1}+t_{1}^{2}\neq 0$ .
Insofar as we want to know $|\mathscr{C}\cap D_{i}|$ to determine the values of certain unipotent

characters on certain unipotent elements of $G$ , we don’t need to find this number for
all $x\in G$ . Moreover, using some information on the characters of $G$, we can obtain
$|\mathscr{C}\cap D_{i}|$ for all $i=1,2,$ $\cdots,$

$17$ if we know this cardinality for certain $i’ s$ .
For example, we consider the case $x=x_{29}$ , again for $p=2$ . Since $x_{29}\sim x_{29}^{-1}$ in
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$G,$ $D_{6}^{-1}=D_{7}$ , and $D_{10}^{-1}=D_{1q}$ , it follows that $|\mathscr{C}\cap D_{6}|=|\mathscr{C}\cap D_{7}|$ and $|\mathscr{C}\cap D_{10}|=$

$|\mathscr{C}\cap D_{11}|$ . We also know the values of the characters $[1_{1}],$ $[8_{1}],$ $[9_{1}],$ $[8_{3}],$ $[9_{2}]$ and
$[2_{1}]$ on $x_{29}$ . Moreover, using the transition matrix for the 21-family of irreducible
characters of $G$ , we have $[6_{1}](x_{29})=[4_{3}](x_{29})=0$ and $[12_{1}](x_{29})=[9_{2}](x_{29})$ . Combining
all of these information, $|\mathscr{C}\cap D_{\iota}|,$ $i=1,2,$ $\cdots,$

$17$, can be obtained the moment we know
its value for 6 different $i’ s$ (not containing both 6 and 7, nor both 10 and 11).

(3.5) THEOREM. Let $G=F_{4}(p^{n})$ . When $p=2$ (resp., $p=3$), Table 4.$A$ (resp., 4. $B$)
gives the values $|\mathscr{C}\cap D_{i}|(1\leq i\leq 17)$ for $\mathscr{C}$ the unipotent classes in $G$ containing
$x=x_{24},$ $x_{29},$ $x_{31},$ $x_{32},$ $x_{33}$ , and $x_{34}$ (resp., $x=x_{25},$ $x_{26}$ , and $x_{27}$).

(3.6) REMARKS. (i) We also computed $|\mathscr{C}\cap D_{i}|$ for $\mathscr{C}$ containing $x_{17}$ and $x_{30}$

when $p=2$ (cf. [Mar]).
(ii) It seems that computing $|\mathscr{C}\cap D_{i}|$ is a difficult problem. As far as we know

the only general theorem for $|\mathscr{C}\cap D_{i}|$ is the following result due to Kawanaka [Kal,
Theorem 7.2]: If $p$ is good for $G$ and $\mathscr{C}$ is a regular unipotent class, then $|\mathscr{C}\cap Bg|$ is
independent of $g\in G$ and of $\mathscr{C}$. As a corollary we have $|\mathscr{C}\cap D_{i}|=|\mathscr{C}\cap P|\cdot indx_{i}$ .
Although this result doesn’t hold in the case $G=F_{4}(p^{n})$ and $p=2$ or 3, we can show
something similar (cf. Table 4):

$|a\cap D_{i}|=|a\cap P|$ . ind $x_{i}$ ,

where ee is the set of all regular unipotent elements in $G$ .

\S 4. Results.

In this section we restrict $G$ to $F_{4}(p^{n})$ and we follow the notations in \S 2 and \S 3.
As we saw after (1.6), we only need to determine the 7 almost characters cor-

responding to cuspidal characters to complete the unipotent character table of $G$ .
Two (resp., four, six) of them are zero at unipotent elements when $p=2$ (resp., $p=3$ ,
$p\geq 5)$ . The nonzero almost characters are precisely those we listed in Theorem 1.7; to
determine the values of these almost characters, we only need to determine $c_{i}(1\leq i\leq 7)$

and $c$ in $(1.7.A)$ if $p=2,$ $c_{i}(1\leq i\leq 3)$ in $(1.7.B)$ if $p=3$ and $c_{1}$ in $(1.7.C)$ if $p\leq 5$ .
First let us consider the case $p=2$ . To determine $R_{\langle g_{4}.i)}$ and $R_{(g_{4},-i)}$ , we apply

Theorem 2.3 with $\zeta=[12_{1}]$ at the regular unipotent element $x_{31}$ :

$[12_{1}](x_{31})=\frac{|Z_{G}(x_{31})|\cdot.\{\sum_{j=1}^{17}(indx_{j})^{-1}[12_{1}](a_{j})|\mathscr{C}\cap D_{j}|\}}{|P|\{\sum_{j=1}^{17}(indx_{j})^{-1}[12_{1}](a_{j})^{2}\}}$

where $\mathscr{C}$ is the unipotent class of $G$ that contains $x_{31}$ . Using Table 3 (for the values of
$[12_{1}](a_{j}))$ and Table 4.$A$ (for the values of $|\mathscr{C}\cap D_{i}|$), we get $[12_{1}](x_{31})=*q^{2}$ . Now,
forming the irreducible character $[12_{1}]$ from the 21-element family of almost characters
using the $21\times 21$ -Fourier transform matrix, and applying Theorem 1.7 and the table
in Remark 1.8 (ii), we get
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$[12_{1}](x_{31})=\frac{1}{4}R_{\langle g_{4},i)}(x_{31})+\frac{1}{4}R_{\langle g_{4},-i)}(x_{31})=\frac{1}{4}(c_{1}+c_{2})q^{2}$

Thus $c_{1}+c_{2}=2$ . Since $|c_{1}|=|c_{2}|=1,$ $c_{1}=c_{2}=1$ .
Similarly, we have

$[12_{1}](x_{29})=\frac{1}{4}q^{3}=\frac{1}{4}R_{\langle g_{2},\epsilon)}(x_{29})=\frac{1}{4}c_{3}q^{3}$ ,

and so $c_{3}=1$ . Also,

$[12_{1}](x_{24})=\frac{1}{8}q^{3}(4+q)=(\frac{1}{8}R_{\langle g_{2},\epsilon)}+\frac{1}{4}R_{(g_{2}^{\prime},r)})(x_{24})$

$=\frac{1}{8}(c_{4}\chi_{A_{4}}^{\prime}+(cc_{4}+c_{5})\chi_{A_{5}})(x_{24})++q^{3}$

$=\frac{1}{8}c_{4}q^{4}+*q^{3}$ ,

which implies that $c_{4}=1$ . Thus,

$R_{\langle g_{2},\epsilon)}=\chi_{A_{4}}^{\prime}+(c+c_{5})\chi_{A_{5}}$ and $R_{\langle 1.\lambda^{3})}=c_{6}\chi_{A_{4}}^{\prime}+(cc_{6}+c_{7})\chi_{A_{5}}$ .

Now since $\langle R_{\langle g_{2}^{\prime},\epsilon)}, R_{\langle g_{2},\epsilon)}\rangle=\langle\chi_{A_{4}}^{\prime}, \chi_{A_{4}}^{\prime}\rangle=1$ and $\langle\chi_{A_{4}}^{\prime}, \chi_{A_{5}}\rangle=0$ , we have $c+c_{5}=0$ and
$c_{6}=0$ .

To show that $c_{7}=1$ , we follow Lusztig’s method in [Lu3, 8.12]. Specifically, using
the 21-element family transition matrix, we have $[12_{1}](x_{17})=\frac{1}{24}q^{4}(5+c_{7}q^{2})$ . Since this
value must be a rational integer, $c_{7}=\pm 1$ and $3|5+c_{7}q^{2}$ ; thus, $c_{7}$ must be equal to 1.

Thus, we obtain the following

(4.1) THEOREM. For $G=F_{4}(2^{n})$ ,

$R_{(g_{4}.i)}=\chi_{A_{1}}$ , $R_{(g_{4},-i)}=\chi_{A_{2}}$ , $R_{(g_{2},e)}=\chi_{A_{3}}$ ,

$R_{(g_{2},\epsilon)}=\chi_{A_{4}}^{\prime}$ , and $R_{\langle 1.\lambda^{3})}=\chi_{A_{5}}$ .
Now let us consider the case when $p=3$ . Using Tables 3 and 4. $B$ , and applying

Theorem 2.3 with $\zeta=[12_{1}]$ and $t=x_{25}$ , we get $[12_{1}](x_{25})=\frac{2}{3}q^{2}$ . But also, using the
transition matrix from the almost characters to unipotent characters in the 21-element
family and Theorem 1.7 and Remark 1.8 (ii), we have

$[12_{1}](x_{25})=\frac{1}{3}(R_{(g_{3},\theta)}+R_{(g_{3},\theta^{2})})(x_{25})=\frac{1}{3}(c_{1}\chi_{A_{1}}+c_{2}\chi_{A_{2}})(x_{25})=\frac{1}{3}(c_{1}+c_{2})q^{2}$

As above, it then follows that $c_{1}=c_{2}=1$ and therefore, $R_{\langle g_{3},\theta)}=\chi_{A_{1}}$ and $R_{\langle g_{3}.\theta^{2})}=\chi_{A_{2}}$ .
Now following the method to prove $c_{6}=1$ in Theorem 4.1, we have $[12_{1}](x_{14})=$

$\frac{1}{24}q^{4}(23+c_{3}q^{2})$ , which must be a rational integer. Therefore $c_{3}=\pm 1,8|23+c_{3}q^{2}$ and
so $c_{3}=1$ giving us $R_{\langle 1,\lambda^{3})}=\chi_{A_{3}}$ . We therefore have

(4.2) THEOREM. For $G=F_{4}(3^{n})$ ,

$R_{\langle g_{3},\theta)}=\chi_{A_{1}}$ , $R_{(g_{3}.\theta^{2})}=\chi_{A_{2}}$ , and $R_{\langle 1,\lambda^{3})}=\chi_{A_{3}}$ .
(4.3) REMARK. The method used to prove $R_{(1,\lambda^{3})}=\chi_{A_{3}}$ is also valid for the

corresponding relation $R_{\langle 1,\lambda^{3})}=\chi_{A_{1}}$ if $p\geq 5$ . In fact using the result of Shoji [Sho4, I,
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Theorem 5.7], we also have $[12_{1}](x_{14})=\frac{1}{24}q^{4}(23+c_{1}q^{2})$ , which is a rational integer.
Thus we get $ c_{1}=\pm$ ] and $24|23+c_{1}q^{2}$ . Since $q^{2}\equiv 1$ (mod24) for $p\geq 5$ , we must have
$c_{1}=1$ . This is actually the method devised by Lusztig in [Lu3, 8.12] to determine the
unipotent character table of $G=F_{4}(p^{n})$ under the initial assumption $p^{n}\equiv 1(mod 12)$ ,
and this restriction can thus be replaced by $p\geq 5$ as he suggested and as we just showed
above.

The values at unipotent elements of the almost unipotent characters which are not
obtainable from the Green functions are listed in Table 5. $A$ (resp., 5. $B$) when $p=2$

(resp., $p=3$). We can then complete the unipotent character table of $G$ .
(4.4) THEOREM. Table 6.$A$ (resp., 6. $B$) gives the unipotent character table of $F_{4}(p^{n})$

when $p=2$ (resp., $p=3$).

(4.5) REMARK. The corresponding tables for the case $p\geq 5$ can be derived at once
from the tables for the case $p=3$ . We note that if $p\geq 5,$ $G$ has 26 unipotent classes, the
first 25 of which coincide with the first 25 of the case $p=3$ (cf. [Shol]). In fact the
values of the unipotent characters on these 25 classes are equal for $p\geq 5$ and for $p=3$ ;
for the 26th class, the regular unipotent class, the character values are all equal to $0$

except for the character $[1_{1}]$ which has the value 1.

\S 5. Tables.

In the tables, $G=F_{4}(p^{n}),$ $p=2$ or 3, unless otherwise specified. For the unipotent
conjugacy classes of $G$, we follow the notations in [Shil] and [Shol] when $p=2$ and
$p=3$ , respectively. When a subset $J$ of the generating set of the Weyl group $W$ of $G$

appears in a table, it is understood to be the subset $J=\{s_{1}, s_{2}, s_{4}\}$ ; the parabolic subgroup
$P$ is $P_{J}$ and $P\backslash G/P=\{D_{j} : 1\leq j\leq 17\}$ .

For simplicity, we use $i$ to denote $s_{i},$
$1\leq i\leq 4$ , in Tables 1 and 2. $\phi_{n}$ is the nth

cyclotomic polynomial–for example, $\phi_{1}=q-1,$ $\phi_{2}=1+q$ and $\phi_{6}=1-q+q^{2}$ ; a dot
entry stands fora value of O.

For Table 7, consider the parabolic subgroup $P_{I}$ of $G$ where $I=\{s_{1}, s_{2}, s_{3}\}$ . Suppose
$\mathscr{C}$ is a conjugacy class of $G$ and $\mathscr{C}^{\prime}$ a conjugacy class of $P_{I}/U_{I}$ where $U_{I}$ is the unipotent
radical of $P_{I}$ . If $x$ is an arbitrary element of $\mathscr{C}$ and $\pi:P_{I}\rightarrow P_{I}/U_{I}$ is the canonical map
we define

$g_{CC^{\prime}}=Card$ { $gP_{I}\subset G:x^{g}\in P_{I}$ and $\pi(x^{g})\in \mathscr{C}^{\prime}$ }.
Table 7 gives these values for unipotent conjugacy classes. For the unipotent class
representatives $z_{i}$ of $P_{I}/U_{I}$ , we follow [Shil].

Since $Sp(8,2^{n})=C_{4}(2^{n})\cong B_{4}(2^{n})$ we can use the $y_{i}$-notation for $B_{4}(2^{n})$ in [Shil] for
the unipotent classes of $Sp(8,2^{n})$ . However we change the ordering slightly as follows:
$u_{i}=y_{i}(0\leq i\leq 24, t\neq 4,5,6,7),$ $u_{4}=y_{7},$ $u_{5}=y_{6},$ $u_{6}=y_{4}$ , and $u_{7}=y_{5}$ . For the almost
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characters and unipotent characters, we use symbols introduced by Lusztig [Lul].

List of Tables.

1 The elements of $D_{JJ}$

2 The elements of $D_{\phi J}$

3 The character table of $\ovalbox{\tt\small REJECT}(G, P)$

4 $|\mathscr{C}_{j}\cap D_{i}|\cdot|Z_{G}(x_{j})|/|P|$ where $\mathscr{C}_{j}$ is the conjugacy class containing $x_{j}$

when
A. $p=2$ B. $p=3$

5 The values at unipotent elements of the almost characters of $G$ not
obtainable from the Green functions and whose restrictions at $G_{uni}$ is
not $0$ when

A. $p=2$ B. $p=3$

6 The unipotent character table of $G$ when
A. $p=2$ B. $p=3$

7 The table $g_{CC^{\prime}}$

8 The values at unipotent elements of the almost characters of $Sp(8,2^{n})$

grouped according to families
9 The values at unipotent elements ofthe unipotent characters ofSp$(8,2^{n})$

that belong to the 4-element families
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TABLE 1. The elements of $D_{JJ}$

$w_{1}=\{\}$

$w_{2}=3$

$w_{3}=323$

$w_{4}=3423$

$w_{\$}=323123$

$w_{6}=3423123$

$w_{7}=3234123$
$w\epsilon=3234323$

$w_{9}=32343123$

$w_{10}=3234323123$
$w_{11}$ =32$1234$23
$w_{12}=34231234123$
$w_{13}=342312343123$
$w_{14}=3231234323123$
$w_{1\$}=34231234323123$

$w_{16}=3234323123423123$
$w_{17}=32312343231234323123$

TABLE 2. The elements of $D_{J}$

$w_{1}=$ $\{\}$ $w_{33}=32343123$ $w_{\epsilon\epsilon}=432312343123$

$w_{2}=3$ $w_{34}=31234123$ $w_{66}=342312343123$
$w_{3}=23$ $u_{3\$}=43234123$ $cv_{67}=234231234123$

$w_{4}=43$ $w_{36}=31234323$ $w_{68}=3231234323123$
$w_{6}=123$ $w_{37}=234323123$ $w_{69}=4231234323123$
$\iota v_{6}=323$ $w_{38}=$ 123423123 $w_{70}=4323123423123$
$w_{7}=423$ $w_{39}=323423123$ $w_{71}=3423123423123$
$w_{6}=3123$ $w_{40}=312343123$ $w_{72}=3432312343123$
$w_{9}=4123$ $w_{41}$ =4$2$4$123 $w_{73}=2342312343123$

$w_{10}=4323$ $w_{42}=231234123$ $w_{74}=$ 1234231234123
$w_{11}=3423$ $w_{43}=431234123$ $w_{76}=43231234323123$
$w_{12}=23123$ $w_{44}=231234323$ $w_{76}=34231234323123$
$u\prime_{13}=43123$ $w_{45}=$ 1234323123 $w_{77}=34323123423123$
$w_{14}=34123$ $w_{46}=3234323123$ $w_{78}=23423123423123$
$w_{1\$}=34323$ $w_{47}=3123423123$ $w_{79}=23432312343123$
$w_{16}=23423$ $w_{46}=4323423123$ $w_{80}=$ 12342312343123
$w_{17}=323123$ $w_{49}=2312343123$ $cv_{81}=343231234323123$
$w_{16}=423123$ $w_{50}=4312343123$ $\tau v_{82}=234231234323123$

$w_{19}=343123$ $w_{\$ 1}=4231234123$ $wm=234323123423123$
$w_{20}=234123$ $w_{S2}=3231234323$ $\iota v_{64}=$ 123423123423123
$cv_{21}=$ 234323 $w_{53}=31234323123$ $w\epsilon s=$ 123432312343123
$w_{22}=$ 123423 $u\prime_{S4}=43234323123$ w\mbox{\boldmath $\epsilon$}\mbox{\boldmath $\epsilon$}=2$43231234323123
$w_{23}=4323123$ lV55 $=23123423123$ $w_{07}=$ 1234231234323123
$w_{2I}$ =342312$ $w_{86}=43123423123$ $w_{68}=$ 1234323123423123
$w_{25}=2343123$ $w_{57}=32312343123$ $w_{89}=3234323123423123$
$w_{26}=$ 1234123 $w_{58}=42312343123$ $w_{90}=$ 12343231234323123
$w_{27}=3234123$ $wso=34231234123$ $w_{91}=3234?231234323123$
$w_{28}=$ 1234323 $w_{60}=43231234323$ $w_{92}=31234323123423123$
$w_{29}=3234323$ $w_{61}$ =2$1234323123 $w_{93}=312343231234323123$
$w_{30}=34323123$ $w_{62}=431234323123$ $w_{94}$ =23123432312$423123
$w_{31}=23423123$ $cv_{63}=323123423123$ $w_{9\$}=2312343231234323123$
$w_{32}=$ 12343123 $w_{64}=423123423123$ $cv_{96}=32312343231234323123$
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