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where $x=(x_{1}, x_{2}, \cdots, x_{n}),$ $x^{\prime}=(x_{2}, \cdots, x_{n}),$ $n\geq 2$ , the coefficients $h_{j}$ and $a_{ij}$ belong to
$\mathscr{B}^{l+1+\sigma}(R\times\overline{R_{+}^{n}})$ and are constants outside a compact set in $R\times\overline{R_{+}^{n}}$, the coefficients $a_{0}$ ,
$a_{j}$ and $e_{0}$ belong to $\mathscr{B}^{l}(R\times\overline{R_{+}^{n}})$ and are constants outside a compact set in $R\times\overline{R_{+}^{n}}$, the
coefficients $b_{j},$ $c$ and $\gamma$ belong to $\mathscr{B}^{l+1+\sigma}(R\times R^{n-1})$ and are constants outside a compact
set in $R\times R^{n}$

‘ 1 $l$ is a non-negative integer, and $\sigma$ is a real number $(1/2<\sigma<1)$ .
This paper is a continuation of the previous paper [7], and the aim here is to give

a complete and sharp symmetrization of the $L^{2}$-well-posed mixed problem (P) for
regularly hyperbolic equations of second order in $R_{t+}^{1}\times R_{x+}^{n}$ , by which we reduce our
mixed problem to the problem for symmetric hyperbolic differential systems of first
order with non-negative type boundary condition. See the introduction in [7] for the
purpose of the symmetrization. In [7], we treated a symmetrization of an $L^{2}$-well-posed
mixed problem (P) under the conditions (A.I) and (A.III-j):

(A.III-I) $\left\{\begin{array}{l}c(t, x^{\prime})\neq 1\\|1+c(t, x^{\prime})|-|1-c(t, x^{\prime})|\\\geq 2\{\sup_{\eta’}|{\rm Re} b(t, x^{\prime}, \eta^{\prime})|^{2}+\sup_{\eta’}|{\rm Im} b(t, x^{\prime}, \eta^{\prime})^{2}\}^{1/2}\end{array}\right.$

or

(A.III-2)
$\{_{c(t,x’)\geq\sup_{\eta^{\prime}}|b(t,x’,\eta’)|}^{Thefunctionsb_{j}andc}$

are real valued, and

or

(A.III-3) (1.3) holds

or

(A.III-4) $\left\{\begin{array}{ll}{\rm Re} b_{j}\equiv 0(j=2, \cdots, n), & {\rm Re} c\equiv 0 and\\1+\{{\rm Im} c(t, x^{\prime})\}^{2}>\{{\rm Im} b(t, x^{\prime} & , \eta^{\prime})\}^{2}\end{array}\right.$

for all $(t, x^{\prime}, \eta^{\prime})\in R\times R^{n-1}\times(R^{n-1}-\{0\})$ . The condition (A.III-j) is a special case of the
condition (A.II) $(j=1, \cdots, 4)$ . If $b_{j}$ and $c$ are real valued, the condition (A.III-2) is
equal to the condition (A.II). If $b_{j}$ and $c$ are pure imaginary valued, the condition
(A.III-4) is equal to the condition (A.II). Also, the condition (A.III-3) is equal to the
uniform Lopatinski boundary condition. In [7], we could not obtain a symmetrization
of the problem (P) under the conditions (A.I) and (A.II). Here, we succeed in solving
the above problem, and obtain a complete and sharp symmetrization of the $L^{2}$-well-posed
mixed problem (Main Theorem 1). The key points of our method are Corollary of
Lemma 2.1 in [7], the condition (A.II) and Lemma 2.1. In [7], we used the another
condition which gave the $L^{2}$-well-posedness, and here we knew that under the condition
(A.I), the condition (A.II) held if and only if the problem (P) was $L^{2}$-well-posed. Main
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Theorem 1 is useful to the $L^{2}$-well-posed mixed problem (P) in the domain $(0, T)\times\Omega$

instead of $R_{+}^{1}\times R_{+}^{n}$ where $\Omega$ is adomain in $R^{n}$ and $\partial\Omega$ is smooth. But, it is not always
useful to the problem (P) in $(0, T)\times\Omega$ where $\partial\Omega$ is non-smooth, i.e. $\partial\Omega$ has a corner.
Therefore, we treat a symmetrization ofan $L^{2}$-well-posed mixed problem (Main Theorem
2), which is useful to the mixed problem in a domain with a corner ([6]). Main Theorem
2 is an extension of Theorem A in [7], which was used in Reference 34 in [7]. To
obtain Main Theorem 2, we use Corollary of Lemma 2.1 in [7], the condition (A.II’)
and Lemma 2.2. And various applications of these two symmetrizations (mixed prob-
lems for regularly hyperbolic equations of second order, weakly hyperbolic equations
of second order, the wave equation in a domain with a comer, non-linear hyperbolic
equations of second order and etc.) will be considered in [6] and in future (see [3]).

Since our paper is continued from [7], the references are added to those in [7].
As for the other symmetrization, we refer the reader to [2] and [4].

The paper is organized as follows. In \S 1, we state the notation, the assumption
and the result. In \S 2, we treat several lemmas. In \S 3, we prove Main Theorem 1. In \S 4,
we prove Main Theorem 2.

\S 1. The statement of the notation, the assumption and the result.

Firstly, we introduce notations.
For $\tilde{\tau},$

$\xi^{\sim},$ $d(\eta^{\prime}),$ $Q_{0}$ and $Q_{1}$ , we use the same definitions as the definitions of the
notations in [7: (2.12), (2.27) and (2.28)]. Also, we use the notations in [7: p. 135 and
p. 178] except for the following notations:

$d(t, x^{\prime}, \eta^{\prime})=[\sum_{i,j=2}^{n}a_{ij}(t, 0, x^{\prime})\eta_{i}\eta_{j}-\frac{1}{a_{11}(t,0,x^{\prime})}(\sum_{j=2}^{n}a_{1_{J}}\langle t,$ $0,$ $x^{\prime}$)$\eta_{j})^{2}$

$+(1+\frac{h_{1}(t,0,x^{\prime})^{2}}{a_{11}(t,0,x’)})^{-1}\{\sum_{j=2}^{n}(h_{j}(t, 0, x^{\prime})$

$-\frac{h_{1}(t,0,x^{\prime})}{a_{11}(t,0,x’)}a_{1j}(t, 0, x^{\prime}))\eta_{j}\}^{2}]^{1/2}$

$b(t, x^{\prime}, \eta^{\prime})=\sum_{j=2}^{n}b_{j}(t, x^{\prime})\eta_{j}/d(t, x^{\prime}, \eta^{\prime})$

$\Lambda$ : $\Lambda\in S^{1}$ and its symbol $\sigma(\Lambda)=\langle\eta^{\prime}\rangle$

$|u|_{k+\sigma,R^{m}}$ : the norm of $\mathscr{B}^{k+\sigma}(R^{m})(0\leq\sigma<1)$

$K_{1+\sigma}=|a_{11}|_{x_{1}=0}|_{1+\sigma,R\times R^{n- 1}}+\sum_{j=2}^{n}|b_{j}|_{1+\sigma,RxR^{n-1}}+|c|_{1+\sigma,RxR^{n-1}}$
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$\tilde{K}_{1+\sigma}=\sum_{i.j=1}^{*}|a_{ij}|_{x_{1}=0}|_{1+\sigma.RxR^{\mathfrak{n}-1}}+\sum_{j=1}^{n}|h_{j}|_{x_{1}=0}|_{1+\sigma.RxR^{n-1}}$

$+\sum_{j=2}^{n}|b_{j}|_{1+\sigma,RxR^{n-1}}+|c|_{1+\sigma.RxR^{n-1}}$

$\aleph t,$ $x,$ $X$ ) $=s(t, x, \eta^{\prime})|_{\eta=X}$ , $X=(X_{2}, \cdots, X_{n})$ .
We assume the following conditions for the problem (P):

(A.I) The operator $L$ is regularly hyperbolic on $R\times\overline{R_{+}^{n}}$ and
$a_{11}(t, x)>0$ on $R\times\overline{R_{+}^{n}}$

and

$(1.1)(A.II)$

$1_{1+|c(t,x)|^{2}>|b(t,x’,\eta)|^{2}}^{{\rm Re} c(t,x^{\prime})\geq 0}\{{\rm Re} c(t,x’)\}^{2}\geq\{ReXt,x^{\prime},\eta^{\prime})\}^{2}+\{{\rm Re} c(t, x\gamma{\rm Im} ut,x’,\eta^{\prime})-{\rm Im} c(t,x)\cdot{\rm Re}\aleph t, x^{\prime}, \eta^{\prime})\}^{2}$

or

(A.II’) (A.II) holds and $c(t, x^{\prime})\neq 1$

for all $(t, x^{\prime})\in R\times R^{n-1}$ and all $\eta^{\prime}\in R^{n-1}-\{0\}$ .
REMARK 1. (I) We have the fact that the second inequality in (1.1) is equivalent

to the following inequality

(1.2) $[\{{\rm Re} c(t, x)\}^{2}-\{{\rm Re} b(t, x^{\prime}, \eta^{\prime})\}^{2}]$

$[1+\{{\rm Im} c(t, x^{\prime})\}^{2}-\{{\rm Im} b(t, x^{\prime}, \eta^{\prime})\}^{2}]$

$\geq\{{\rm Re} c(t, x^{\prime})\cdot{\rm Im} c(t, x^{\prime})-{\rm Re}\aleph t, x^{\prime}, \eta^{\prime})\cdot{\rm Im}(b(t, x^{\prime}, \eta^{\prime})\}^{2}$

Now, assume the condition (A.I). Then, by (1.2), we obtain that the problem (P) is
$L^{2}$-well-posed if and only if the condition (A.II) holds (see Reference 19 in [7]).

(II) Assume the condition (A.I). Then, the problem (P) satisfies the uniform
Lopatinski boundary condition if and only if the following condition holds,

(1.3) $\left\{\begin{array}{l}{\rm Re} c(t, x^{\prime})>0\\\{{\rm Re} c(t, x^{\prime})\}^{2}>\{{\rm Re} b(t, x^{\prime}, \eta^{\prime})\}^{2}+\{{\rm Re} c(t, x^{\prime})\\{\rm Im} b(t, x^{\prime}, \eta^{\prime})-{\rm Im} c(t, x^{\prime})\cdot{\rm Re} b(t, x^{\prime}, \eta^{\prime})\}^{2}\end{array}\right.$

for all $(t, x^{\prime})\in R\times R^{n-1}$ and all $\eta^{\prime}\in R^{n-1}-\{0\}$ .
REMARK 2. We assume that $h_{j}\in g^{l+1+\sigma}(R^{1}\times\overline{R_{+}^{n}})$ etc. for the treatment of not
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only the mixed problem (P) but also the boundary value problem $L[u]=f(x_{1}>0)$ and
$B[u]|_{x_{1}=0}=g$ (see Reference [19: p. 218] in [7]). But, the condition $h_{j}\in \mathscr{B}^{l+1+\sigma}(R\times\overline{R_{+}^{n}})$

is replaced by the condition $h_{j}\in \mathscr{B}^{l+1+\sigma}(\overline{R_{+}^{1}}\times\overline{R_{+}^{n}})$ , etc. for the mixed problem. Also,
in (A.I), the condition $a_{11}(t, x)>0$ on $R\times\overline{R_{+}^{n}}$ is replaced by the condition $a_{11}(t, 0, x^{\prime})>0$

on $\overline{R_{+}^{1}}\times R^{n-1}$ for the mixed problem.
Now, we state our results.

MAIN THEOREM 1. Assume the conditions (A.I) and (A.II). Then, the mixedproblem
(P) is reduced to the mixed problem for a symmetric hyperbolic system offirst order with
non-negative type boundary condition (see (3.14) and (3.15)).

REMARK 3. See (3.15) for the sense of non-negative type boundary condition. We
treat the symmetrization ofthe problem (P) under (1.3) (see Theorem 3.2 in this paper).

MAIN THEOREM 2. Assume the conditions (A.I) and (A.II’). Then, the mixedproblem
(P) is reduced to the mixed problem for a symmetric hyperbolic system offirst order with
non-negative type boundary condition (see (3.14) and (4.10)).

REMARK 4. See (4.10) for the sense of non-negative type boundary condition.
The symmetrization in Main Theorem 2 is different from the one in Main Theorem 1.
This symmetrization is used to treat the mixed problem in a domain with a corner (see
Remark 6 in this paper and [6]).

\S 2. Several lemmas.

In this section, we prepare several lemmas which are useful to obtain our results.
We set

under the conditions (A.I) and (A.II) where $c_{1},$ $c_{2},$ $b_{j1},$ $b_{j2},$ $b_{I},$ $b_{II},\tilde{b}_{I}$ and $\tilde{b}_{II}$ are real
valued functions and $2\leq j\leq n$ .

Firstly, we treat several inequalities under the condition (A.II). These results are
used in \S 3.
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LEMMA 2.1. Assume the conditions (A.I) and (A.II). Then, we have the following
inequality

(2.2) $c_{1}^{2}\{(1+|c|^{2})d^{2}-\tilde{b}_{I}^{2}-ff_{II}^{2}\}-(\tilde{\alpha}_{1}^{2}+\tilde{\alpha}_{2}^{2})\geq 0$

for all $(t, x^{\prime})\in R\times R^{n-1}$ and all $\eta^{\prime}\in R^{n-1}$ where $c_{1},$
$c_{2},\tilde{b}_{I},\tilde{b}_{1I},\tilde{\alpha}_{1}$ and $\tilde{\alpha}_{2}$ are samefunctions

as in (2.1), and $d=d(t, x^{\prime}, \eta^{\prime})$ .
$PR\infty F$ . By simple calculations and (A.II), we have

(2.3) $c_{1}^{2}(1+|c|^{2}-|b|^{2})-(|\alpha_{1}|^{2}+|\alpha_{2}|^{2})$

$=(1+|c|^{2})\{c_{1}^{2}-b_{1}^{2}-(c_{1}b_{II}-c_{2}b_{I})^{2}\}\geq 0$ .
Therefore, we obtain Lemma 2.1. Q.E.D.

REMARK 5. Assume the conditions (A.I) and (1.3). Then, by (1.3) and (2.3), there
is a positive constant $D$ such that

(2.4) $c_{1}^{2}[(1+|c|^{2}Xd(\eta^{\prime})|_{x_{1}=0})^{2}-\tilde{b}_{I}^{2}-\tilde{b}_{u}^{2}]-(\tilde{\alpha}_{1}^{2}+\tilde{\alpha}_{2}^{2})\geq D(d(\eta^{\prime})|_{x_{1}=0})^{2}$

for all $(t, x^{\prime})\in R\times R^{n-1}$ and all $\eta^{\prime}\in R^{n-1}$ where $c_{1},$
$c_{2},\tilde{b}_{I},\tilde{b}_{II},\tilde{\alpha}_{1}$ and $\tilde{\alpha}_{2}$ are the same

functions as in (2.1), and

(2.5) $\left\{\begin{array}{l}d(\eta^{\prime})|_{x_{1}=O}=d(t,x^{\prime},\eta^{\prime})\\d(\eta’)^{2}>0forall(t,x)\in R^{1}\times\overline{R_{+}^{n}}andall\eta^{\prime}\in R^{n-1}-\{0\}\\(see(2.6),(2.9)\sim(2.11)and(2.12)in[7])\end{array}\right.$

Secondly, we treat several inequalities under the condition (A.II’). These results
are used in \S 4.

We set

under the conditions (A.I) and (A.II’)

LEMMA 2.2. For the functions $\tilde{q}_{0},\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$ in (2.6) and $d=d(t, x^{\prime}, \eta^{\prime})$, we have

(2.7) $4(\tilde{\beta}_{1}^{2}+\tilde{\beta}_{2}^{2})\leq(|c+1|-|c-1|)^{2}(d^{2}-\tilde{q}_{O}^{2})$
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i.e.

(2.8) $4\{(B\tilde{q}_{0}+\tilde{b}_{I})^{2}+(-A\tilde{q}_{0}+\tilde{b}_{\mathbb{I}})^{2}\}\leq(|c+1|-|c-1|)^{2}(d^{2}-\tilde{q}_{0}^{2})$ .

PROOF. We consider the following quadratic inequality with respect to $q$ ,

(2.9) $4\{(Bq+b_{I})^{2}+(-Aq+b_{II})^{2}\}\leq(|c+1|-|c-1|)^{2}(1-q^{2})$ ,

i.e.

(2.10) $f(q)=(|c+1|+|c-1|)^{2}q^{2}+8(b_{I}B-b_{II}A)q$

$+4(b_{I}^{2}+b_{II}^{2})-(|c+1|-|c-1|)^{2}\leq 0$ .
Then, the discriminant $D$ of the quadratic equation $f(q)=0$ with respect to $q$ satisfies
the following,

(2.11) $D/4=16(b_{I}B-b_{I1}A)^{2}-4(b_{I}^{2}+b_{II}^{2})\cdot 2(1+c_{1}^{2}+c_{2}^{2}+A^{2}+B^{2})+16c_{1}^{2}$ .

By (1.1), (2.6), (2.11) and simple calculations, we have

(2.12) $D=64\{c_{1}^{2}-b_{I}^{2}-(c_{1}b_{II}-c_{2}b_{I})^{2}\}\geq 0$ .
Also, by (A.II’) and (2.6), we get

(2.13) $(|c+1|+|c-1|)^{2}\mp 4(b_{II}A-b_{I}B)$

$=2\{1+c_{1}^{2}+c_{2}^{2}-b_{I}^{2}-b_{II}^{2}+(A\mp b_{II})^{2}+(B\pm b_{I})^{2}\}>0$ .

Then, by (2.12) and (2.13), $wehavearealrootq_{0}(t, x^{\prime}, \eta^{\prime})$ of the inequality (2.9) which
satisfies $|q_{0}|<1$ . Q.E.D.

REMARK 6. In [6], we considered a case where

(2.14) $f(O)=4(b_{I}^{2}+b_{II}^{2})-(|c+1|-|c-1|)^{2}\leq 0$ .

\S 3. Proof of Main Theorem 1.

In this section, we shall prove Main Theorem 1 by using the results in \S 2 and
notations in (2.1) (without writing variables sometimes).

By (A.I), (A.II) and (2.5), we have

(3.1)
$\langle t,x$)

$\in R\times R^{n- 1}\inf_{|\eta’|=1}[ff(\eta^{\prime})|_{x_{1}=0}^{2}-\frac{|\tilde{b}|^{2}}{1+|c|^{2}}]>0$ .

Then, by (2.5) and (3.1), there exist a positive constant $\delta$ and a function $\rho$ such that

(3.2) $\left\{\begin{array}{l}\rho\in C^{\infty}(R),0\leq\rho\leq 1\\\rho(x_{1})=1(x_{1}\leq\delta),\rho(x_{1})=0\end{array}\right.$

$(x_{1}\geq 2\delta)$

and
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(3.3)
$\langle t.x$)

$\in Rx\overline{R_{+}^{n}}\inf_{|\eta^{\prime}|=1}[d(\eta^{\prime})^{2}-\frac{\{\rho(x_{1})\cdot|\tilde{b}|\}^{2}}{1+|c|^{2}}]>0$
.

We set

(3.4)
$\left\{\begin{array}{ll}\tilde{p}_{o}(t, x, \eta^{\prime})=\frac{-\rho(x_{1})\cdot\tilde{b}_{1}}{\sqrt{1+|c|^{2}}}, & ff_{0}(t, x, \eta^{\prime})=\frac{\rho(x_{1})\cdot\tilde{b}_{II}}{\sqrt{1+|c|^{2}}}\\J(\eta^{\prime})=d(\eta^{\prime})^{2}-\{\beta_{0}(t, x, \eta^{\prime})\}^{2} & \{\tilde{q}_{0}(t, x, \eta^{\prime})\}^{2}\end{array}\right.$

for $(t, x)\in R\times\overline{R_{+}^{n}}$ and $\eta^{\prime}=(\eta_{2}, \cdots, \eta_{n})\in R^{n-1}$ . Then, by the same argument in [7: $p$ .
$164\sim p$ . $167$], and (3.3), we have the following facts:

(i) There is a real and symmetric $(n-1)\times(n-1)$ matrix $M(t, x)\in g^{l+1+\sigma}(R\times\overline{R_{+}^{n}})$

such that for ${}^{t}\eta^{\prime}=(\eta_{2}, \cdots, \eta_{n})\in R^{n-1}$ ,

(3.5) $J(\eta^{\prime})={}^{t}\eta^{\prime}M\eta^{\prime}$ and $M>0$ .
(ii) There exist a real $(n-1)\times(n-1)$ matrix $ N(t, x)\in$ es $\iota+1+\sigma(R\times\overline{R_{+}^{n}})$ and positive

constants $C_{1}$ and $C_{2}$ such that

(3.6) $\left\{\begin{array}{l}{}^{t}NMN=diag(\theta_{2}(t,x),\cdots,\theta_{n}(t,x))>0\\C_{1}>|detN(t,x)|>C_{2}\end{array}\right.$

(iii) For $J(\eta^{\prime})$ in (3.4), we have
$n$

(3.7) $\left\{\begin{array}{ll}J(\eta^{\prime})={}^{t}\zeta^{\prime}\cdot\zeta^{\prime}, & d(\eta^{\prime})=ff_{0}^{2}+ff_{0}^{2}+\sum_{j=2}\zeta_{j}^{2}\\\sigma_{0}(L)=\xi^{\sim_{2}}+\beta_{0}^{2} & ff_{0}^{2}+\sum_{j=2}^{n}\zeta_{j}^{2}-\tilde{\tau}^{2}\end{array}\right.$

where

(3.8) $\zeta^{\prime}={}^{t}(\zeta_{2}, \cdots, \zeta_{n})=diag(\sqrt{\theta_{2}}, \cdots, \sqrt{\theta_{n}})\cdot N^{-1}\cdot\eta^{\prime}$

$(\eta^{\prime}=^{t}(\eta_{2}, \cdots, \eta_{n}))$ .
We set

(3.9) $\left\{\begin{array}{ll}Q_{21}=F_{0}(t, x, \frac{\partial}{\partial x^{\prime}})=\sum_{j=2}^{n}p_{j}\frac{\partial}{\partial x_{j}}, & p_{j}=\frac{-\rho(x_{1})b_{j1}}{\sqrt{1+|c|^{2}}}\\Q_{22}=5_{0}(t, x, \frac{\partial}{\partial x^{\prime}})=\sum_{j=2}^{n}q_{j}\frac{\partial}{\partial x_{j}}, & q_{j}=\frac{\rho(x_{1})b_{j2}}{\sqrt{1+|c|^{2}}}\end{array}\right.$

and
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(3.10) $\left\{\begin{array}{l}((p_{ij}(t,x))=diag(\sqrt{\theta_{2}},\cdots,\sqrt{\theta_{n}})\cdot N^{-1}\\Q_{j+1}=\sum_{l=2}^{n}p_{jl}(t,x)\frac{\partial}{\partial x_{l}}(i=2,\cdots,n)\end{array}\right.$

where $\partial/\partial x^{\prime}=(\partial/\partial x_{2}, \cdots, \partial/\partial x_{n})$ .
For the solution $u$ of the problem (P), we set

(3.11) $U=\left(\begin{array}{l}U_{1}\\U_{2}\\U_{3}\\|\\U_{n+1}\\U_{n+2}\end{array}\right)=\left(\begin{array}{l}Q_{O}u-Q_{1}u+z(Q_{21}u-iQ_{22}u)\\z(Q_{O}u+Q_{1}u)+Q_{21}u+iQ_{22}u\\Q_{3}u\\|\\Q_{n+1}u\\u\end{array}\right)$

where

(3.12) $z(t, x^{\prime})=\frac{\sqrt{1+|c(t,x^{\prime})|^{2}}}{c(t,x’)+1}$ .

We have

(3.13) $\left\{\begin{array}{ll}\hat{\alpha}_{k}=\tilde{\alpha}_{k}(t, x^{\prime}, \frac{\partial}{\partial x’})=\sum_{j=2}^{n}\hat{\alpha}_{jk}(t, x^{\prime})\frac{\partial}{\partial x_{j}} & (k=1,2)\\\hat{\alpha}_{j1}(t, x^{\prime})=b_{j1}-c_{2}(c_{1}\cdot b_{j2}-c_{2}\cdot b_{j1}) & \\\hat{\alpha}_{j2}(t, x^{\prime})=c_{1}(c_{1}\cdot b_{j2}-c_{2}\cdot b_{j1}). & \end{array}\right.$

Then, by the same argument in [7: p. $164\sim p$ . $167$], we have:

(Main Theorem 1) Assume the conditions (A.I) and (A.II) for the problem (P).
Then, $U$ in (3.11) satisfies the following system:

$n$

(3.14) $\left\{\begin{array}{l}MU_{t}=A_{1}U_{x_{1}}+\sum_{j=2}A_{j}U_{x_{j}}+EU+F(t, x)\\U(0, x)=U_{O}(x)\\PU|_{x_{1}=0}=G(t, x^{\prime})\\(t, x)=(t, x_{1}, x^{\prime})\in R_{+}^{1}\times R_{+}^{1}\times R^{n-1}\end{array}\right.$

where

$M=(1+\frac{h_{1}(t,x)^{2}}{a_{11}(t,x)})^{1/2}diag(1,1,1+|z|^{2}, \cdots, 1+|z|^{2},1)$

$-\frac{h_{1}(t,x)}{\sqrt{a_{11}(t,x)}}diag(-1,1,1-|z|^{2}, \cdots, 1-|z|^{2},1)$ ,
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$A_{1}=\sqrt{a_{11}(t,x)}diag(-1,1,1-|z|^{2}, \cdots, 1-|z|^{2},1)$ ,

$A_{j}=\frac{a_{1_{J}}\langle t,x)}{a_{11}(t,x)}A_{1}+(1+\frac{h_{1}(t,x)^{2}}{a_{11}(t,x)})^{-1/2}\cdot(h_{j}(t, x)$

$-\frac{h_{1}(t,x)}{a_{11}(t,x)}a_{1j}(t, x))diag(1,1,1+|z|^{2}, \cdots, 1+|z|^{2},1)$

$+\left\{\begin{array}{llllll}0 & & p_{j}-iq_{j} & \vdots & & 0\\p_{j}+iq_{j} & & 0 & \vdots & & \\\cdots & \cdots & \cdots & & \cdots & \cdots\\ & & & \vdots & -2(Rez\cdot p_{j}+Imz\cdot q_{j}) & \\ & & & \vdots & & 0\\ & & & \vdots & & -2(Rez\cdot p_{j}+Imz\cdot q_{j})\\ & 0 & & \vdots & 0 & 1\end{array}\right\}$

$+\sum_{l=2}^{n}p_{lj}\langle l+1)row[o_{1}oo_{0}$

$\overline{z}$ $0$

$0$

$(l+1)$ column

$000$

$0z001$

$0$

$0_{0}]$ $(j=2, \cdots, n)$ ,

$E\cdots an$ $(n+2)\times(n+2)$ matrix which has the property that for $E=(e_{ij})$ ,
$e_{ij}$ belongs to as $\iota(R\times\overline{R_{+}^{n}})$ ,

$F={}^{t}(f, zf, 0, \cdots, 0)$ ,

$P=(1,$ $\frac{c-1}{\sqrt{1+|c|^{2}}},$
$-\frac{2(\tilde{\alpha}_{21}+i\tilde{\alpha}_{22})}{(c+1X1+|c|^{2})},$ $-\frac{2(\tilde{\alpha}_{n1}+i\tilde{\alpha}_{n2})}{(c+1X1+|c|^{2})},$ $0)$

$(^{(\tilde{\alpha}_{21}+\iota}\{$$\tilde{\alpha}_{22}.’\cdots,\tilde{\alpha}_{n1}+i\tilde{\alpha}_{n2})=(\hat{\alpha}_{21}+i\hat{\alpha}_{22}Ndiag(\frac{1}{\sqrt{\theta_{2}}},\cdots,\frac{1}{\sqrt{\theta_{n}}})\}|_{x_{1}=0} \hat{\alpha}_{n1}+i\hat{\alpha}_{n2})(\tilde{\alpha}_{j1},\tilde{\alpha}_{j2}\in R;j=2, \cdots, n))$
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$G=-\frac{2g(t,x^{\prime})}{c(t,x^{\prime})+1}$ ,

and the following inequality holds,

(3.15) $\langle A_{1}|_{x_{1}=0}\tilde{U},\tilde{U}\rangle\geq-C(K_{1+\sigma})\ll\tilde{u}\gg 2$ for all $\tilde{U}\in KerP$

where $u\in g_{t}^{0}(H_{2}(R_{+}^{n}))\cap \mathscr{E}_{t}^{1}(H_{1}(R_{+}^{n}))\cap d_{t}^{2}(L^{2}(R_{+}^{n}))$ is the solution of the problem (P), $U$

is the same vector as in (3.11), $\tilde{u}=u|_{x_{1}=0},\tilde{U}=U|_{x_{1}=0}$ and $C$ is apositive constant depending
on $K_{1+\sigma}$ .

$PR\infty F$ . By the same argument as in [7: p. $164\sim p$ . $167$], $(3.9),$ $(3.10),$ $(3.11),$ $(3.12)$

and (3.13), we have (3.14). Therefore, we have only to prove (3.15).
From now on, we shall prove (3.15).
We denote $h|_{x_{1}=0}$ by $\tilde{h}$. Let $\tilde{U}\in KerP$ . Then, we get

(3.16) $\tilde{U}_{1}=\frac{1-c}{\sqrt{1+|c|^{2}}}\tilde{U}_{2}+\frac{2}{(c+1)(1+|c|^{2})}(\hat{\alpha}_{1}+i\hat{\alpha}_{2})\tilde{u}$ .

We set

(3.17) $I=\frac{1}{\sqrt{a_{11}(t,0,x’)}}[A_{1}|_{x_{1}=0}\tilde{U},\tilde{U}]$ for $\tilde{U}\in KerP$ .

Then, we get

(3.18) $I=\{-|\tilde{U}_{1}|^{2}+|\tilde{U}_{2}|^{2}+\frac{2c_{1}}{|c+1|^{2}}\sum_{j=2}^{n}|\tilde{Q}_{j+1}\tilde{u}|^{2}+|\tilde{u}|^{2}\}$

where

(3.19) $\tilde{Q}_{j+1}=\sum_{l=2}^{n}p_{jl}(t, 0, x^{\prime})\frac{\partial}{\partial x_{l}}$ $(j=2, \cdots, n)$ .

By (3.16), we have for $c_{1}(t, x^{\prime})>0$ ,

(3.20) $|\tilde{U}_{1}|^{2}\leq|\tilde{U}_{2}|^{2}+\frac{2}{c_{1}|c+1|^{2}(1+|c|^{2})}|(\hat{\alpha}_{1}+i\hat{\alpha}_{2})\tilde{u}|^{2}$

Also, by (3.4), (3.7), (3.8), (3.9), (3.10) and (3.19), we obtain

(3.21) $\sum_{j=2}^{n}|\tilde{Q}_{j+1}\tilde{u}|^{2}=[\{d(t,$ $x^{\prime},\frac{\partial v}{\partial x’})^{2}-|\tilde{Q}_{21}v|^{2}-|\tilde{Q}_{22}v|^{2}\}$

$+\{d(t,$ $x^{\prime},\frac{\partial w}{\partial x’})^{2}-|\tilde{Q}_{21}w|^{2}-|\tilde{Q}_{22}w|^{2}\}]$

where
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(3.22) $\left\{\begin{array}{l}v=Re\tilde{u},w=Im\tilde{u},\frac{\partial v}{\partial x’}=(\frac{\partial v}{\partial x_{2}},\frac{\partial v}{\partial x_{n}})\\\tilde{Q}_{21}=\sum_{j=2}^{n}p_{j}(t,0,x^{\prime})\frac{\partial}{\partial x_{j}},\tilde{Q}_{22}=\sum_{j=2}^{n}q_{j}(t,0,x^{\prime})\frac{\partial}{\partial x_{j}}\end{array}\right.$

and etc. Therefore, by (3.2), (3.4), (3.9), (3.12), (3.18), (3.20) and (3.21), we get

(3.23) $I\geq\frac{2}{c_{1}|c+1|^{2}(1+|c|^{2})}\{[c_{1}((1+|c|^{2})d(t,$ $x^{\prime},$ $\frac{\partial v}{\partial x’})^{2}$

$-(\sum_{j=2}^{n}{\rm Re} b_{j}\frac{\partial v}{\partial x_{j}})^{2}-(\sum_{j=2}^{n}{\rm Im} b_{j}\frac{\partial v}{\partial x_{j}})^{2})-|\hat{\alpha}_{1}v|^{2}$

$-|\hat{\alpha}_{2}v|^{2}]+[c_{1}^{2}((1+|c|^{2})d(t,$ $x^{\prime},$ $\frac{\partial w}{\partial x’})^{2}$

$-(\sum_{j=2}^{n}{\rm Re} b_{j}\frac{\partial w}{\partial x_{j}})^{2}-(\sum_{j=2}^{n}{\rm Im} b_{j}\frac{\partial w}{\partial x_{j}})^{2})-|\hat{\alpha}_{1}w|^{2}$

$-|\hat{\alpha}_{2}w|^{2}]-2(\hat{\alpha}_{2}v\cdot\hat{\alpha}_{1}w-\hat{\alpha}_{1}v\cdot\hat{\alpha}_{2}w)\}$ .

Then, by (2.2), (3.13) and (3.23), we have

(3.24) $I\geq\frac{-4}{c_{1}|c+1|^{2}(1+|c|^{2})}(\hat{\alpha}_{2}v\cdot\hat{\alpha}_{1}w-\hat{\alpha}_{1}v\cdot\hat{\alpha}_{2}w)$

for $c_{1}(t, x^{\prime})>0$ . Also, by (A.II), we obtain

(3.25) $\{(t, x^{\prime})\in R\times R^{n-1}|\sum_{j=2}^{n}({\rm Re} b_{j})^{2}=0\}\supseteq\{(t, x^{\prime})\in R\times R^{n-1}|c_{1}=0\}$ .

Then, by (3.13), (3.24) and (3.25), we get

(3.26) $I\geq\frac{-4}{|c+1|^{2}(1+|c|^{2})}(\alpha_{2}v\cdot\hat{\alpha}_{1}w-\hat{\alpha}_{1}v\cdot\alpha_{2}^{\wedge}w)$

for $c_{1}(t, x^{\prime})>0$ and $c_{1}(t, x^{\prime})=0$ where $\alpha_{2}^{\wedge}=c_{1}^{-1}\cdot\hat{\alpha}_{2}$ . By (A.I), (3.26), $v$, $ w\in$

$g_{t}^{0}(H_{3/2}(R_{x^{\prime}}^{n-1}))\cap\ovalbox{\tt\small REJECT}_{t}^{1}(H_{1/2}(R_{x’}^{n-1}))$ and the fact that $C_{0}^{\infty}(R_{x’}^{n-1})$ is dense in $H_{3/2}(R_{x^{\prime}}^{n-1})$, we
have

(3.27) $\langle A_{1}|_{x_{1}=0}\tilde{U}, O\rangle=\int_{R^{n-1}}\sqrt{a_{11}(t,0,x^{\prime})}Idx^{\prime}$

$\geq\int_{R^{n-1}}\{k[\hat{\alpha}_{1}, \alpha_{2}^{\wedge}]v\cdot w+(\hat{\alpha}_{1}k\cdot\alpha_{2}^{\wedge}v-\alpha_{2}^{\wedge}k\cdot\hat{\alpha}_{1}v)w\}dx^{\prime}$
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where

(3.28) $k=\frac{4\sqrt{a_{11}(t,0,x^{\prime})}}{|c(t,x’)+1|^{2}(1+|c(t,x’)|^{2})}$ .

LEMMA 3.1 ([5]). Assume that $a\in \mathscr{B}^{\sigma}(R_{x’}^{n-1})(1/2<\sigma<1)$ and $T\in S^{1/2}$ whose
symbol is equal to $T(\eta^{\prime})(\eta^{\prime}=(\eta_{2}, \cdots, \eta_{n}))$ . Then, we have

(3.29) $\ll[a, T]\theta\gg 0\leq C|a|_{\sigma,R^{n-1}}\ll\theta\gg 0$

where $C$ is a positive constant.

Also, for $a\in \mathscr{B}^{\sigma}(R_{x^{\prime}}^{n-1})(1/2<\sigma<1)$ , we have

(3.30) $\langle a\frac{\partial}{\partial x_{j}}v,$ $w\rangle=\langle\Lambda^{-1/2}[a,$ $\frac{\partial}{\partial x_{j}}\Lambda^{-1/2}]\Lambda^{1/2}v,$ $\Lambda^{1/2}w\rangle$

$+\langle\Lambda^{-1/2}\frac{\partial}{\partial x_{j}}\Lambda^{-1/2}a\Lambda^{1/2}v,$ $\Lambda^{1/2}w\rangle$ $(j=2, \cdots, n)$ .

By the results in [1: p. 214], we obtain

(3.31) $\ll\Lambda^{1/2}h\gg 02\leq C\ll\tilde{u}\gg 21/2$ for $h=v,$ $w$

where $C$ is a positive constant. Then, by (3.27), Lemma 3.1, (3.30) and (3.31), we obtain
(3.15).

Therefore, we get Main Theorem 1. Q.E.D.

REMARK 7. We have that $M,$ $A_{j}\in \mathscr{B}^{l+1+\sigma}(R\times\overline{R_{+}^{n}}),$ $z,$
$P\in \mathscr{B}^{l+1+\sigma}(R\times R^{n-1})$ and

$|z|\leq 1$ .
REMARK 8. To obtain the energy inequality of higher order, we have to estimate

$U_{x_{1}}$ for $U$ in (3.11). Operating the differential operator $Q_{j+1}(j=2, \cdots, n)$ for
$U_{1}=Q_{0}u-Q_{1}u+z(Q_{21}u-iQ_{22}u)$ where $U={}^{t}(U_{1}, U_{2}, \cdots, U_{n+2})$ in (3.11), we can obtain
the similar result as Corollary of Theorem 5.1 in [7].

Now, we have the following result for the problem (P) under (1.3).

THEOREM 3.2. Assume the conditions (A.I) and (1.3) for the problem (P). Then,
(3.14) holds and we have the following inequality,

(3.32) $\langle A_{1}|_{x_{1}=0}\tilde{U},\tilde{U}\rangle\geq C_{1}\langle\tilde{U},\tilde{U}\rangle-C_{2}\ll\tilde{u}\gg 02$ for all $\tilde{U}\in KerP$

where $u\in\ovalbox{\tt\small REJECT}_{t}^{0}(H_{2}(R_{+}^{n}))\cap \mathscr{E}_{t}^{1}(H_{1}(R_{+}^{n}))\cap \mathscr{E}_{t}^{2}(L^{2}(R_{+}^{n}))$ is the solution of the problem (P), $U$

is the same vector as in (3.11), $\tilde{u}=u|_{x_{1}=0},\tilde{U}=U|_{x_{1}=0}$ and $C_{1}$ and $C_{2}$ are positive constants

depending on $\tilde{K}_{1}(\sigma=0)$ , and $A_{1}=\sqrt{a_{11}(t,x)}diag(-1,1,1-|z|^{2}, \cdots, 1-|z|^{2},1)$ .

PROOF. We have only to prove (3.32). We have for $\tilde{U}\in KerP$,
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(3.33) $|\tilde{U}_{1}|^{2}\leq\frac{|1-c|^{2}+2c_{1}(1-\epsilon)}{1+|c|^{2}}|\tilde{U}_{2}|^{2}+\frac{2}{|c+1|^{2}(1+|c|^{2})^{2}}$

. $\{\frac{|1-c|^{2}}{c_{1}}(1+\frac{\epsilon}{1-\epsilon})+2\}|(\hat{\alpha}_{1}+i\hat{\alpha}_{2})\tilde{u}|^{2}$

where $\epsilon$ is a sufficiently small positive constant. Therefore, by (2.4), (3.18), (3.21) and
(3.33), there is a sufficiently small positive constant $\epsilon_{0}$ such that for all $\epsilon(0<\epsilon\leq\epsilon_{0})$

(3.34) $I\geq\frac{2c_{1}\epsilon}{1+|c|^{2}}|\tilde{U}_{2}|^{2}+\frac{1}{c_{1}|c+1|^{2}(1+|c|^{2})}[\{c_{1}^{2}((1+|c|^{2})$

. $d(t,$ $x^{\prime},$ $\frac{\partial v}{\partial x’})^{2}-(\sum_{j=2}^{n}{\rm Re} b_{j}\frac{\partial v}{\partial x_{j}})^{2}-(\sum_{j=2}^{n}{\rm Im} b_{j}\frac{\partial v}{\partial x_{j}})^{2})$

$-|\hat{\alpha}_{1}v|^{2}-|\hat{\alpha}_{2}v|^{2}+\{c_{1}^{2}((1+|c|^{2})d(t,$ $x^{\prime},$ $\frac{\partial w}{\partial x’})^{2}$

$-(\sum_{j=2}^{n}{\rm Re} b_{j}\frac{\partial w}{\partial x_{j}})^{2}-(\sum_{j=2}^{n}{\rm Im} b_{j}\frac{\partial w}{\partial x_{\dot{j}}})^{2})-|\hat{\alpha}_{1}w|^{2}$

$-|\hat{\alpha}_{2}w|^{2}\}-4(\hat{\alpha}_{2}v\cdot\hat{\alpha}_{1}w-\hat{\alpha}_{1}v\cdot\hat{\alpha}_{2}w)]+|\hat{u}|^{2}$

Then, by (2.4) and (3.34), we have

(3.35) $\langle A_{1}|_{x_{1}=0}\tilde{U},\tilde{U}\rangle\geq C_{0}\langle\tilde{U},\tilde{U}\rangle+\int_{R^{n-1}}\{k[\hat{\alpha}_{1},\hat{\alpha}_{2}]v\cdot w+(\hat{\alpha}_{1}k\cdot\alpha_{2}^{\wedge}v-\alpha_{2}^{\wedge}k\cdot\hat{\alpha}_{1}v)w\}dx^{\prime}$

where $v$ and $w$ are the same functions as in (3.22), $k$ is the same function as in (3.28)
and $C_{0}$ is a positive constant. By (3.35), we get Theorem 3.2. Q.E.D.

\S 4. Proof of Main Theorem 2.

In this section, we shall prove Main Theorem 2 by using the results in \S 2 and
notations in (2.1) and (2.6) (without writing variables sometimes).

By (A.I), (A.II’), (2.5) and (2.13), we obtain

(4.1)
$\langle t,x’$ )

$\in RxR^{n-1}\inf_{|\eta^{\prime}|=1}[d(\eta^{\prime})|_{x_{1}=0}^{2}-\{\tilde{q}_{0}(t, x^{\prime}, \eta^{\prime})\}^{2}]>0$
.

Then, by (2.5) and (4.1), there exist a positive constant $\delta$ and a function $\rho(x_{1})$ such that
$\rho$ satisfies (3.2) and

(4.2)
\langle $t,x$)

$eRx\overline{R_{+}^{n}}\inf_{|\eta’|=1}[d(\eta^{\prime})^{2}-\{\rho(x_{1})\cdot\tilde{q}_{0}(t, x^{\prime}, \eta^{\prime})\}^{2}]>0$

.
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We set

(4.3) $J(\eta^{\prime})=d(\eta^{\prime})^{2}-\{\rho(x_{1})\cdot\tilde{q}_{O}(t, x^{\prime}, \eta^{\prime})\}^{2}$

for $(t, x)\in R\times\overline{R_{+}^{n}}$ and $\eta^{\prime}=(\eta_{2}, \cdots, \eta_{n})\in R^{n-1}$ . Then, by the same argument as in [7: $p$ .
$164\sim 167]$ , we can obtain the similar results ($M,$ $N,$ $J(\eta^{\prime}),$ $\zeta^{\prime}$ etc.) as in (3.5), (3.6), (3.7)
and (3.8).

We set

(4.4) $\left\{\begin{array}{l}q_{j}(t,x)=\frac{4\rho\cdot(A\cdot b_{j2}-B\cdot b_{j1})}{(|c+1|+|c-1|)^{2}}(j=2,\cdots,n)\\Q_{2}=\rho(x_{1})\tilde{q}_{O}()=\sum_{j=2}^{n}q_{j}(t,x)\frac{\partial}{\partial x_{j}}\end{array}\right.$

and

(4.5) $\left\{\begin{array}{ll}(p_{ij}(t, x))=diag(\sqrt{\theta_{2}}, \cdots, & )\cdot N^{-1}\\Q_{j+1}=\sum_{l=2}^{n}pfl(t, x)\frac{\partial}{\partial x_{l}} & (j=2, \cdots, n).\end{array}\right.$

For the solutionu of the problem (P), we set

(4.6) $U=\left(\begin{array}{l}U_{1}\\U_{2}\\U_{3}\\|\\U_{n+1}\\U_{n+2}\end{array}\right)=\left(\begin{array}{l}Q_{O}u-Q_{1}u-izQ_{2}u\\z(Q_{0}u+Q_{1}u)+iQ_{2}u\\Q_{3}u\\|\\Q_{n+1^{\mathcal{U}}}\\u\end{array}\right)$

where

(4.7) $z(t, x^{\prime})=\frac{\sqrt{1-c(t,x^{\prime})^{2}}}{c(t,x’)+1}$ .

Also, we set

(4.8) $\left\{\begin{array}{l}\hat{\beta}_{j1}(t,x^{\prime})=B(t,x^{\prime})q_{j}(t,0,x^{\prime})+b_{j1}(t,x^{\prime})\hat{\beta}_{j2}(t,x’)=-A(t,x’)q_{j}(t,0,x’)+b_{j2}(t,x^{\prime})\\(j=2,\cdots,n)\end{array}\right.$

Then, we have
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(4.9) $1^{2}\beta_{1}=\frac{\tilde{\rho}_{k}(t,x^{\prime},\frac{\partial}{\partial x^{\prime}})=\sum_{j=}^{n}4}{(|c+1|+|c-1|)^{2}}\{-c_{1}c_{2}\sum_{n}^{n}b_{j2}\frac{\partial}{\partial x_{j}}+(1+c_{2}^{2})\sum^{n}\beta_{k}=\beta_{j1(t,x^{\prime})\frac{\partial}{\partial x_{j}}}\beta_{2}=\frac{4c_{1}}{(|c+1|+|c-1|)^{2}}\{c_{1}\sum_{j=2}^{(k=1,2)}b_{j2}\frac{\partial}{\partial x_{j}}-c_{2}\sum^{n}b_{j1}\frac{\partial}{\partial x_{j}}\}j=2j=2j=2b_{j1}\frac{\partial}{\partial x_{j}}\}$

Then, we can obtain the similar result as Main Theorem 1 with the following $P_{1}$

and (4.10) instead of $P$ in Main Theorem 1 (see (3.14) and (3.15)) and (3.15):

$P_{1}=(1,$ $-z,$ $-\frac{2}{1+c}(\beta_{21}+i\beta_{22}),$ $\cdots,$ $-\frac{2}{1+c}(\beta_{n1}+i\beta_{n2}),$ $0)$

$(\cdot\{N\cdot diag(\frac{1}{\sqrt{\theta_{2}}},\cdot,\frac{2)=1}{\sqrt{\theta_{n}}})\}|_{x_{1}=0}^{+i\beta_{22}}$ $(\beta_{j1}\beta_{n1}\beta_{j2}+\in iR\cdot.j=2, \cdots, n))$

and the following inequality holds,

(4.10) $\langle A_{1}|_{x_{1}=0}\tilde{U},\tilde{U}\rangle\geq-C(K_{1+\sigma})\ll\tilde{u}\gg 21/2$ for all $\tilde{U}\in KerP_{1}$

where $u\in\ovalbox{\tt\small REJECT}_{t}^{0}(H_{2}(R_{+}^{n}))\cap g_{t}^{1}(H_{1}(R_{+}^{n}))\cap\ovalbox{\tt\small REJECT}_{t}^{2}(L^{2}(R_{+}^{n}))$ is the solution of the problem (P), $U$

is the same vector as in (4.6), $\tilde{u}=u|_{x_{1}=0},\tilde{U}=U|_{x_{1}=0}$ and $C$ is a positive constant
depending on $K_{1+\sigma}$ and $A_{1}=\sqrt{a_{11}(t,x)}diag(-1,1,1-|z|^{2}, \cdots, 1-|z|^{2},1)$ .

From now on, we shall prove (4.10).

We denote $h|_{x_{1}=0}$ by $\tilde{h}$. Let $\tilde{U}\in KerP_{1}$ . Then, we have

(4.11) $\tilde{U}_{1}=z\tilde{U}_{2}+\frac{2}{c+1}(\beta_{1}+i\beta_{2})\tilde{u}$ .

And, by (3.17), we obtain

(4.12) $I=\{-|\tilde{U}_{1}|^{2}+|\tilde{U}_{2}|^{2}+(1-|z|^{2})\sum_{j=2}^{n}|\tilde{Q}_{j+1}\tilde{u}|^{2}+|\tilde{u}|^{2}\}$

where

(4.13) $\tilde{Q}_{j+1}=\sum_{l=2}^{n}p_{jl}(t, 0, x^{\prime})\frac{\partial}{\partial x_{l}}$ $(j=2, \cdots, n)$ .

By (4.11), we get for $c_{1}(t, x^{\prime})>0$ ,

(4.14) $|\tilde{U}_{1}|^{2}\leq\frac{|c-1|}{|c+1|}|\tilde{U}_{2}|^{2}+\sqrt{2}\frac{\sqrt{|c+1|-|c-1|}}{\sqrt{|c+1|}}|\tilde{U}_{2}|\cdot 2\sqrt{2}$
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.
$\frac{\sqrt{|c-1|}}{\sqrt{|c+1|-|c-1|}}\cdot\frac{|(\hat{\beta}_{1}+i\hat{\beta}_{2})\tilde{u}|}{|c+1|}+\frac{4}{|c+1|^{2}}|(\hat{\beta}_{1}+i\hat{\beta}_{2})\tilde{u}|^{2}$

$\leq|\tilde{U}_{2}|^{2}+\frac{|c+1|+|c-1|}{|c+1|c_{1}}|(\beta_{1}+i\hat{\beta}_{2})\tilde{u}|^{2}$

Also, by (3.2), (4.3), (4.4), $J(\eta^{\prime})=\sum_{j=2}^{n}\zeta_{j}^{2}$ and (4.13), we have

(4.15) $\sum_{j=2}^{n}|\tilde{Q}_{j+1}\tilde{u}|^{2}=\{d(t,$ $x^{\prime},$ $\frac{\partial v}{\partial x’})^{2}-|\tilde{Q}_{2}v|^{2}\}+\{$$d(t,$ $x^{\prime},$ $\frac{\partial w}{\partial x’})^{2}-|\tilde{Q}_{2}w|^{2}\}$

where

(4.16) $\left\{\begin{array}{ll}v={\rm Re}\tilde{u} & w={\rm Im}\tilde{u}, \tilde{Q}_{2}=\sum_{j=2}^{n}q_{j}(t, 0, x^{\prime})\frac{\partial}{\partial x_{j}}\\\frac{\partial v}{\partial x’}=( & \cdots\frac{\partial v}{\partial x_{n}})\end{array}\right.$

and etc. Therefore, by (4.7), (4.12), (4.14) and (4.15), we obtain

(4.17) $I\geq\frac{|c+1|-|c-1|}{|c+1|}\{d(t,$ $x^{\prime},$ $\frac{\partial v}{\partial x’})^{2}-|\tilde{Q}_{2}v|^{2}+d(t,$ $x^{\prime},$ $\frac{\partial w}{\partial x’})^{2}-|\tilde{Q}_{2}w|^{2}\}$

$-\frac{|c+1|+|c-1|}{|c+1|c_{1}}|(\beta_{1}+i\hat{\beta}_{2}Xv+iw)|^{2}$

$=\frac{|c+1|+|c-1|}{4|c+1|c_{1}}[\{(|c+1|-|c-1|)^{2}\cdot(d(t,$ $x^{\prime},$ $\frac{\partial v}{\partial x’})^{2}-|\tilde{Q}_{2}v|^{2})$

$-4(|\beta_{1}v|^{2}+|\hat{\beta}_{2}v|^{2})\}+\{(|c+1|-|c-1|)^{2}(d(t,$ $x^{\prime},$ $\frac{\partial w}{\partial x’})^{2}-|\tilde{Q}_{2}w|^{2})$

$-4(|\beta_{1}w|^{2}+|\hat{\beta}_{2}w|^{2})\}-8(\beta_{2}v\cdot\beta_{1}w-\hat{\beta}_{1}v\cdot\hat{\beta}_{2}w)]$ .

Then, by (2.7), (4.4), (4.9), (4.16) and (4.17), we get

(4.18) $I\geq-2\{\frac{|c+1|+|c-1|}{|c+1|c_{1}}\}(\hat{\beta}_{2}v\cdot\beta_{1}w-\beta_{1}v\cdot\beta_{2}w)$

for $c_{1}(t, x^{\prime})>0$ . By (A.II’), (3.25), (4.9) and (4.18), we obtain

(4.19) $I\geq-2\{\frac{|c+1|+|c-1|}{|c+1|}\}\{\beta_{2}v\cdot\beta_{1}w-\beta_{1}v\cdot\beta_{2}^{\wedge}w\}$

for $c_{1}(t, x^{\prime})>0$ and $c_{1}(t, x^{\prime})=0$ where $\beta_{2}^{a}=c_{1}^{-1}\cdot\hat{\beta}_{2}$ . By (A.I), (4.19), $v,$ $ w\in$
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$\mathscr{E}_{t}^{O}(H_{3/2}(R_{X}^{n-1}))\cap \mathscr{E}_{t}^{1}(H_{1/2}(R_{X}^{n-1}))$ and the fact that $C_{O}^{\infty}(R_{x^{\prime}}^{n-1})$ is dense in $H_{3/2}(R_{x^{\prime}}^{n-1})$ , we
get

(4.20) $\langle A_{1}|_{x_{1}=0}\tilde{U},\tilde{U}\rangle=\int_{R^{n- 1}}\sqrt{a_{11}(t,0,x^{\prime})}Idx^{\prime}$

$\geq\int_{R^{n-1}}\{k[\hat{\beta}_{1}, \beta_{2}^{a}]v\cdot w+(\hat{\beta}_{1}k\cdot\beta_{2}v-\beta_{2}k\cdot\beta_{1}v)w\}dx^{\prime}$

where

(4.21) $k(t, k^{\prime})=\frac{2\sqrt{a_{11}(t,0,x^{\prime})}\{|c(t,x^{\prime})+1|+|c(t,x^{\prime})-1|\}}{|c(t,x’)+1|}$ .

Therefore, by Lemma 3.1, (3.30), (3.31) and (4.20), we get Main Theorem 2.
Q.E.D.

REMARK 9. To obtain the energy inequality of higher order, we have to estimate
$U_{x_{1}}$ for $U$ in (4.6). Operating the differential operator $Q_{j+1}(j=2, \cdots, n)$ for
$U_{1}=Q_{0}u-Q_{1}u-izQ_{2}u$ where $U={}^{t}(U_{1}, U_{2}, \cdot U_{n+2})$ in (4.6), we can obtain the
similar result as Corollary of Theorem 5.1 in [7].
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