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1. Introduction.

Page [10] [11] and Hooley [6] investigated the asymptotic behaviour of the number
of representations of a natural number as a sum of squares and products of two positive
factors, and established an asymptotic formula for the number of representations in
each case where it can exist.

We consider here similar problems for cubes instead of squares. As is mentioned
in Hooley [7, p. 180], an asymptotic formula for each case with at least five cubes and
a product, or with at least two products and a cube is obtained by standard application
of the circle method of Hardy and Littlewood. Indeed, let k>2 be an integer and let
v(N) denote the number of representations of N as the sum of ¢ products of k positive
factors and s cubes. The number v(N) is investigated in Waring’s problem when =0,
and in the additive divisor problem when s=0. Here we consider the case t,s>1. We
introduce the functions

(1.1) F= ) em’a), D)= ) d(neny),

m<N1/3 n<N

where e(a) = exp(2mia) and d,(n) denotes the number of ways of expressing » as a product
of k positive factors. We have

1
V(N)= f D(a) F(o)’e(— No)dot .
0
We divide the unit interval [0, 1] into “major” and “minor” arcs. We don’t give here
definitions of major and minor arcs exactly, but we only indicate that major arcs, say

IR, is a union of narrow neighbourhoods of rational numbers with smaller denomina-
tors, and that 9N is defined so that the integral

J D,(o)' F(a)’e( — No)do
m
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can be estimated asymptotically. And minor arcs, say m, is defined as the complement
of M to the unit interval. Therefore, establishing an asymptotic formula for w() is
reduced to giving a sufficient estimation for the integral on minor arcs

j D (o) F(ay’e(— Na)do=v(N; m), say.

For example, the estimate
V(N; m)=o(N'*¥3°1)

is sufficient.
When ¢>2, we have

V(N; m)< (max]F(oc)l)s(max|Dk(oc)|)t“2< J 1 IDk(oc)lzdcx) ,

aem aem 0

and then we can derive that vw(N; m) is small enough by Weyl’s inequality (see [14,
Lemma 2.4]) and the well-known fact

(1.2) Jl | Dy(e) |2doe= Y. di(n)* < N(logN)**~1.
0

n<N

Henceforth we consider only the case t=1. We have by Cauchy-Schwartz inequality

(1.3) v(N; m)< ( J‘ 1 | Dy () |2da>1/2<f | F(ox) lz"dat)ll2
0 m :

and, in view of (1.2), the required bound for v(N; m) follows from
(1.4) J | F(or) |**doc<< N23 ~1(log N) "B

with arbitrary fixed constant B>0. Roughly speaking, to prove (1.4) is the same as to
establish an asymptotic formula for the number of representations of a number as the
sum of 2s cubes. When 25> 8, that is, s> 5, the bound (1.4) follows at once from Weyl’s
and Hua’s inequality (see [14, Theorem 2.1]).

Next we set s=4. Suppose that

(1.5) |la—a/gql<qg™%, (g, a)=1.

Then we have by a familiar argument (see [14, Lemma 2.2])

N
< Y max(—l—, ||loc||"1>N8

I<Nt-1/k

Y, e(ima)

m<N/l

(1.6) D)< Y d_y()

1<Nl1-1/k

<<(£+N1—1/k+q>Nze
q,
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for any fixed £>0, where ||| denotes the distance between B and the nearest integer
of it. When s=4, we can define our minor arcs m so that one can find integers a and
g satisfying (1.5) with

N4/9—ssqu5/9+e ,

for any a e m. Thus it follows from (1.6) and Hua’s inequality that

1

(1.7) v(NV; m)«max | D,(o) lj | F(o) |*doe< (N1~ 1k 4 N3IP)N 23 +e
aem 0

with any fixed ¢>0. Through this way, we obtain a sufficient estimate v(N; m)< N*/3

providing k <3, namely, only when k=2.

We have now observed that the circle method can establish an asymptotic formula
for v(N) when s>5 or when s=4 and k=2. This limit was first got over by Hooley
[7] in 1981. He published a new approach to problems in additive number theory,
different from the circle method. He succeeded in obtaining an asymptotic formula for
w(N) when s=4, k=3 by his method, which is based on his decomposition [7, (33)] for
the sum

> 1.

m3+m3+mi+mi=N (modq)
m}+m3+m3+m3i<N
By the method, he further showed in [8] that it is possible to prove an asymptotic
formula for v(N) when s=3, k=2.

In 1986, Vaughan [15] established an asymptotic formula for the number of
representations of a natural number as the sum of eight positive cubes, in a frame of
the circle method. He proved (1.4) for s=4, B<2—4/n [15, Theorem B]. Here the
constant B can not be large enough in (1.4), so we can not obtain directly a required
bound for v(N; m) by (1.3) when s=4. We can, however, prove an asymptotic formula
for v(N) when s =4, k> 3, being based on Vaughan’s ingenious treatment of the integral
on minor arcs. To show this is the purpose of this paper.

Let R(N) denote v(N) for s=4, k>3, or R(N) be the number of representations
of a natural number N as the sum of four positive cubes and a product of k positive
factors;

(1.8) N=ll, - L+m3i+m3+m3+mj.
Hooley showed in [7]

R3(N) =—§— F(%)Q‘G(N)N“B(logN)2 + O(N*3(logN)°"?),

where I' denotes the gamma function and S(N) is what is called the singular series.
(On the notation in section 5 below, S(N)=2S(N).) Our result is
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THEOREM 1. For k>3, we have

RYN)=N*? i EP(Nlog Ny~ 77+ O(N**(log N)*~*(loglog N)™) ,

ji=0

where
1

the implied constant depends only on k, and the coefficients EJ(N) are defined explicitly
in the section 5 (see (5.15) below). In particular, we have £ (N)« 1 for all 0<j<?2, and
EOAN)> 1.

When we apply the circle method to our problem, we should first consider how to
treat the integral for R(N) on minor arcs. For k>3, we can not give a satisfactory
estimate for the integral on minor arcs directly, as yet. But if we pay attention to,
instead of R,(/), the number of solutions of (1.8) such that m,m,m, has a prime divisor
in the interval [(logN)¢, N'/2!] with an appropriate constant C, then we can estimate,
by Vaughan’s method, the corresponding integral on minor- arcs satisfactorily through
the way like (1.3). We should then handle the number, say f(\,:(N ), of solutions of (1.8)
such that m,m,m; has no prime divisor in [(logN)¢, N1/21]. It is inevitably hopeless to
evaluate R, (N) asymptotically, and it is all we can do with R\,:(N) at present to give a
sharp upper bound for 1?,:(N) (see (2.8) below) using Wolke’s result [17].

This is the outline of our proof, and also shows the reason why our formula for
R,(N) in Theorem 1 provides with only the first three main terms, though it is expected
that

k-1
R(N)~N*? 3 EP(N)logN)<~*~
j=0
with ¢P(N)’s defined in the section 5 (see (5.14) below).

Here we relate briefly to a similar problem for A-th prowers with 2> 4, instead of
cubes. Let v(V) be the number of representations of N as the sum of a product of k£
factors and s A-th powers. Using Hua’s inequality, we can prove an asymptotic formula
for v(V)

for s>2""141, and for s=2""1 k<h,

by the way like (1.3), and (1.7), respectively. When 2> 6, we can also prove an asymptotic
formula for v(V)

for s>7-2""%4+1,

through the way like (1.3), by using Heath-Brown’s improvement of Hua’s inequality
[S, Theorem 2].
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Our argument in this paper can show an asymptotic formula for v(N)
for s=2k"1, and for h>6, s=7-2""4,

by combining with Vaughan’s method [16] and Heath-Brown’s method [5] (see also
Boklan [1]).

When 4> 10, we can improve the above restriction for s by Wooley’s result [18]
with the way like (1.3). In fact, an asymptotic formula for v(N) is attainable for s >s,(#),
where s,(h) is a certain function of 4, and we only remark here sq(h) <7 - 2" ™4 for h>10,
and so(h)=(1 + o(1))h? logh as h— oo, because the definition of s,(h) is pretty complicated
(refer to Corollaries 1.2 and 1.2a in [18]).

We can apply our argument to another similar problem. As a direct consequence
of the result due to Davenport [2], it follows that every sufficiently large number is
representable as the sum of four positive cubes and a prime. We denote by Ry(N) the
number of such representations of a natural number N. In the same manner as for
R,(N) with k>3, we obtain an asymptotic formula for Ry(N).

THEOREM 2. We have
4\3 N (N—- t)1/3
2 og

where Sy(N) is defined in the section 5 (see (5.17) below). In particular we have
1< Sy(N)« 1.
We note here that

N N— 1/3 4/3 N4/3
—(——L—dt=i N +0<————loglogN>.
, logt 4 logN (logN)?

The author expresses here his hearty gratitude to Professor S. Uchiyama and
Dr. H. Mikawa for encouragement and valuable advice. He would also like to thank
the referee for valuable comment on the style of the paper.

2. Notation, definition and preliminaries.

Throughout this paper, N denotes a sufficiently large natural number, regarded as
tending to infinity. The letter B is a fixed constant >35; k is a non-negative integer; and
p stands for prime numbers. The letter ¢ is a fixed (small) positive constant. The constants
implied by the symbols « and O depend, at most, on &k, B and ¢.

We denote the Mobius function and Euler’s totient function by u(m) and ¢@(m),
respectively. We denote by p,(d) the number of solutions of the congruence

x3=n (modd),

with 1 <x<d. It is easily seen that
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1 (p#1 (mod3), or p|n),
@1 (p)=
) Pl P) {O or3 (p=1(mod3)and p}n).

Let .# be the set of all natural numbers <N'/3, and let
o ={me #; m has no prime factor p such that (logN)*Be<p< N1/21}
A=I\A ,

where B, = B,(k)=2B+ k2. Making use of Selberg’s upper bound sieve (see [4, Theorem
3.3]), we have

(2.2) #of <« N3 loglogN/logN .

Here, the symbol # denotes the cardinality of the indicated set.
Besides the functions F(x) and D,(x) introduced by (1.1), we use the function

F(a; B)= ), e(m3w),

ned#

for a subset # < #. In particular, F(x; £)=F(a).

We put
Hm= Y 1

m}+m3+m3i=m

my,mam3ed
so that
(2.3) F(; &)= ), rim)e(ma).

m<3N

By (2.2), we have
2.9) Z rim)=F(0; «)® = (¥ )? «< N(logN) 3(loglogN)? .

m<3N
For convenience’ sake, we define

1 (if nis a prime),

do(n)= {

0 (otherwise),

Do)=Y do(ne(n)= 3. e(pa).

n<N P<N

Then, for k>0, we see

R(N)= )y dn)= j 1 D()F(x)*e(— No)do. .
N 0

n+m}+m3+mi+m3=

Next, we put B, = B,(k)=6B+ 3k?* and
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Q:=0,(k)=(ogN)*®*,  Q,=0Q,(k)=N(logN) ":.
For 1<a<¢g<Q,,(a,q)=1, let
| Wolg, )= {2 |« —a/g|<1/Qs}
M (g, A)={; 1/Q, <|a—a/q| <1/(gN>*)},
and, for O, <q<N'* 1<a<gq, (a,g)=1, let
M;(g, @) ={o; |a—a/q| <1/(gN>*)} .
We should note that these families of arcs (g, a)’s are pairwise disjoint, because if

4, 4'<N'Y, (q,9=(q',a)=1, alq#a’'lq,

then we see

’

a a

Lot

9 49

Further, we set

_lag=aql 1 g+q¢ _ 1 1
qq’ q9' qq'N>* gN3* g'N3*

q
M= k{z U Mg a  (for j=0,1),
q=<Q

a=1

(a,q)=1

= U U Maa),

Q1 <g<NV/4 g=1
(a,q)=1

m=[N"3* 1+ N3P\, UM, UBL,).

Then we have, for k>0,

(2.5) R (N)= o D, (x)F(ax)*e( — No)dox

N-—3/4

= J e D ()F(a){ F(ox)* — F(ot; )*}e( — No)daw

N-—3/4

1+N-3/4
+ j Dy(o)F(o)F(ox; /)3e( — Not)do
N~—3/4
= L(M) + LM ) + L(M,) + L(m) + RYN) ,
where
R(N)= > d(N—m3}—m}—m3—m3),
my,ma,miecf

m4<(N-m3j—m3—m3)1/3

and
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L(N)= J D () F(o){ F(ex)* — F(ct; s#)*}e(— No)dot
R

for m=m0, SD?I, Wz and m.

We require
(2.6) I(m)«< N*3(logN)™ B,
2.7 L(M )< N*3(logN)~® for j=1,2,
(2.8) Ry(N)< N*3(log N}*~ *(loglog N)*

with C,=7/2 and C;=k+2 for k>3. We also require that I,(3,) equals the right-hand
side of the asymptotic formula for R, (N) in our Theorems 1 and 2, namely,

(2.9) L(My)=N*3 i EW(NYlogN)*~ 177+ O(N*3(log N)*~*(loglog N)°¥)

j=0

for k>3, and
4 N (N"t)l/s 4/3 -4 4
2.10) I,(My)=T Y So(N) —Tt—dt+O(N 3(log N)~*(loglog N)*) .
2 og

We shall prove (2.6) in the section 3, (2.7) in the section 4, (2.8) in the section 6,
(2.9) and (2.10) in the section 5.

3. Estimation of [,(m).

Our estimate for [,(m) is entirely based on Vaughan’s work [15] on Waring’s
problem for cubes. We have, for any #< .4,

(3.1 j | F() || Fle; ) 1?| Flo; ) |*da< N*3(log N)~ P

by his method (see the estimation for “I(¥)” and “/(2)” in [15, pp. 137-138]). We
observe the outline of a proof for (3.1) here.

We put
Glw= Y _el(m}—m3)), G= Y _emi—-m3w,
my,maze A my,mse A
(my,m2)=d (my,m2) <Qo
so that

|Fla; DP= 2 Gn)+G(®).

Qo<d<N1/3
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Then
(3.2) j | F(o) |?| F(ot; 2) |*| Flo; B)|*da=1, +1, ,

where

L= ) | F(0)) |2G (o) | F(o; BB) |*dot

Qo<d<N1/3
12=J‘ | F(@) >G(or)| F(or; 2B)|*dox .

Let R(P) denote the number of solutions of
mi+mi+mi+mi=m3+m3+m3+m3

with m;< P. Vaughan [15, Theorem 2] proved R(P)« P%, which yields

1
f | G@) |*da < RIN'3/d)y< N53d=5,  and
0

1
(3.3) j | F(a; B)|Bda < R(IN'3)«< N>/3 forany Zc.#.
0

Thus we have

1 1/4 1 1/4 1 1/2
B34 L« )Y (J | Gy() |4drx) (j |F(oc)|8doc> (j | F(a; gﬁ’)lsda>
Qo<d<N1/3 0 0 0

<<N5/3 Z d” 5/4<<N5/3Q6 1/4 .

Qo<d<N1/3

Next, by [15, Lemma 1], we have F(x)« N'*(logN) uniformly for «em, and

1 1/2 1 1/2
3.9 12<<N”4(logN)<f |G(oc)|2|F(oc)]2doc) (J | Fe; @)lsdoc>
0 0

< N 4log N)VE2R(N3)1/2 |
where V, denotes the number of solutions of m3 —m3+n3=m3—m3+n3 with
miesd, (m,my)<Qq, (ms,m)<Q,, m<NY3.
For these m;’s there exist primes p,, p, such that
P1*m1 > Pi Imz ) Pz‘f/ms > D2 |m4 , Qo<l’jSNl/21
by the definition of .oZ. Therefore, '
(3.6) Vo<V
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where ¥ denotes the number of solutions of

3

3 3.3, .3_ .3 3.3
+zi=x3—p3y3+2z;

X1—P1)1
with
ijN”s, Qo<ijN1/21, (x5 pj)=1, ijNlla/Pj, szNlla-

Vaughan showed, in [15, p. 138],

3.7 V< N"%(logN)*Qg3*.
So we have
(3.8) I, < N33(logN)3Q; 38

by (3.5), (3.6) and (3.7). Hence the bound (3.1) follows from (3.2), (3.4) and (3.8).
Now we can estimate 7,(m) easily. Since

F(@)* — F(o; o)* =(F(o) — F(o; #))F () + F(o)F(at; o)+ F(o; &)?)
«| Flo; ) |(| F(o)) |> +| Flo; ) 1%),
we have, using the Cauchy-Schwartz inequality, (3.1) and (1.2),

1 1/2 1/2
Ik(m)<<<j le(a)lzda) (J | F(e) 1| Flo; ) (| F()|* +] F(os M)I“)d’d)
0 m
«<N*3(1ogN)"B.
We have obtained (2.6) for k>0. (We should note that (1.2) is still true for k=0.)

4. Estimations of /,(IR,) and ,(IN,).

Essentially, it is not so difficult to treat I(M,), I,(IM,) and I,(IN,). In this section,
we shall estimate 7,(9,) and [(IM,). We start with summarizing known results on the
function F(a).

Let
_ g a g Mg, a) |®
V(qr a)= 2 8(—"3) ’ V*(Q)‘: Z (q ) ’
=t 9 (aaq=);1
. q V(q, a) \’ a
Pah= 3 ( 4 ))e(——h),
a=1 q q
(a,.9=1
and let

(=5 T m i emp).

m<N
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We note that V*(q) and I7j(q, h) are multiplicative functions of g.

LEMMA 1. (i) Assume that a=(a/q)+ B, (a,q)=1 and | B|<(6gN>3)"1. Then we
have

Vg, a)

Fla)= v(B)+O(g"***).

(ii) For |B|<1/2, we have
o(B)<min(N'/3, | B|~1/3).
(i) For Q=1, we have
Y q'PVHg)<1.
q<Q
(iv) For Q=2, k=1 and for any integer h, we have
a(q) -~ .
Y= T17ia bl <(og O,
q<

where C; =k(k+ 1Yk + 5)/6.
(v) For Q=2 and for any integer h, we have
Hg)*
2
a<e ¢(q)

| V1(g, h)|<logQ .

(vi) Suppose 6>¢>0 and @(q)< q~°. Then the series ZZ°= ,0(09) V (g, N) converges
absolutely, and we have, for Q> 1,

Y. 10(@)Valg, N) |« Q™%+,

q>Q

PrOOF. Asfor (i) and (ii), see Theorem 4.1 and Lemma 2.8 in Vaughan’s book [14].
We turn to (iii). For /> 1, we write /=3u+v with integers ¥ and 1<v<3. Then
we have, as in [14, p. 50],

—6u—3+1

D (U=1),
V*(phH«
7) {p‘ﬁ“'ﬁ“ (v=2,3),

> 9 Py < I1 <1+ i p”zV*(p’))« [Ta+o(p*?)«1.

q<Q p=<Q =1 ) 2X]

We next prove (iv). According to Lemma 4.7 of [14], we have

v (where v=1 and p*h) )

N ~u—1 hen v+#1 and p}h)
7 l’h p (W s
4(p )(( p__“_l/z +1 (when v=1 and Plh) ’
p_.,—1+z (when v#1 andplh),
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for I=3u+v, 1 <v<3. By simple calculation, we have also ¥,(p", h)=p,(p")—ps(p' ™)),
and

7 h)_{O (p#1 (mod3), orp|h),
1P 20r -1 (p=1 (mod3) and p}#h),

and if p|h then V,(p®, hy<p®~* for v=2, 3.

Taking account of these results, we obtain

dfq)  ~ © d(pY)
5 4D 17 qmi< I1(1+ £ 202150 1)

a<Q ¢ p<Q
2k Cy
< H (1+—+0(p‘3+‘)) l_[ (1+ k +0(p‘3/2+“))
p<Q p p<Q 4
pth plh

”

< I1 (1+ Ci )«(logQ)C;; .
p<Q p

Similarly, we obtain (v) and

a0

2 g~ °1 Valg, N)l< [T 1 +0(p~%?) ll_llv(l +0(p™ ! 7Y«

q PYN
which gives (vi).

Now we proceed to estimate [(M,) and I,(IM,). Using Lemma 1 (i), (ii), (iii), we
obtain

q q-IN-3/4 6
@.1) f |Fo)fdasc Y Y ( Vg, ) Iv(B)I6+q3+6‘)dﬁ
m, g<Q; a=1 1/Q2
(aq)=1
1/2
« Y v | 1817 dB+ N, = N(logN) P,

901 1/Q>

q q-IN-3/4
4.2) J | F(@) |®da< Y. ) J (
My

Q1<g<N'/4 a=1 o
(aq9=1

(g, a)

6
lv(ﬁ)|5+q“6s)dﬂ

1 1/2
« > \/;V*(CI)J. min(N2, | B|~2)dp+ N1/4+2e
v Qq asN* o

=N(logN) B,

N
<
VAL
Combining (1.2), (3.3), (4.1), (4.2) with a trivial bound | F(a; 8)| < N'/3 for B<.#, we
have for j=1, 2,
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L(M) < H}aX](IF(a)IHF(a; M)I)”‘“’(J1 IDk(OC)I”aVOt)I/2
«e[0,1 0

16/ (1 1/3
X(j IF(OC)|6dOC) (J (1 F(e) |® +] Fos ﬂ)|8)d06) /
m; )

J

< N*3(logN)~5,

We have showed (2.7).

5. On the integral 7,(IN,).

In order to evaluate I,(9M,), we need an appropriate approximation of D,(a) for
xeM,. As for k=0, we know the following result.

LEMMA 2. Let

To(B; q)=—#Q “h)
@(q) 2<n<n logn

(1) Supposethatl <a<q<Qi,(a, q)=1,0e My(q, a) anda=(a/q)+ B. Then we have
Dy(0)=To(B; )+ O(Nexp(—cy/logN)) ,

where ¢, is a positive constant depending only on B.
(ii) For |p|<1/2, we have

And for | B1<1/{/N, we have

, g)*
TO(Ba Q) < (p(q)logN

For the proof of (i), see Prachar [13, VI, Satz 3.2, p. 180]. The inequalities in (ii)
follow easily from the well-known estimate

(5.1 Y e(nf)<min(x, ||~

n<x

min(V, | B|7Y).

for | | <1/2, by partial summation.

As for the case k> 2, Motohashi [9] showed a result adequate to our aim. Though
he confined his attention within square free ¢’s, his argument [9, Lemmas 5, 6 and p.
60] still works for all g’s with slight differences, and establishes the following Lemma
3. Here we follow his way.



234 KOICHI KAWADA

Before writing down our Lemma 3, we need some definitions. Let s=0+it be a
complex variable with real ¢ and ¢, and {(s) be the Riemann zeta function, as usual.
We define the numbers #,(h) by

(s—Ds)s™ = Z mh)s—1)*  (ass—1).

We set

v yp 1
‘Pk(s;q)=ﬂ{1—(1—p“)"(p2 d’;f”)) ~(1—p~) Y1~ —s)k_d.k_(ﬁ_)},

-1
pla v=0 @p =1

where g,=g,(q) is the number such that p?r is the highest power of p dividing g. We
denote, by ®P(q), the value of the A-th derivative of &,(s;q) at s=1. For k>2,
0<h<k-—1, we put

1 LS|
0] g"(‘l) = m g —nh—j )qjm(Q) ’

k=1
T(B; 9)= hg.o 0,°(q) ;N {(logn)*™* "+ (k—1—h)(logn)*~>~*}e(np) .

Now we can write down our Lemma 3.

LEMMA 3. Let k>3.
(i) Supposethatl <a<qg<Q,,(a,q)=1,aeMy(q, a)anda=(a/q)+ B. Then we have

Dy(0)=Ty(B; )+ O(N*'~11oP7 ")
(1)) For |B|<1/2 and for g<Q,, we have

T8; )< %=1 (10g NYe~* min(V, | 81 Y).
q

Proor. For k>1, 6> 1, we introduce the functions

A,,(s; i) = i e(i n)dk(n)n"s ,
q n=1 q

s q)——— 5 4 ( —)=# S cmdmn=,
q o(q)

a=

where c,(n) is the Ramanujan sum

We cah see
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(5.2) Y(s; 9) = L) Dils; 9)

by some calculation.
If k=2 and (a, q)=1 then we have

k(s —) ¥ 3 e(%lm)dk_l(m)(lmrs

Ms

am=b (modgq)
gp—1 dk v
~tor 1 (1-a-pm (g, H22))
rla v=0 P
+q“qildl<S;—a—)Z Zh: (_ﬂ)Ak 1<S al).
b=1 q/hlqg I=1 h q

(,h=1

Then we see the following facts by induction on k with known results on the Lerch
zeta functions 4,(s; a/q) and the Riemann zeta function {(s).

(i) A4,(s; a/q) can be analytically continued to a meromorphic function over the
whole complex plane, which is holomorphic save a possible pole at s=1.

(it) If (a, 9)=1 then the meromorphic part of 4,(s; a/q) at s=1 does not depend
on a, therefore, 4,(s; a/q) has the same meromorphic part as ¥,(s; q) at s=1.

(iii)) For any fixed ¢>0, we have

Ak(s; i)«q""(l +lefmeror),
q

uniformly for |s—1|>1/2, 6>1/2.

Now we suppose ¢<Q;, (a,9)=1, and x>./N, and put T=x*® with §=8(k)=
(10k)~'. Applying Perron’s formula with the facts listed above, we obtain

(5.3) > dk(n)e(—n)—Lf1+6+iTAk(s;i>£ds+O(x“"T‘l)
q q

n<x 27'” 1+6—iT N

=X(g)+O0(x'~%),

where Y,(q) is the residue of ¥,(s; g)x°/s at s=1. For k>2, it follows from (5.2) that
¥.(s; q) has a pole of order k at s=1. And by the definition of @""(q) we have

Yi(q)=x Z OP(g)logx)~1 7.

Then, Lemma 3 (i) is derived from (5.3) by partial summation.
We turn to (ii). It follows from (5.1) that

Y {(logny~ '+ (k—1—h)logn)*~2~"}e(np)«min(N, | B|~*) - (log N)*~* ~*

n<N
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for 0<h<k—1 by partial summation, and we have
k—1
(5.4) T.(B; gy<min(N, | B|~1)- ,,Z‘o | ©¥(g) [(log N)<~ 14,

for |B|1<1)2.
Next we estimate @(q). After some computation, we get

k—2 k—2
Dy (s; (1)=q_sn{ > (g”+u )(1_p-S)up—s(k—2—u)

pla Lu=0
_(gp:_kl_z)ps—l(l _p—s)k-—l(l_p— 1)—1(1 _p—s+ 1)} ,
di—1(q)
CINOE D (1; gy ——17
0 = g5 P D
For 1<h<k-—1, we have
‘ .
o= | DD g,
2mi |s—1|=(long)‘1(s'—1)

and @P(q)« g~ ! *¢. Combining these estimates with (5.4), we deduce Lemma 3 (ii), and
we complete our proof of Lemma 3.

We now use our Lemmas 2 and 3 to evaluate I,(M,). For simplicity, we write
Si(@) = Dy(a)F () F(a; o/)%e(— Nuay) and

(5.5) L(M,) = D()F(o)*e( — Noydo. — J‘ S, (0)do
Mo Do

=IPW) - I W), say .

At first we estmate I{V(IR,) for k> 3. Suppose that g<Q,, and | B|< Q5 !, then we
have by Lemma 1 (i), (ii), Lemma 3 and (2.3)

21 Sy (i+ B) = 21 {Tk(ﬂ; q) V(‘;, a) v(B) ZN r(m)e((m— N)(_Z_+ ﬁ))

= <3
(a,q9)=1 (a,9)=1

+ 0(N7/3—(10k)“ +q—1/2 +£N2 +e)}

=TB; u(B) Y. rm)V (g, N—m)e(m—N)B)+O(gN73-10h™"

m<3N

<<_“dk';(q) (log Ny~ min(N*3,|B|7*3) 3. r(m)| Vy(g, N—m)|

m< 3N

+qN7/3—(10k)‘ 1
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Therefore, by virtue of Lemma 1 (iv) and (2.4), we have

(5.6) IPMy)= jQi Z Sk< +.3>dﬁ

< 1 1
asQ 05 a)1

<<(logN)" LY rm) Y | V1(g, N—m)|

m<3N g<Q1

di1(9)
q

05! ) i
XJ min(N*3, | B|~43)dp+ N3 -0 'n20~1
_Qz—l

< NB3(log Ny~ 1(logQ,)*-+ > rm)+ N*3-@00~!
\ m<3N
<<N4/3(10gN)k—4(log10gN)(1/6)k(k—l)(k+4)+3 .
When k=0, we have similarly
(5.7 IPM,) < N*3(log N)~“(loglog N)* ,

by Lemma 1 (i), (ii), (v), Lemma 2, (2.3) and (2.4).
We can also evaluate 7{>)(9R,) straightforwardly. We consider the case k>3 again.
For ¢<Q;, |B|<Q5*, we have by Lemma 1 (i), (ii) and Lemma 3,

i Dk(£+ ﬂ)F(—q~+ ﬂ)4e<— N(fi_*_ ﬁ))
(a‘,zz;i 1 9 9 q

=T\ (B; Qu(B)*e(— NB)V (g, N)+ O(gN 73 ~100~1)
thus

' 4 a a 4 a
(5.8) IPM)= 3, > Dk(—+b’>F(—+ﬁ> e(—N(—+ﬂ)>dﬂ
9sQ1 J-@;1 a=1 q q q

@a=1
=2 Via N )f Ti(B; Q)v(B)*e(— NB)dB + O(N*/3~(20h 1)
q9<Q: -Q;5!
=Ji+ O(N*3-2007Y | say |
It follows at once from Lemma 1 (ii) and Lemma 3 (ii) that

1/2

(59) f T(B; o(B)*e(— NB)dB«%=19) (1o Nye=1 f B73dp
Q5 '<|Bl<1/2 q

Q5!

«M Q%3(logN)—1.
q

On the other hand, since we know
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(5.10) f 1 v(B)4e(~mB)dﬁ=F<%)3m1/3+0(N“3"’)
0

for m < N with some constant 6 >0 (see [14, Theorem 2.3]), we have

1
(5-11) J TdB; q)u(B)*e(— NB)dp
V)

= kil @ah)(q) Z {(logn)k—l—h+(k_ 1 _hXIOgn)k_z_h}
h=0 n<N
1
X f v(B)*e(— (N —n)B)dp
0

4 3k—1
=r(—3—) Y, (@S, AN)+ON*>~2),

h=0
where

SeaN)= Y {(logn)*~*~"+(k—1—h)logn)~2""}N—n)'/> .

n<N

Elementary calculation shows
(5.12) SenN)= J‘N {(logx)*~ "+ (k—1—h)logx)* "2~ *}N—x)'3dx
+10(N”3(logN)"_ 1=k
=—;)— LN x(logx)¥ "1 "MN—x)"23dx+ O(N'3(logN)~17%)

1
=%N4/3J‘ t(logN+logt)k—1—h(1_t)—2/3dt+o(N1/3(logN)k—-1—h)

1/N

1 kLt (k—1—h [ .
=_3_N"'/3 > ( _ )(logN)"'l"'"J f(logt)'(1 —t)~*3dt
i

i=0 0
+O(NY3(logN):—17h) .

Then, by (5.9), (5.11) and (5.12),

1 (4 L.k .
(5.13) Jk=’3_r(_> ADY ( 2, 0PV, N))

3 h=0 \ qsQ;

k—1—h k__l_h ‘ 1 '
x 2 ( . )(IOgN)k_l-h_’j t(ogt)(1—t)~dt
i=0 i

V]
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d,_ ~
+o T 270 miozosmt- +en)
q=<Q

1 4 3 k—1
= F<—_> N43 Y SP(N)
3 h=0

KLk (k—1—h N
x Y ( _ )(logN)k"l‘h"j t(logt)(1—t)~23dt
i=0 1

0
+O(N*?(logN)™%),

where we have used Lemma 1 (vi), and put

SP(N)= Y. Va4, N).

q=1

On writing j=h+1i in (5.13), and combining it with (5.8), we have

0 1 4y’ 43"_1 k—1-j L (k—1—h h
(5.14) IOWM)=—T(—=] N*3 Y (logNy~ 177 ) SM(N)
3 3 j=0 h=0 j—h

1
x J t(logty M1 —1)~23dt + O(N*3(log N)®)

0

k—1
=N*? Z,O EP(NYlogN)<~ =7+ O(N*3(logN)™?)

J

where

(5.15) éaﬁ(N)=ir(—4—>3 s (k_.l_h)gﬁh)(N)Jlt(logt)i_"(l—t)_z/3dt.
3 3/ w=o\ j—h o

We note that

¢a°>(N)=ir(—4—)3ea°>(N)fl (1—1)"2Pds
33 .

_ 3 i 3 S o (0) 1}
a3 {1+ 5 70t o))

with

1 k22 /1+k—-2 _ o
¢£°’(p’)=¢k(l;p‘)=? ‘_Z.o< )(l—p ypp=k=2-w

[Z]

In the case k=0, we obtain similarly (rather more simply)
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(5.16) 1O@,) = r(%)seo(zv) j ! EVI_;git‘i dr+ O(N**(log N)®) ,
2
by Lemma 1 (i), (i), Lemma 2 and (5.10), where
(5.17) su=3 M9 pq N)=H(1 —M) .
a=1 ¢(q) » p—1

In view of (5.5), we have (2.9) by (5.6) and (5.14) for k>3, and (2.10) by (5.7)
and (5.16).

It remains to observe the properties of E{)(N)’s and S,(N) which are mentioned
in our Theorems 1 and 2. By Lemma 1 (vi), we see at once ¢Y)(N)«1 for 0<j<k, and
So(N)« 1. In order to observe EP(N)>»1 for k>3 and Sy(N)> 1, it suffices to show

(5.18) 1+ Y, Vu(p', N)o(p")>0,
=1
(5.19) 1__”1(&1ﬂ>0 ,
p_.

for all primes p. Since | V,(p, N)|<2 and V,(2, N)= V3, N)=0, we get (5.19). Next,
fork>3weputS, =Y Vip', N). Then, by [14, Lemma 2.12], we have S,, >0 and

7 (P!, N)®O(p})

Mz

1+
1

1
m-—1
=1-0Q(p)+ ), p"(l—p“)""<
1=1
=(1—p )1,
which yields (5.18).

l+k—2

i )S,+¢;,°’(p'")s,..

6. Treatment for k:(N )

It remains to prove (2.8). We put, for k>0,

Wi(m)= Z d(m—n?),

n<ml/3

then

(6.1) Rm=_ 3 WiN-mi-mi—m)= T rfN—mWm).
mp,mz,m3e m<
We are going to estimate W,(m). We first consider the case k> 3. By van der Corput’s
argument, one may show W, (m)« N'/3(log N)¢ for m < N with some constant C, but we
need the best possible value of the exponent C of log/N in the estimate for W,(m). To
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this end, we appeal to Wolke’s result [17, Satz 1]. Applying Satz 1 of [17] with f(n)=d,(n)
and a,=m—n>, we have

(6.2) W, (m)< N3 exp((k— 1) 3 PP )) :
p<N D
for m< N. We should note that we can not show
(6.3) 5 PP _oalog N+ O(1)
p<N P

uniformly for m <N as yet, though it may be expected when the polynomial x3—m is
irreducible over the rational number field. We can however show that (6.3) holds for
almost all m<N.

We put
Jjo=[elogN], u=(logN), v=2u,

and define the sets

g(N,M)={m<N; >-
Jo

M<p<2M P

&(N)= () &N, 29" 1u).

J

Since N¥2<v<N?, we see that if m¢ &N) and m <N then

) p’"(”)=j2°( ) ~1—+0(ia‘)>

u<p<v D j=1\2/"lu<p<2iu P

=loglogN— logloglogN+ o),

whence

6.4) ) PlP) _ ) PnlP) ¥ Pn(P) o)

p<N P p<u D u<p<v P

<loglog N +logloglog N+ O(1) ,
because of (2.1) and the well-known formula
1
Y —=loglogx+O(1).
p<x P

Thus, by (2.4), (6.2) and (6.4), we have

(6.5) Y. H(N—m)W(m)< N*3(logN)~*(loglogN)**2 .
m<N
m¢ &(N)
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Next, we estimate the cardinality of &(N) through the way indicated in Plaksin’s
paper [12]. For a natural number v, we put

—1 2v
S(N, M,v)= Y Puip)—1
m<N|M<p<2M P

And let €, be the set of non-principal characters x modulo p for which x3 is principal.
It is easily observed that #%,=2 or 0 according as p=1 (mod3) or not, and that

pu(P)—1= 2 x(m).

x€€p

Making use of the Pdlya-Vinogradov inequality, we get

2v 1
(6.6) sSNMvy= 3 J1— 2 X Hx.(m)
M<p;<2Mi=1D; xi€€p, m<Ni=
(1<i<2v) (1<i<2v)

< NM~2S,(M, v)+ 25" M" log(2M)?"),

where

S(M,v)= ), Y 1.

M<p;<2M xie‘f’
(15i<2v) 5, (15i52v)
H o X lS prmclpal

We note that if y;€%,, (1<i<2v) and ~ . X is principal, then 1_[l , pi is a powerful
number. A natural number / is called “powcrful” if p2|l for all prime factors p of I

The number of powerful numbers not exceeding x is 0(\/; ). (See Golomb [3].) So we
have

S, (M, v)<2¥@2v)! Y 1«k2¥Qv)IM".
1< (2M)2v
lis powerful

Then, by (6.6) and the definition of &(N, M), we obtain
6.7) # &N, M)<j3 S(N, M, v)
< (logN)*(2v)!NM ™" + M*log((2M)*)) .

We now suppose that (logN)"*<M < N?, and choose v so as to satisfy M*<
JN <M *1 Then we see

NU2-t<« M*<N'2 and vsi—ﬂ,
2 loglogN
therefore we have (2v)! <exp(2vlog(2v)) < N°, and (logN)** < N2 So (6.7) gives

$E(N, M)y« N1/2+4e

Hence,
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Jo
(6.8) FEN)< D #EN, 27 ' uy< N2 +5e
j=1

J
On the other hand, we know

1
J|F(oc)Izjafoc<<(N”3)2"‘f+e for 1<j<3,
0

by Hua’s inequality (see [14, Lemma 2.5]). Using this, we see

1
(6.9) > r(N—m)zsf | F()|%do
m<N ')
1 1/2 1 1/2
<<(J |F(o¢)|4doz> (J |F(<x)|8dcx)
[0} 0
<NI6*e
By (6.8), (6.9) and a trivial bound W,(m)«<N'/3*¢ we have
1/2 1/2
(6.10) > r(N—m)Wk(m)<<N”3+‘< Y 1) ( Y r(m)2>
me&(N) me&(N) m=<N
<<N7/6+4e .

In view of (6.1), the inequalities (6.5) and (6.10) yield (2.8) with C;=k+2 for k>3,
which completes our proof of Theorem 1.

We proceed to the case k=0. By (2.4), we have at once
Ro(N)< N*3(log N)~3(loglog N)? ,

and which is sufficient to obtain an asymptotic formula for Ry(N). To show (2.8), we
should improve this trivial bound slightly.

We use Selberg’s upper bound sieve. Taking z= N7 and k=3 in Theorem 4.1 of
[4], we obtain

Wom)< N3 ] (1_ﬁ"(_p_)_)«N1/3exp<_ Y Pm(P))’
pSNl/7

p<N7 Y4 p
for m< N. It follows from the definition of the set &(N) that if m¢ &(N) and m< N then
1
Pm( D) > Z Sy Z &1_(_&
p<NUT P P uipsv P

P#E lp%r:od 3)
1
= loglogN—?logloglogN+ o),

whence
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Wo(m)y< N3(log N) " *(loglog N)'/? .

Therefore, in the same manner as for the case k>3, we conclude that the inequality
(2.8) holds for k =0 as well, with C;, = 7/2. Now we complete our proof of Theorem 2.
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