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Introduction.

Let p be a prime number and {, =exp(2xi/n) for each natural number n. Kummer’s
lemma proved in [2] says that “for regular p, a unit of Q({,) congruent to a rational
integer modulo p is a pth power in Q({,)”’. L. C. Washington generalized this theorem
as follows:

THEOREM ([3]). Let M=Max{v, (L, (1, w"));i=2,4, -, p—3} and let ¢ be a unit
of Z[L,). If € is congruent to a rational integer modulo p™*?*, then ¢ is a pth power of a

unit of Z[{,].
And further,
THEOREM ([4]). Let M=Max, v, (t(x~ )L (1, x)), where x runs through the even

X " Tn

nontrivial Dirichlet characters of conductor dividing p". Here 1(y) is a Gauss sum. If ¢ is
a unit of Z[{,n] such that e=1 modp"n) "1, then ¢ is a pth power in Z[{ ).

In the present paper, following the beautiful method of Washington, we give a
proof of a generalization of Kummer’s lemma for some other cyclotomic fields. In the
following, p denotes an odd prime number. Let m be a natural number such that p
does not divide m@(m) and p is congruent to 1 modulo the exponent of the galois group
of Q({,,) over Q, where ¢ denotes the Euler function. Let K= Q(¢np), E be the group
of units of K, K* the maximal real subfield of K and E™ its group of units. Let G be
the galois group of K over Q, G its character group and L (s, x) the p-adic L-function.
Let C, be the completion of the algebraic closure of the p-adic rational field Q,.
Throughout the paper, we fix an embedding of X in C,, that is, fix a prime g of K
over p.

Our main result is the following:

THEOREM. Let p and m be as above. Let M, be the least natural number such that
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Mp(p—l)>Max{vp(%x)LP(l,x)) : ésx;él,even},

where v, denotes the @-adic additive valuation normalized by v,(1—{,)=1. If ueE is
congruent to a rational integer modulo p™#, then u is a pth power in E.

This is also a generalization of a result of Washington [3] (corollary to Theorem
2, cf. Theorem 8.22 of [4]) because v ,(t(w*))=p—1—i(i=2, - - -, p—3, even). The proof

_ is based on the non-vanishing of the p-adic regulator of K proved by Brumer [1].

1. Structure of EQ,Z,.

Let 4 be the Galois group of K over Q({,,), which is isomorphic to (Z/pZ)*, and
M the Galois group of K over Q({,), which is isomorphic to (Z/mZ)*. Of course we
have G=4x M. Let w be the Teichmiiller character which generates 4. By our
assumption on p and m stated in the Introduction, the values of all y € G belong to the
ring of p-adic integers Z, in which | G|, the order of G, is invertible. We define the
homomorphism  from E to EQzZ, by ¥ : u—>u®1 and the logarithm from E®, z,
to C, by

logp<z (wm® cx,-)) =Y o;log, ;.

We may consider E® 2 Z, as a Z,[G]-module and the logarithm is a Z ,-homomorphism.
LemMa 1. For any unit ue E, ue E® if and only if Yy(u)e EQ 2 pZ,.

Proor. Clearly, ue E? implies Yy(u)e EQzpZ,. For a subset S of EQ,Z, we
denote by <.S the subgroup generated by S over Z,. Now assume y(x) € EQ z pZ, and
ug¢ EP, then we can choose ¢;, ‘-, ¢,_, such that the subgroup of E generated by
{&1, -, &_1,u,{,}, say E’, has the index in E which is prime to p, where r is the Z-rank
of E. So we have EQzZ,=(Y(E))> =<{Y(E’)). It holds that

dimg (E®zZ,/EQzpZ,)=r+1.
But from our assumption that y(u) e E®,pZ,, we have
dimg (E®zZ,/EQzpZL,)<r.
That is a contradiction and the lemma is proved.

Next, we study the Z,[G]-module structure of E®zZ,. Define

1 -1
e, =TE;—|- agc x(0)a " 'eZ,[G].

The e,’s are orthogonal idempotents of Z [G].
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LEMMA 2. Let p and m be the same as before. Then we have:

E®Zzp:< @ ex(E®ZZp))®em(E®ZZp) s

1# x:even

eE®2zZ,)~{{,®1)>~Z/pZ .

PROOF. Let Wy be the group of roots of unity in K. Then since p does not divide
[E: E* W], we have

E®ZZ}1=E+ WK®ZZP=E+<CP>®ZZ

Now we have

|Gle,= Y x(odos'= Y {x6)o; ' +x(o_Jol},

1<a<mp 1<a<mp/2

here )’ denotes the sum over all a which are prime to mp and o, denotes the auto-
morphism sending {,,, to {;,. And we have 6_,=0_,0,, 6Zt=(6_,0,)"'=0_,0,"
Therefore, for each ueE*,

(x(0)os ' +2(0_)0-)U®1)=(0)o; ' +x(o - Dx(0)o 10, Nu®]1)
=00, ' +1(0 - )x(0)o; Hu®1).

Consequently, if y is odd, we have (x(aa)a '+ x(0-)06-)u®1)=0. Since {u®1;
ueE*} generates E* ®,Z

ex(E+ ®2zZ,)=0 for all odd g .
Corresponding to the decomposition G~M x A we may write any character ye G as

x=yo' 0<i<p-2,yeM).

|Gle,= 2. D Y(ro)w'(to)yr o7 i=Y ¥ y(@)oio)r lo™!

teM oce4d teM oeAd

=( %1//(1:)1:_1)< ZAa)i(a)a_l) :

Now we have

( 2. ‘/’(T)f—1>(Cp®1)=< 2 W(r))(cp®1)=o

teM teM

for Y#1y (the principal character of M) and (Y, , (D)t DN, @D =(M®1.

Therefore,
1 - 0 if Yy#1,,
<<f§4”’(m >(C”®1)> ‘{<c,,®1> it Y=l



422 TSUTOMU SHIMADA

On the other hand, from the fact that (},_,@'(6)o~){,=(3.2_; a'~1)(,, we have

- {0 if il
<<a§,‘"(“)" )(C"®l)>‘{<c,®1> it i=1.

Therefore, we have e (E®zZ,)=0 for all oddy#w and e,(E®zZ,)~<{,®1). In
addition, when x=1, | G|e, is the norm map from K to Q, so e (E®zZ,)=0. This
completes the proof of our lemma.

Let f be the order of p modulo m. In the following, we shall regard every unit in
E as its image by y. :

LeMMA 3. Let ye G be an even nontrivial character of conductor Sy which is not a
prime power. Let

UG)=(1=Lp )% .

Then, we have

r L
o(f) x(p)—p (X)

Proor. Let H be the subgroup of G corresponding to Q({,,) and G, a subset of
G representing G/H. Since x has conductor f,, x(H)=1.

Y aep =3 Y xeve ltTi=3 ) oo ir?

log, U)=(p'—1)

L1,y .

ceG oeGy teH oceGy teH
- T Taoo=( T xoe)( T ).
oeGy teH aeGy teH

Consequently, it holds that
1
UG = (1= {7, )% = TGTEreo, 100 T s
x
=(1-¢, )"~ 1)¢(}x)}:ﬂeGl eyt
x

So, we have

1 o1
o) a;hx(d) log,(1-{7, ).

Our lemma is now clear from the well known fact:

L1, 9= —(1——’@)@ $ 2 (Dlog,(1-L1),
p ) f =1

where y is an even nontrivial Dirichlet character of conductor f.

log, U)=(p'—1)
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By means of a discussion similar to the above, we have the following:

LEMMA 4. Let ye G be an even nontrivial character of conductor [, which is a prime
power and « a primitive root modulo f,. Let

1—=¢2 @ —De)
1-(,,
Then we have:
1 .
(o —1—2—
o(f) x(p)—p (%)
Note that yx(o,) is a (p—1)-st root of unity and different from 1. So, we have
x(6,)—1#£0mod p.

PROPOSITION 5. Let y€ G be an even nontrivial character of conductor Sy Let U(x)
and V(y) be the same as before. Then we have

. < P )>_ { v,(log, U(x))  if f, is not a prime power,
N ") Lvy(log, V() if f, is a prime power .
Proor. If p does not divide £,
pf p
JO(Jc(,v) —p 1) " “\eo *
If p divides f), as p is the exact power of f, and x(p)=0, we have
p fx p fl p

Vo\ ——(—— L(l,x))=v (——— L1, %) |J=vel ——L,1,%) ).
4Mwmp \=p w0 " N 7

The proof is now completed by Lemmas 3 and 4.

log, V(x)=(p’ - 1)

L1, 7).

PROPOSITION 6. Let p, m, G and E be as before. Then we have
e(EQRzZ,)=Z, for all even nontrivial yeG .
PrOOF. From the definition of U(y) and ¥(y),
UxeeEQRzZ,) or V(peelE®zZ,).

By the theorem of A. Brumer [1], we have L 1, x)#0. So, from Proposition
5, e{E®zZ,) is not trivial and rank, e(E®zZ,)>1. From Lemma 2,
rank; e, (E®zZ,)=0 and

rankz (E®zZ,)<r=4#{x ; x is even nontrivial character} .

Therefore, rankz e (E®zZ,)=1 for all even nontrivial characters y. Our proposition
is proved.
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LEMMA 7. Let p, m, G and E be as above. Let y € G be any even nontrivial character.
Then we have

vp(log,n,)<v, (% L1, X)) >

Jor any generator n, of e (E®QzZ,).

PrOOF. From Proposition 6, U(x) =an, or V(x)=on, in EQ4zZ,, for some a€Z,.
Then, it holds that

log, U(x)=alog,n, or log, V(x)=alog,n, .
Therefore

vp(log, U(x)) =v,(x) +vp(log, 1,) 2 vp(log,1,)
or |

vp(10g, V(1) =0p(®) +vp(log, 1,) = v(l0g,n,) -

By means of Proposition 5, the lemma is proved.

2. Proof of the theorem.

By our assumption, there exists a rational integer a such that u=amod p™*. First,
we treat the case #=1mod . Then we have a=1modp. For each even nontrivial
character y € G, from Proposition 6, there exists a generator n, of e (E®zZ,). Then,
from Lemma 2 and Proposition 6, we have

ul= Y 61m,+6,(,®1)

1# x:even

for some 6,€Z, and J,€Z.
From our assumption, it holds that u=a+p™~x for some x € Z[{,,,]. So, for any
g€ G, we have

(@) Hu®@)=u"""' @ x(6)=(a+pM*x" ) ® x(0)
=a<l + X p“”)@x(0)=a®x(a)+(l + p”*’)@x(a) :

a

a1

X

a

Then, we have

( > x(a)a‘l)(u®1)= Y (@®xe)+ Y (1+x; p“”)@x(a)

1# x:even 1# x:even 1# x:even

= X <1+x; p“*’)®x(a)-

1+# x:even
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We define (o), to be a natural number such that y(6),,, = x(¢) mod p™»*! and
2(0)y,, the element of p™+*1Z, such that y(¢)=yx(0)y, + x(6)y,. Then, from above, it
holds that

( 2 x(a)a“)(u®1)= ) <1+x; p“"’)®(x(a)m,+x(a)m,)

1+#x:even 1#x:even

o1

= 2 (1+x; pM"’)®x(0)M,,+ > <1+xa pM")®x(0)m-

1+#y:even 1+#x:even

Consequently,

logp<< Y x(a)a‘l)(u®l)>= Y x(a)Mplogp<l+xa_ pMp)

1#yx:even 1#x:even a

o1
X
+ 2 x(a)}n,,logp(H - pM“’)

1#x:even

o~ 1

X

= ) X(G)Mwlogp(l+ pM*’> modpMe*1

1# y:even

vp(logp<l+xa pM&’))=vp(xa pMﬁ’)ZM@(p—l),

we see that v,,(log,(e, (¥ ®1)))=M,(p—1).
On the other hand, since e, (u® 1)=4,1,, we have, from Lemma 7,

Because

0,108, (e,(U® 1)) = v,(8,) + v (10g, 1,) <V, (8,) + v, (r_fﬁ L, x))

<v,(0)+M,(p—1).
So, we have
M ,(p—D)<v,(6)+M,(p—1).
Therefore, v,(5,)>0, so that §,=0mod p. Now we have proved that
E®zpZ,5u®1—06,((,@D=ul, @ 1=y(ul,’).
Lemma 1 means that u( » %oe EP. Let v be a unit such that u » % —pP and
v=zo+2z,({,— D+ +2z,_,((,—1)’)"? and z,#0 modgp,

where z;€ Z[{,,] (0<i<p—2). Then, a=su={*v?={3zfmod p. Since {{»=a/zZ mod p
is 4-invariant, we have §,=0mod p. As a result, ue E? is proved.

Next, we assume u#1modg. Then, clearly, u?” "'!=1modg and further
u?'~'=qa?"~*mod p™+. From the same discussion as above, #*’ ! is a pth power, and
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so is u. The proof of the theorem is completed.
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