Kummer's Lemma for Some Cyclotomic Fields

Tsutomu SHIMADA

Kanagawa Prefectural Shôyô High-School (Communicated by N. Sasakura)

Introduction.

Let p be a prime number and $\zeta_n = \exp(2\pi i/n)$ for each natural number n. Kummer's lemma proved in [2] says that "for regular p, a unit of $\mathbf{Q}(\zeta_p)$ congruent to a rational integer modulo p is a pth power in $\mathbf{Q}(\zeta_p)$ ". L. C. Washington generalized this theorem as follows:

THEOREM ([3]). Let $M = \text{Max}\{v_p(L_p(1,\omega^i)); i=2,4,\cdots,p-3\}$ and let ε be a unit of $\mathbb{Z}[\zeta_p]$. If ε is congruent to a rational integer modulo p^{M+1} , then ε is a pth power of a unit of $\mathbb{Z}[\zeta_p]$.

And further,

THEOREM ([4]). Let $M = \operatorname{Max}_{\chi} v_{\pi_n}(\tau(\chi^{-1})L_p(1,\chi))$, where χ runs through the even nontrivial Dirichlet characters of conductor dividing p^n . Here $\tau(\chi)$ is a Gauss sum. If ε is a unit of $\mathbb{Z}[\zeta_{p^n}]$ such that $\varepsilon \equiv 1 \mod p^n \pi_n^{M-1}$, then ε is a pth power in $\mathbb{Z}[\zeta_{p^n}]$.

In the present paper, following the beautiful method of Washington, we give a proof of a generalization of Kummer's lemma for some other cyclotomic fields. In the following, p denotes an odd prime number. Let m be a natural number such that p does not divide $m\varphi(m)$ and p is congruent to 1 modulo the exponent of the galois group of $\mathbb{Q}(\zeta_m)$ over \mathbb{Q} , where φ denotes the Euler function. Let $K = \mathbb{Q}(\zeta_{mp})$, E be the group of units of K, K^+ the maximal real subfield of K and E^+ its group of units. Let G be the galois group of K over \mathbb{Q} , \hat{G} its character group and $L_p(s,\chi)$ the p-adic L-function. Let \mathbb{C}_p be the completion of the algebraic closure of the p-adic rational field \mathbb{Q}_p . Throughout the paper, we fix an embedding of K in \mathbb{C}_p , that is, fix a prime \wp of K over p.

Our main result is the following:

THEOREM. Let p and m be as above. Let M_{\wp} be the least natural number such that

$$M_{\wp}(p-1) > \operatorname{Max} \left\{ v_{\wp} \left(\frac{p}{\tau(\chi)} L_p(1,\chi) \right) ; \hat{G} \ni \chi \neq 1, even \right\},$$

where v_{\wp} denotes the \wp -adic additive valuation normalized by $v_{\wp}(1-\zeta_p)=1$. If $u \in E$ is congruent to a rational integer modulo $p^{M_{\wp}}$, then u is a pth power in E.

This is also a generalization of a result of Washington [3] (corollary to Theorem 2, cf. Theorem 8.22 of [4]) because $v_{\wp}(\tau(\omega^i)) = p-1-i$ ($i=2, \dots, p-3$, even). The proof is based on the non-vanishing of the *p*-adic regulator of *K* proved by Brumer [1].

1. Structure of $E \otimes_{\mathbf{Z}} \mathbf{Z}_{p}$.

Let Δ be the Galois group of K over $\mathbb{Q}(\zeta_m)$, which is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^{\times}$, and M the Galois group of K over $\mathbb{Q}(\zeta_p)$, which is isomorphic to $(\mathbb{Z}/m\mathbb{Z})^{\times}$. Of course we have $G = \Delta \times M$. Let ω be the Teichmüller character which generates $\hat{\Delta}$. By our assumption on p and m stated in the Introduction, the values of all $\chi \in \hat{G}$ belong to the ring of p-adic integers \mathbb{Z}_p in which |G|, the order of G, is invertible. We define the homomorphism ψ from E to $E \otimes_{\mathbb{Z}} \mathbb{Z}_p$ by $\psi : u \mapsto u \otimes 1$ and the logarithm from $E \otimes_{\mathbb{Z}} \mathbb{Z}_p$ to \mathbb{C}_p by

$$\log_p\left(\sum_i (u_i \otimes \alpha_i)\right) = \sum_i \alpha_i \log_p u_i.$$

We may consider $E \otimes_{\mathbb{Z}} \mathbb{Z}_p$ as a $\mathbb{Z}_p[G]$ -module and the logarithm is a \mathbb{Z}_p -homomorphism.

LEMMA 1. For any unit $u \in E$, $u \in E^p$ if and only if $\psi(u) \in E \otimes_{\mathbb{Z}} p\mathbb{Z}_p$.

PROOF. Clearly, $u \in E^p$ implies $\psi(u) \in E \otimes_{\mathbb{Z}} p\mathbb{Z}_p$. For a subset S of $E \otimes_{\mathbb{Z}} \mathbb{Z}_p$, we denote by $\langle S \rangle$ the subgroup generated by S over \mathbb{Z}_p . Now assume $\psi(u) \in E \otimes_{\mathbb{Z}} p\mathbb{Z}_p$ and $u \notin E^p$, then we can choose $\varepsilon_1, \dots, \varepsilon_{r-1}$ such that the subgroup of E generated by $\{\varepsilon_1, \dots, \varepsilon_{r-1}, u, \zeta_p\}$, say E', has the index in E which is prime to P, where P is the \mathbb{Z} -rank of P. So we have $P \otimes_{\mathbb{Z}} \mathbb{Z}_p = \langle \psi(E) \rangle = \langle \psi(E') \rangle$. It holds that

$$\dim_{\mathbf{F}_p}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p / E \otimes_{\mathbf{Z}} p \mathbf{Z}_p) = r + 1$$
.

But from our assumption that $\psi(u) \in E \otimes_{\mathbb{Z}} p\mathbb{Z}_p$, we have

$$\dim_{\mathbf{F}_p}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p / E \otimes_{\mathbf{Z}} p \mathbf{Z}_p) \leq r$$
.

That is a contradiction and the lemma is proved.

Next, we study the $\mathbb{Z}_p[G]$ -module structure of $E \otimes_{\mathbb{Z}} \mathbb{Z}_p$. Define

$$e_{\chi} = \frac{1}{|G|} \sum_{\sigma \in G} \chi(\sigma) \sigma^{-1} \in \mathbb{Z}_p[G] .$$

The e_x 's are orthogonal idempotents of $\mathbb{Z}_p[G]$.

LEMMA 2. Let p and m be the same as before. Then we have:

$$E \otimes_{\mathbf{Z}} \mathbf{Z}_{p} \simeq \left(\bigoplus_{1 \neq \chi : even} e_{\chi}(E \otimes_{\mathbf{Z}} \mathbf{Z}_{p}) \right) \oplus e_{\omega}(E \otimes_{\mathbf{Z}} \mathbf{Z}_{p}) ,$$

$$e_{\omega}(E \otimes_{\mathbf{Z}} \mathbf{Z}_{p}) \simeq \langle \zeta_{p} \otimes 1 \rangle \simeq \mathbf{Z}/p\mathbf{Z} .$$

PROOF. Let W_K be the group of roots of unity in K. Then since p does not divide $[E: E^+W_K]$, we have

$$E \otimes_{\mathbf{Z}} \mathbf{Z}_{p} = E^{+} W_{K} \otimes_{\mathbf{Z}} \mathbf{Z}_{p} = E^{+} \langle \zeta_{p} \rangle \otimes_{\mathbf{Z}} \mathbf{Z}_{p}$$
.

Now we have

$$|G|e_{\chi} = \sum_{1 \le a \le mp} \chi(\sigma_a)\sigma_a^{-1} = \sum_{1 \le a \le mp/2} \{\chi(\sigma_a)\sigma_a^{-1} + \chi(\sigma_{-a})\sigma_{-a}^{-1}\},$$

here \sum' denotes the sum over all a which are prime to mp and σ_a denotes the automorphism sending ζ_{mp} to ζ_{mp}^a . And we have $\sigma_{-a} = \sigma_{-1}\sigma_a$, $\sigma_{-a}^{-1} = (\sigma_{-1}\sigma_a)^{-1} = \sigma_{-1}\sigma_a^{-1}$. Therefore, for each $u \in E^+$,

$$(\chi(\sigma_a)\sigma_a^{-1} + \chi(\sigma_{-a})\sigma_{-a}^{-1})(u \otimes 1) = (\chi(\sigma_a)\sigma_a^{-1} + \chi(\sigma_{-1})\chi(\sigma_a)\sigma_{-1}\sigma_a^{-1})(u \otimes 1)$$
$$= (\chi(\sigma_a)\sigma_a^{-1} + \chi(\sigma_{-1})\chi(\sigma_a)\sigma_a^{-1})(u \otimes 1).$$

Consequently, if χ is odd, we have $(\chi(\sigma_a)\sigma_a^{-1} + \chi(\sigma_{-a})\sigma_{-a}^{-1})(u \otimes 1) = 0$. Since $\{u \otimes 1; u \in E^+\}$ generates $E^+ \otimes_{\mathbf{Z}} \mathbf{Z}_p$,

$$e_{\chi}(E^{+} \otimes_{\mathbf{Z}} \mathbf{Z}_{p}) = 0$$
 for all odd χ .

Corresponding to the decomposition $G \simeq M \times \Delta$ we may write any character $\chi \in \hat{G}$ as $\chi = \psi \omega^i$ $(0 \le i \le p - 2, \psi \in \hat{M})$.

$$\begin{split} \mid G \mid e_{\chi} &= \sum_{\tau \in M} \sum_{\sigma \in \Delta} \psi(\tau \sigma) \omega^{i}(\tau \sigma) \tau^{-1} \sigma^{-1} = \sum_{\tau \in M} \sum_{\sigma \in \Delta} \psi(\tau) \omega^{i}(\sigma) \tau^{-1} \sigma^{-1} \\ &= \left(\sum_{\tau \in M} \psi(\tau) \tau^{-1} \right) \left(\sum_{\sigma \in \Delta} \omega^{i}(\sigma) \sigma^{-1} \right). \end{split}$$

Now we have

$$\left(\sum_{\tau \in M} \psi(\tau)\tau^{-1}\right) (\zeta_p \otimes 1) = \left(\sum_{\tau \in M} \psi(\tau)\right) (\zeta_p \otimes 1) = 0$$

for $\psi \neq 1_M$ (the principal character of \hat{M}) and $(\sum_{\tau \in M} 1_M(\tau)\tau^{-1})(\zeta_p \otimes 1) = \zeta_p^{|M|} \otimes 1$. Therefore,

$$\left\langle \left(\sum_{\tau \in M} \psi(\tau) \tau^{-1} \right) (\zeta_p \otimes 1) \right\rangle \simeq \begin{cases} 0 & \text{if } \psi \neq 1_M, \\ \langle \zeta_p \otimes 1 \rangle & \text{if } \psi = 1_M. \end{cases}$$

On the other hand, from the fact that $(\sum_{\sigma \in A} \omega^i(\sigma) \sigma^{-1}) \zeta_p = (\sum_{a=1}^{p-1} a^{i-1}) \zeta_p$, we have

$$\left\langle \left(\sum_{\sigma \in \Delta} \omega^{i}(\sigma) \sigma^{-1} \right) (\zeta_{p} \otimes 1) \right\rangle \simeq \begin{cases} 0 & \text{if } i \neq 1. \\ \left\langle \zeta_{p} \otimes 1 \right\rangle & \text{if } i = 1. \end{cases}$$

Therefore, we have $e_{\chi}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p) = 0$ for all odd $\chi \neq \omega$ and $e_{\omega}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p) \simeq \langle \zeta_p \otimes 1 \rangle$. In addition, when $\chi = 1$, $|G|e_{\chi}$ is the norm map from K to \mathbf{Q} , so $e_{\chi}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p) = 0$. This completes the proof of our lemma.

Let f be the order of p modulo m. In the following, we shall regard every unit in E as its image by ψ .

LEMMA 3. Let $\chi \in \hat{G}$ be an even nontrivial character of conductor f_{χ} which is not a prime power. Let

$$U(\chi) = (1 - \zeta_{f_{\chi}})^{(p^f - 1)e_{\chi}}$$
.

Then, we have

$$\log_p U(\chi) = (p^f - 1) \frac{1}{\varphi(f_\chi)} \frac{p}{\chi(p) - p} \frac{f_\chi}{\tau(\chi)} L_p(1, \chi).$$

PROOF. Let H be the subgroup of G corresponding to $\mathbb{Q}(\zeta_{f_{\chi}})$ and G_1 a subset of G representing G/H. Since χ has conductor f_{χ} , $\chi(H) = 1$.

$$\begin{split} \sum_{\sigma \in G} \chi(\sigma) \sigma^{-1} &= \sum_{\sigma \in G_1} \sum_{\tau \in H} \chi(\sigma \tau) \sigma^{-1} \tau^{-1} = \sum_{\sigma \in G_1} \sum_{\tau \in H} \chi(\sigma \tau) \sigma^{-1} \tau^{-1} \\ &= \sum_{\sigma \in G_1} \sum_{\tau \in H} \chi(\sigma) \sigma^{-1} \tau^{-1} = \left(\sum_{\sigma \in G_1} \chi(\sigma) \sigma^{-1} \right) \left(\sum_{\tau \in H} \tau^{-1} \right). \end{split}$$

Consequently, it holds that

$$U(\chi) = (1 - \zeta_{f_{\chi}})^{(p^f - 1)} \frac{1}{|G|} (\Sigma_{\sigma \in G_1} \chi(\sigma) \sigma^{-1}) (\Sigma_{\tau \in H} \tau^{-1})$$
$$= (1 - \zeta_{f_{\chi}})^{(p^f - 1)} \frac{1}{\varphi(f_{\chi})} \Sigma_{\sigma \in G_1} \chi(\sigma) \sigma^{-1}.$$

So, we have

$$\log_p U(\chi) = (p^f - 1) \frac{1}{\varphi(f_\chi)} \sum_{\sigma \in G_1} \chi(\sigma) \log_p (1 - \zeta_{f_\chi}^{\sigma^{-1}}).$$

Our lemma is now clear from the well known fact:

$$L_{p}(1,\chi) = -\left(1 - \frac{\chi(p)}{p}\right) \frac{\tau(\chi)}{f} \sum_{l=1}^{f} \chi^{-1}(l) \log_{p}(1 - \zeta_{f}^{l}),$$

where χ is an even nontrivial Dirichlet character of conductor f.

By means of a discussion similar to the above, we have the following:

LEMMA 4. Let $\chi \in \hat{G}$ be an even nontrivial character of conductor f_{χ} which is a prime power and α a primitive root modulo f_{χ} . Let

$$V(\chi) = \left(\frac{1 - \zeta_{f_{\chi}}^{\alpha}}{1 - \zeta_{f_{\chi}}}\right)^{(p^f - 1)e(\chi)}.$$

Then we have:

$$\log_{p} V(\chi) = (p^{f} - 1) \frac{1}{\varphi(f_{\chi})} (\chi(\sigma_{\alpha}) - 1) \frac{p}{\chi(p) - p} \frac{f_{\chi}}{\tau(\chi)} L_{p}(1, \chi) .$$

Note that $\chi(\sigma_{\alpha})$ is a (p-1)-st root of unity and different from 1. So, we have $\chi(\sigma_{\alpha})-1\not\equiv 0 \bmod p$.

PROPOSITION 5. Let $\chi \in \hat{G}$ be an even nontrivial character of conductor f_{χ} . Let $U(\chi)$ and $V(\chi)$ be the same as before. Then we have

$$v_{\wp}\left(\frac{p}{\tau(\chi)}L_{p}(1,\chi)\right) = \begin{cases} v_{\wp}(\log_{p}U(\chi)) & \text{if } f_{\chi} \text{ is not a prime power,} \\ v_{\wp}(\log_{p}V(\chi)) & \text{if } f_{\chi} \text{ is a prime power.} \end{cases}$$

PROOF. If p does not divide f_{χ} ,

$$v_{\wp}\left(\frac{p}{\chi(p)-p}\frac{f_{\chi}}{\tau(\chi)}L_{p}(1,\chi)\right)=v_{\wp}\left(\frac{p}{\tau(\chi)}L_{p}(1,\chi)\right).$$

If p divides f_{χ} , as p is the exact power of f_{χ} and $\chi(p) = 0$, we have

$$v_{\wp}\left(\frac{p}{\chi(p)-p}\frac{f_{\chi}}{\tau(\chi)}L_{p}(1,\chi)\right)=v_{\wp}\left(\frac{p}{-p}\frac{f_{\chi}}{\tau(\chi)}L_{p}(1,\chi)\right)=v_{\wp}\left(\frac{p}{\tau(\chi)}L_{p}(1,\chi)\right).$$

The proof is now completed by Lemmas 3 and 4.

Proposition 6. Let p, m, G and E be as before. Then we have

$$e_{\chi}(E \otimes_{\mathbf{Z}} \mathbf{Z}_{p}) \simeq \mathbf{Z}_{p}$$
 for all even nontrivial $\chi \in \hat{G}$.

PROOF. From the definition of $U(\chi)$ and $V(\chi)$,

$$U(\chi) \in e_{\chi}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p)$$
 or $V(\chi) \in e_{\chi}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p)$.

By the theorem of A. Brumer [1], we have $L_p(1, \chi) \neq 0$. So, from Proposition 5, $e_{\chi}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p)$ is not trivial and $\operatorname{rank}_{\mathbf{Z}_p} e_{\chi}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p) \geq 1$. From Lemma 2, $\operatorname{rank}_{\mathbf{Z}_p} e_{\omega}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p) = 0$ and

$$\operatorname{rank}_{\mathbf{Z}_p}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p) \leq r = \sharp \{\chi ; \chi \text{ is even nontrivial character} \}.$$

Therefore, rank $\mathbf{z}_p e_{\chi}(E \otimes_{\mathbf{Z}} \mathbf{Z}_p) = 1$ for all even nontrivial characters χ . Our proposition is proved.

LEMMA 7. Let p, m, G and E be as above. Let $\chi \in \hat{G}$ be any even nontrivial character. Then we have

$$v_{\wp}(\log_p \eta_{\chi}) \leq v_{\wp}\left(\frac{p}{\tau(\chi)}L_p(1,\chi)\right),$$

for any generator η_{γ} of $e_{\gamma}(E \otimes_{\mathbf{Z}} \mathbf{Z}_{p})$.

PROOF. From Proposition 6, $U(\chi) = \alpha \eta_{\chi}$ or $V(\chi) = \alpha \eta_{\chi}$ in $E \otimes_{\mathbf{Z}} \mathbf{Z}_{p}$, for some $\alpha \in \mathbf{Z}_{p}$. Then, it holds that

$$\log_p U(\chi) = \alpha \log_p \eta_{\chi}$$
 or $\log_p V(\chi) = \alpha \log_p \eta_{\chi}$.

Therefore

$$v_{\wp}(\log_p U(\chi)) = v_{\wp}(\alpha) + v_{\wp}(\log_p \eta_{\chi}) \ge v_{\wp}(\log_p \eta_{\chi})$$

or

$$v_{\wp}(\log_p V(\chi)) = v_{\wp}(\alpha) + v_{\wp}(\log_p \eta_{\chi}) \ge v_{\wp}(\log_p \eta_{\chi})$$
.

By means of Proposition 5, the lemma is proved.

2. Proof of the theorem.

By our assumption, there exists a rational integer a such that $u \equiv a \mod p^{M_p}$. First, we treat the case $u \equiv 1 \mod \wp$. Then we have $a \equiv 1 \mod p$. For each even nontrivial character $\chi \in \hat{G}$, from Proposition 6, there exists a generator η_{χ} of $e_{\chi}(E \otimes_{\mathbb{Z}} \mathbb{Z}_p)$. Then, from Lemma 2 and Proposition 6, we have

$$u \otimes 1 = \sum_{1 \neq \chi : \text{even}} \delta_{\chi} \eta_{\chi} + \delta_{\omega}(\zeta_{p} \otimes 1)$$

for some $\delta_{\chi} \in \mathbb{Z}_p$ and $\delta_{\omega} \in \mathbb{Z}$.

From our assumption, it holds that $u = a + p^{M_{\wp}}x$ for some $x \in \mathbb{Z}[\zeta_{mp}]$. So, for any $\sigma \in G$, we have

$$(\chi(\sigma)\sigma^{-1})(u\otimes 1) = u^{\sigma^{-1}}\otimes\chi(\sigma) = (a+p^{M_{\wp}}\chi^{\sigma^{-1}})\otimes\chi(\sigma)$$

$$= a\left(1+\frac{\chi^{\sigma^{-1}}}{a}p^{M_{\wp}}\right)\otimes\chi(\sigma) = a\otimes\chi(\sigma) + \left(1+\frac{\chi^{\sigma^{-1}}}{a}p^{M_{\wp}}\right)\otimes\chi(\sigma).$$

Then, we have

$$\left(\sum_{1 \neq \chi: \text{even}} \chi(\sigma)\sigma^{-1}\right)(u \otimes 1) = \sum_{1 \neq \chi: \text{even}} (a \otimes \chi(\sigma)) + \sum_{1 \neq \chi: \text{even}} \left(1 + \frac{x^{\sigma^{-1}}}{a} p^{M_{\wp}}\right) \otimes \chi(\sigma)$$

$$= \sum_{1 \neq \chi: \text{even}} \left(1 + \frac{x^{\sigma^{-1}}}{a} p^{M_{\wp}}\right) \otimes \chi(\sigma).$$

We define $\chi(\sigma)_{M_{\wp}}$ to be a natural number such that $\chi(\sigma)_{M_{\wp}} \equiv \chi(\sigma) \mod p^{M_{\wp}+1}$ and $\chi(\sigma)'_{M_{\wp}}$ the element of $p^{M_{\wp}+1}\mathbf{Z}_p$ such that $\chi(\sigma) = \chi(\sigma)_{M_{\wp}} + \chi(\sigma)'_{M_{\wp}}$. Then, from above, it holds that

$$\left(\sum_{1 \neq \chi : \text{even}} \chi(\sigma) \sigma^{-1}\right) (u \otimes 1) = \sum_{1 \neq \chi : \text{even}} \left(1 + \frac{x^{\sigma^{-1}}}{a} p^{M_{\wp}}\right) \otimes (\chi(\sigma)_{M_{\wp}} + \chi(\sigma)'_{M_{\wp}})$$

$$= \sum_{1 \neq \chi : \text{even}} \left(1 + \frac{x^{\sigma^{-1}}}{a} p^{M_{\wp}}\right) \otimes \chi(\sigma)_{M_{\wp}} + \sum_{1 \neq \chi : \text{even}} \left(1 + \frac{x^{\sigma^{-1}}}{a} p^{M_{\wp}}\right) \otimes \chi(\sigma)'_{M_{\wp}}.$$

Consequently,

$$\log_{p}\left(\left(\sum_{1 \neq \chi: \text{ even}} \chi(\sigma)\sigma^{-1}\right)(u \otimes 1)\right) = \sum_{1 \neq \chi: \text{ even}} \chi(\sigma)_{M_{\wp}} \log_{p}\left(1 + \frac{x^{\sigma^{-1}}}{a}p^{M_{\wp}}\right)$$

$$+ \sum_{1 \neq \chi: \text{ even}} \chi(\sigma)'_{M_{\wp}} \log_{p}\left(1 + \frac{x^{\sigma^{-1}}}{a}p^{M_{\wp}}\right)$$

$$\equiv \sum_{1 \neq \chi: \text{ even}} \chi(\sigma)_{M_{\wp}} \log_{p}\left(1 + \frac{x^{\sigma^{-1}}}{a}p^{M_{\wp}}\right) \quad \text{mod } p^{M_{\wp}+1}.$$

Because

$$v_{\wp}\left(\log_{p}\left(1+\frac{x^{\sigma^{-1}}}{a}p^{M_{\wp}}\right)\right)=v_{\wp}\left(\frac{x^{\sigma^{-1}}}{a}p^{M_{\wp}}\right)\geq M_{\wp}(p-1),$$

we see that $v_{\wp}(\log_p(e_{\chi}(u \otimes 1))) \ge M_{\wp}(p-1)$.

On the other hand, since $e_x(u \otimes 1) = \delta_x \eta_x$, we have, from Lemma 7,

$$\begin{aligned} v_{\wp}(\log_{p}(e_{\chi}(u \otimes 1))) &= v_{\wp}(\delta_{\chi}) + v_{\wp}(\log_{p}\eta_{\chi}) \leq v_{\wp}(\delta_{\chi}) + v_{\wp}\left(\frac{p}{\tau(\chi)}L_{p}(1,\chi)\right) \\ &< v_{\wp}(\delta_{\chi}) + M_{\wp}(p-1) \; . \end{aligned}$$

So, we have

$$M_{\wp}(p-1) < v_{\wp}(\delta_{\chi}) + M_{\wp}(p-1)$$
.

Therefore, $v_{\wp}(\delta_{\chi}) > 0$, so that $\delta_{\chi} \equiv 0 \mod p$. Now we have proved that

$$E \otimes_{\mathbf{Z}} p\mathbf{Z}_p \ni u \otimes 1 - \delta_\omega(\zeta_p \otimes 1) = u\zeta_p^{-\delta_\omega} \otimes 1 = \psi(u\zeta_p^{-\delta_\omega}) \; .$$

Lemma 1 means that $u\zeta_p^{-\delta_\omega} \in E^p$. Let v be a unit such that $u\zeta_p^{-\delta_\omega} = v^p$ and

$$v = z_0 + z_1(\zeta_p - 1) + \dots + z_{p-2}(\zeta_p - 1)^{p-2}$$
 and $z_0 \not\equiv 0 \mod \emptyset$,

where $z_i \in \mathbb{Z}[\zeta_m]$ $(0 \le i \le p-2)$. Then, $a \equiv u \equiv \zeta_p^{\delta_\omega} v^p \equiv \zeta_p^{\delta_\omega} z_0^p \mod p$. Since $\zeta_p^{\delta_\omega} \equiv a/z_0^p \mod p$ is Δ -invariant, we have $\delta_\omega \equiv 0 \mod p$. As a result, $u \in E^p$ is proved.

Next, we assume $u \not\equiv 1 \mod \emptyset$. Then, clearly, $u^{p^{f-1}} \equiv 1 \mod \emptyset$ and further $u^{p^{f-1}} \equiv a^{p^{f-1}} \mod p^{M_{\emptyset}}$. From the same discussion as above, $u^{p^{f-1}}$ is a pth power, and

so is u. The proof of the theorem is completed.

References

- [1] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121-124.
- [2] E. E. Kummer, Zwei besondere Untersuchungen über die Classen-Anzahl und über die Einheiten der aus λten Wurzeln der Einheit gebildeten complexen Zahlen, J. Reine Angew. Math. 40 (1850), 117-129.
- [3] L. C. Washington, Units of irregular cyclotomic fields, Illinois J. Math. 23 (1979), 635-647.
- [4] L. C. WASHINGTON, Introduction to Cyclotomic Fields, Springer (1982).
- [5] L. C. Washington, Kummer's lemma for prime power cyclotomic fields, J. Number Theory 40 (1992), 165–173.

Present Address:

Kanagawa Prefectural Yamato-Higashi High-School, 1760 Fukami, Yamato, Kanagawa, 242 Japan.