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Abstract. The class Loo (b, Q) of completely operator semi-selfdecomposable distributions on R? for b and
Q is studied. Here 0 < b < 1 and Q is a d x d matrix whose eigenvalues have positive real parts. This is the
limiting class of the decreasing sequence of classes L, (b, @), m = —1,0,1,--., where L_ (b, Q) is the class of
all infinitely divisible distributions on R and L, (b, Q) is defined inductively as the class of distributions x with
characteristic function [i(z) satisfying j1(z) = ;l(bQ’z),é(z) for some o € L,_1(b, Q). Q’ is the transpose of
Q. Distributions in Lo (b, Q) are characterized in terms of Gaussian covariance matrices and Lévy measures. The
connection with the class OSS(b, Q) of operator semi-stable distributions on R? for b and Q is established.

1. Introduction and a main result.

In our previous paper [MSW99], we have introduced the class of operator semi-selfde-
composable distributions and its decreasing subclasses. To explain those classes, we start with
the necessary notation. P(R?) is the class of all probability distributions on R¢, I (R?) is the
class of all infinitely divisible distributions on R4, My (Rd) is the class of all d x d matrices
all of whose eigenvalues have positive real parts, Q’ is the transpose of Q € M (R%), I is the
identity matrix, 2(z), z € R?, is the characteristic function of . € P(R%), u*,t > 0, is the ¢-
th convolution power of u € I (R%), £L(X) is the law of X, (, ) is the Euclidean inner product
in R9, and | - | is the norm induced by (, ) in R, For b > 0, b2 = Y"%° (n!)~!(log b)" Q".
Convergence of probability distributions is always weak convergence.

LetO < b < 1, Q € M, (R?), m a nonnegative integer, and L_;(b, Q) = I(R%). A
distribution . € I (R?) is said to belong to the class L,, (b, Q) if there exists p € L,,—1(b, Q)
such that (z) = (b2 z) 5(z). Actually the classes L,, (b, Q) have been defined in [MSW99]
in a different way and it has been shown there that the definition above is a necessary and
sufficient condition for the definition in [MSW99]. Define Lo (b, Q) by Loo(b, Q) =
(>0 Lm (b, Q). We have called distributions in Lo (b, Q) operator semi-selfdecomposable
in [MSW99].

On the other hand, Jurek [J83] and Sato and Yamazato [SY85] introduced and studied
the classes L,,(Q) for m a nonnegative integer or co. It has been proved in [MSW99] that
Ln(Q) = No<p<i Lm(b, @), 0 < m < oo. Distributions in Lo (Q) are called completely
operator selfdecomposable and characterized in several ways in [SY85]. For this reason,
we want to call distributions in Lo (b, Q) completely operator semi-selfdecomposable. In
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[SY85], they studied the relationship between the class L, (Q) and that of operator stable dis-
tributions. The purpose of this paper is to give characterization of distributions in Lo (b, Q)
and to investigate the relationship between the class L (b, Q) and that of operator semi-
stable distributions.

Let Q € M (R?). Aclass H C I(R?) is said to be Q-completely closed in the strong
sense if H is closed under convergence, convolution, and Q-type equivalence, and is closed
under going to the ¢-th convolution power for any ¢+ > 0. Here H is said to be closed under
O-type equivalence if £(X) € H,a > 0, and ¢ € R? imply L(a~2X + ¢) € H. We can
easily see from the definition that L,,(b, Q), 0 < m < oo, are Q-completely closed in the
strong sense, because L_;(b, Q) = I (R?) is so. Furthermore let OSS(b, Q) be the class of
w € I(R?) such that ii(2)? = 4 (b2 2)e"? for some 0 < a < 1 and ¢ € RY. Distributions
in OSS(b, Q) are called operator semi-stable. They are studied by Jajte [J77], Krakowiak
[K80], Laha and Rohatgi [LR80], Luczak [£.81, £91], and others.

One of our main theorems is the following.

THEOREM 1.1. LetQ < b < 1 and Q € M (R?). Then the class Loo(b, Q) is the
smallest Q-completely closed class in the strong sense containing the class OSS(b, Q).

This theorem is a “semi”-version of Theorem 7.3 in [SY85]. In Section 2, we state
some results we need in the subsequent sections. In Section 3, we characterize Gaussian
distributions in L (b, @), and in Section 4, we treat purely non-Gaussian distributions in
Lo (b, Q). The proof of Theorem 1.1 is given in Section 5. As our results are new even in
case Q = I, we make some remarks on this case in Section 6.

2. Preliminary results.

The following three propositions have recently been shown in [MSW99]. Since we need
them in the subsequent sections, we state them below without proofs.

For a d x d matrix B we use the following notation: BE = {Bx : x € E} for E Cc R4
and (Tpv)(E) = v({x : Bx € E}) for a measure v on R?. We use a mapping ¥ from the
class of symmetric d x d matrices into itself defined by ¥p(A) = A — BAB'’. Its iteration is
Wl =wgowy ! forl =2,3,--. with ¥} = Wp. Also let Bo(R?) be the class of Borel sets
E in R? such that E C {|x| > &} for some ¢ > O.

In what follows, we fix0 < b < 1 and Q € M (R%). Weuse C;,i = 1,2, ---, for
positive constants. Following (3.4.3) in [JM93], we introduce a norm | - | in R¢ depending

on Q:

MY
u
|XIQ=A | xldu, xERd.

u

Since C1u?|x| < |u%x| < C3u%4|x|, 0 < u < 1, |x|g is well defined. The norm |- | is
comparable with the Euclidean norm | - |, and has an advantage that, forany x € R? \ {0}, —
IthIQ (t > 0) is strictly increasing (Proposition 3.4.3 in [JM93)]). Thus SUp| x| o<1 lexIQ <
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1. Define
B =b?,
Sp={xeR?:|x|g <1and |B"lx|g > 1},
and B(Sp) as the class of Borel sets in Sp. It might be better to write So.p instead of Sp,
because it depends on Q and b.

We note that all our results in this paper remain true if Sp is defined by the usual norm
in place of the norm | - | g, provided that |B| = sup,, < |Bx|, the operator norm of B, is less
than 1. We also note that, since |B"x| — O for any x € R? as n — oo and since the space
is finite-dimensional, there is a positive integer n such that |B*?| < 1. Since B” = b"2 and
Ln(b, Q) C Lm(b,nQ),0 <m < oo, study of distributions in L,, (b, Q) in the case |B| < 1
covers all cases in some sense. However, in characterization of the class L, (b, Q) itself, we
cannot assume that | B| < 1. This is the reason that we use the norm | - lo-

PROPOSITION 2.1 (Proposition 3.2 of [MSW99]). (i) If v is the Lévy measure of
w € I(R?), then there exist a finite measure vy on Sp and a Borel measurable function
gn : SB = Ry for each n € Z satisfying the following conditions:

(@) For E € B(Sp), vo(E) =0 ifand only if v(B"E) =0, Vn € Z,

®) 5, v0dx) 3,z (I1B™"x15 A Dgn(x) < o0,

©) D ez gn(x) > 0, vp-a.e.,

@) v(E) =[5, v0(dx) ¥pez 92 () 1E(B™"x), VE € B(R?).
These {vo, gn, n € L} are uniquely determined in the following sense. If {vo, gn, n € Z} and
{Vo, gn. n € Z} satisfy the above conditions, then there exists a Borel measurable function
h(x) with 0 < h(x) < 0o such that

vo(dx) = h(x)vo(dx),
gn(x) = h(x)g,(x), vo-ae. VYnel.

(ii) Conversely, if vo, a finite measure on Sg, and gn, n € Z, Borel measurable func-
tions from Sp into [0, 00), are given, and satisfy (b) and (c), then v defined by (d) is the Lévy
measure of some u € I(R?) and (a) is also satisfied.

We call {vy, gn, n € Z} determined uniquely from v in (i) above the Sp-representation of
v. We may write g(n, x) for g, (x) below. For {k(n), n € Z}, define Ak(n) = k(n+1) —k(n)
and (A'k)(n) = A(A"'k)(n),1 = 2,3, - - -. The sequence {k(n), n € Z} is called completely
monotone if

(—I)I(A’k)(n) >0 forVi=0, Vnel,
with (A%)(n) = k(n).
PROPOSITION 2.2 (Lemma 4.3 and Corollary 4.1 of [MSW99)). (i) If{k(n),n € Z}

is completely monotone, then
(a) there exists a unique measure p on (0, 1] such that

2.1 k(n) = / x"pdx), nel,
0,1]
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(b) for each b € (0, 1), there exists a unique measure I on [0, 00) such that
k(n) = / b rda).
[0,00)

(ii) Conversely, {k(n), n € Z} having the representation (2.1) is completely monotone.

PROPOSITION 2.3 (Theorem 3.1 of [MSW99]). LetO0 < m < oo, u € I(R?), A
its Gaussian covariance matrix, v its Lévy measure, and let {vy, g(n, x), n € Z} be the Sp-
representation of v. Then the following three statements are equivalent:

(i) u € Lmb, Q).

(ii) lI/é(A), 1 <1 < m + 1, are nonnegative definite, and (I — Tg)v>0,1<1 <
m + 1, on Bo(R?).

(iii) lI/l’g(A), 1 <l < m + 1, are nonnegative definite, and (—l)l(Alg)(n,x) > 0,
neZ, vaexforl <l <m+1.

(In the above, when m = 00,1 <l <m + 1 should be readas 1 <1l < 00.)

3. Gaussian distributions in L, (b, Q).

The following are generalizations of some results in [SY85] to “semi”-version.
Let {B1, -, Bp} be the distinct eigenvalues of B = b2, and let f(¢) be the minimal
polynomial of B. Decompose it into linear factors

f@Q=€—-B)"--- (& = Bp),
where, for 1 < j < p, n; is a positive integer not exceeding the multiplicity of 8;. Let
Vi=Ker(B—8;D)" inC? (1<j<p).
Then
Cd=V1$--'€9Vp-
Let T; be the projector of C4 onto V; in this direct sum decomposition. Similarly we denote
Vi=Ker(B — i) inC!(1<j<p),
and obtain
cl=vie---aV,.
Then the projector of C? onto ij in this direct sum decomposition coincides with the adjoint

operator ij of T;. For j # k, VJf and Vj are orthogonal, where we use the Hermitian inner
product denoted also by (, ). The following is a characterization of Gaussian distribution in

Loo(b, Q).

THEOREM 3.1. Let i be a Gaussian distribution with covariance matrix A. Then the
following three statements are equivalent:
(1) wne Lo, O).
(i) (B—Bj)AT;=0,for1 <j =<p.
(iii) (a) A(B’ — ﬁj)TJf =0,for1 < j < p,and(b) TkATJf = 0for j #k.
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To prove the theorem, we need a lemma.

LEMMA 3.1. Let u be a Gaussian distribution with covariance matrix A. Then @ €
Loo(b, Q) if and only if for any z € R, (ABz, B"z), n € Z, is completely monotone.

PROOF. Setk,(n) = (AB™z, B"z),n € Z, z € R?. Then observe that, for each [ > 1,
(=D} (Alky)(n) = 0, Vn € Z, Yz € RY, if and only if ¥} (A) is nonnegative definite. The
nonnegative definiteness of lI/}g (A) for all [ > 0 is a necessary and sufficient condition for that
the Gaussian w is in Loo(b, Q) by Proposition 2.3. This concludes the lemma. []

PROOF OF THEOREM 3.1. We first show (i)=>(iii). To show (iii)(a), it is enough to
prove that, for any integer k > 1 and z¢ € ce,

(3.1) (B’ — Bj)kz0 =0 implies A(B' —Bj)z0=0.

We prove this by induction in k. If £ = 1, the assertion is trivial. Suppose that (3.1) is true
for k — 1 in place of k, and assume (B’ — B;)¥zo = 0. Since B (B’ — B;) = (B’ — B;)B™
for any n € Z, we have (B’ — ;)¥2*!Bzy = 0 forany [ > 2 and n € Z. Hence by the
induction hypothesis,

(3.2) A(B' - Bj)'B"z0=0 forl>2andneZ.

Let
L(n) = (AB™z9, B"z9) forneZ.

We claim that
(3.3) L(n) = |B;1**{{Az0, z0) + 2nR(Az0, 21) + n*(Az1,21)}, neZ,

where z; = BJ._I(B’ — Ej)zo. If n = O, this is trivial. We write z; = ,éj—l(B’ — Bj)lz(). If
n > 1, then

B"z0=(B;+ (B —Bi)'z20=PB} ) (’;) 2
1=0
and, by (3.2),
L(n) = (B} A(zo + nz1), B"z0) = (B} (z0 + nz1), B A(zo + nz1)

which is (3.3). Suppose n < —1 and write n = —h. Let w = B™zg — B;?(zo + nz1). Then

w = B"{zp — B}’B"’(zo +nz1)}

h i h
= B" {Zo - Z(l)(a +nZl+1)}

=0

h
. h
=B’ [n222 - 122 (l ) (z1 + nz1+1)} ,
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where the sum over 2 <[ < h is considered as zero if 4 = 1. Hence by (3.2), Aw = 0. Thus
L(n) = (AB"z9 — Aw, B"z)
= (B} A(zo + nz1), B"z0)
= (B} (20 + nz1), AB"z0 — Aw)
= (B} (z0 + nz1), B} A(z0 + nz1)) -

Hence (3.3) is true for all n € Z. Since L(n) is completely monotone in n by Lemma 3.1
under the assumption that 4 € L (b, Q), we have

(3.4) Loy = [ powp)
©0,1]
for some measure p by Proposition 2.2. If we let
Ei={8¢€0,11: 8> 8,

E,={B€(0,1]: B <|B;1*},
then from (3.3) and (3.4)

({18, 1%) + fE | (ﬁ) p(B) + /E 2 (I ﬂ‘j |2) p(dB)

= (Azq, 20) + 2nR(Az0, 21) + n*(Az1, z1) = I,
say. If p(E1) > 0, then there exists € > 0 such that p((1 + 8)|ﬂj|2 < B <1) > 0, and hence
I>1+8)"p(A+8)BjP<p=<1), n>0.

Letting n — 00, we get a contradiction. Thus p(E;) = 0. Similarly, if p(E3) > 0, then there
exists £ > O such that

I>(1-e)"p0<B=<A-29lg>, n<O0,
and letting n — —o0 yields a contradiction. Thus p(E;) = 0. Consequently,

o B"p(dB) = |B8;1*" o({18;1*}) = 18;1*" (Az0, 20) ,

and {(Azj, z1) = 0. By Lemma 3.1 of [SY85], we conclude that Az; = 0. This proves (3.1).
Let us show (iii)(b). It is enough to show that

(Azo, wo) =0 forany zg € ij and wo € V; with j #k.
Since ij and V/ are invariant under B™, h € Z, we have, by (iii)(a),
A(B' — Bj)'B"z20 = A(B' — Bi)'B"wo =0 forl>1and heZ.
Hence, forn € Z,
(3.5) L+ (n)(AB™ (20 & wo), B" (z0 £ wo))
= |Bj1*"(Azo, zo) £ 2RB] B (Azo, wo) + | |*" (Awo, wo) .
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We consider two cases.
Case I (|Bj| # |Bk|). As before, there exist measures p+ and p— on (0, 1] such that

(3.6) Li(n) = B" p+(dB) .
0,1]

Let us show

(3.7) p+{18;1*}) = (Az0, 20)

(3.8) p+({1Bk1*}) = (Awo, wo) .

Without loss of generality, we assume that |8;| < |B¢]. As in the case of L(n), we observe
p£(B < 18j1°) = p£(B > 18I =0.
It follows from (3.5) and (3.6) that

Li(w)
(Awo, wo) = lim =

= gm [ (ﬁ) p1(dB) + p£({IBPD)

n— o0

= p+({I1Bc1?]) -

This shows (3.8). (3.7) can be shown similarly, by considering Ly (n)/|8 j|2” and letting
n — —oo. Thus we have

£205) 7 (Az0, wo) = [ B"p1(df) > 0,
UBj12,1Bk1?)

concluding R(Azo, wo) = 0. Since izg € V;, we also have I(Azg, wo) = 0.
Case II (|81 = |Bx]). We have

Ly(n) =|B;1*" {(AZO, zo) + (Awo, wo) + 2R (%—) (Azo, wo)] .
i

As in the case of L(n), we see that
n . Zﬁ
Lyt = [ B"pe(ap) = const. x ;2.
0,1]

Therefore, R(Bx/B;)" (Azo, wo) is independent of n. Since Bx/B; # 1, we have (Azg, wo) =
0. This conclude (iii)(b).

We next show (iii)=>(i). By the Jordan decomposition of B’, we can find a basis {zj;x =
BiX(B — BjYzji, 1< j<p,1<1<1;,0<k<k(j)}of C* for some integers /; and
k(j, D). Here zj; € V[ (1 <1 <I;) and (B’ — B;)*"D+lz;; = 0. Thus, for any z € C9,

z = Z cjikzjik Wwithsome cjix € C
J.Lk -
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and, hence,

(k(j,l)—k)An n

m,_ __ an . . .

B"z = E Bjcjik 2 (m)zj,z,k+m
Jil.k m=0

for all n € Z.. Therefore, by (iii) for any n € Z,

A (B’"z - ZE;’leozjlo) =0.
Jil

Hence, forn € Z,

4
5757 = 31 (4 Tt Tl
j=1 l !

= B"p(dp),

0,1]

which is completely monotone, if we define p by p({]ﬂj|2}) = (A ), cji0zjio, Y €ji0Zjio)
and p((0, 11\ {|B1 |2, cee, |f3p|2}) = 0. It follows from Lemma 3.1 that . € Loo(b, Q).
We finally show (ii)=>(iii). (iii)=>(ii) is easily seen, because we have, for any z, w € ce,

)4
(B — B)AT)z, w) =Y (T2, A(B' — B))T{w) =0,
k=1

using (iii)(a) for k = j and (iii)(b) for k # j. As to (ii)=(iii), we have
(A(B' — Bj)Tjz, (B' — B))T;jz) = (B — Bj)A(B' — B)T}z, Tjz) =0,
which together with Lemma 3.1 of [SY85] implies that A(B’ — B j)ijz = 0, namely (iii)(a).

Also we have (iii)(b), since (ii) implies that AT; has its range in V;. The proof of Theorem
3.1 is thus complete. [J

Theorem 3.1 uses a direct sum decomposition of C?. Let us consider the corresponding
decomposition of R?, and then prove a decomposition theorem of Gaussian distributions in
Lo (b, Q). For this purpose we arrange the distinct eigenvalues of B = b€ in such a way that
Bi,---,Bq arereal and Byyy, -+, Bp arenotreal, B; = Bj4r (@ +1 < j < q+7r), and
q + 2r = p. Here g or r may possibly be zero. Let y; and §; be the real and the imaginary
part of B, respectively. The real factorization of the minimal polynomial f(¢) of B’ is

F@)= fi@)" -+ fgur (@),

where fj(§) =¢ —Bj={—yj, 1 < j < gand f;(§) = ¢ —y))*+8%,q+1 < j <q+r.
Let

(3.9) W;=Kerfj(B)/ inR?, 1=<j<q+r.
Then
(3.10) RE=Wo --aW,,.
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As inv the proof (iii)=>(i) of Theorem 3.1, let
{zjw=B;*(B' = Bplzj:1<j<p1<1<1,0<k=<k(D)

be a basis of C¢, where z;; € V/ and (B’ - BkUD+1z. = 0. For1 < j < g, we can choose
zjirealsothat {zj;x : 1 <1 <1;,0 <k <k(j,D} isabasisofWJ’.. Forq+1<j<gq+r,
we have l; = 1;, and k(j, 1) = k(j + r, 1) and we can choose zj; and zj,; in such a way
that zj; = Z4r1. Let &;;x and 7 be the real and the imaginary part of z j, respectively, for
q +1 < j < q + r. Here complex conjugates, real parts, and imaginary parts of vectors in
C? are taken component-wise. The system {&;k, nji : 1 <1 <1;,0 <k <k(j,l)}isthena
basis of WJ’.. The following theorem gives a matrix representation when these bases are used.

THEOREM 3.2. Let u be Gaussian with covariance matrix A. Then u € Lo (b, Q) if

and only if the following four conditions are satisfied:
W) (Azji, zju) =0for1 < j<q,1 <1 =<lj, k=1,

() (A&, &§ju) = (Anju, nju) =0forg+1<j<qg+r,1<l=<ljk=1,

(i) (A&ji0, §jmo) = (Anj10, njmo) and (A0, Njmo) = —(Anji0, Ejmo) forq +1 <
J=2q+r,1=<1<l;,1 <m <Ijwithl = m inclusive,

(iv) (Az,w)=0forze WJ’.,w eW,,forl <j<gq+r,1<k=<gq-+rwithj#k.

PROOF. The proof is exactly the same as that of Theorem 4.1 of [SY85]. So we omit it
here. I

Let us consider the direct sum decomposition of R¢ associated with B = b<. Let
W;=Kerfj(B) inR?, 1<j<g+r.
Then
(3.11) RE=W @ & Wyr.

This is the decomposition dual to (3.10). Let U be the projector of R onto W j in the decom-
position (3.11). The transposed matrix U ; of U; is the projector onto WJ’. in the decomposition
(3.10). Forg +1 < j < q +r,we have V; = _j+r and Tjx = -Tmforx € R4, Thus
Ujx =Tjx+ Tjyrxforx e Réforqg+1<j<q+r.Forl < j<gq,wehave Ujx = Tjx
for x € R%. Let

Nj=Kerf;(B) inR¢, 1<j<gqg+r.

THEOREM 3.3. Suppose that i is a centered Gaussian distribution in Lo (b, Q).
Then, the support of u is a B-invariant linear subspace of R? and the minimal polynomial
of the restriction of B to the support of u does not have double roots. There exists a unique
decomposition | = L1 * - - - * [Lg4r, Where each | is a centered Gaussian distribiition such
that wj € Loo(b, Q) and the support of u; is contained N and hence in W;.

PROOF. Again, the proof is exactly the same as that of Theorem 4.2 of [SY85]. So we
omit it here. [ ‘
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REMARK 3.1. The u; in Theorem 3.3 is centered Gaussian with covariance matrix
Aj = UjAUj’.. Thus, since pj € Loo(b, Q), by Theorem 3.1,

. 1
Mj(B,Z)=CXp{—§(AjB,Z, B’z)]
= exp —l(A-B’U'-z B'U’z)
M 7% J
1
=exp{—§|ﬂj|2(AjU}z, U;.z)}
1 2
= exp _§|ﬂj| (Ajz,2)
N 12
= ;P
which means that u; € OSS(b, Q).

Combining Theorem 3.3 and Remark 3.1, we have

THEOREM 3.4. Let s be the number of distinct absolute values of eigenvalues of B =
b2. If u is a Gaussian distribution in Lo (b, Q), then 1 can be expressed as the convolution
of at most s Gaussian distributions in OSS(b, Q).

EXAMPLE. For d = 2,3, 4, explicit forms of the covariance matrices of Gaussian
distributions in L, (Q) are given in [SY85]. Let d = 2 and let I; be the class of all Gaussian
distributions on R?. Let u € I with covariance matrix A.

First consider the case Q = (’(; }1/) withy > 0. For0 < b < 1,2 = bY ((1) lo%b) and

hence b2 has the Jordan form (”Oy b‘y). As is shown in [SY85], 41 € Loo(Q) if and only if
A= (g 8), a > 0. As our Theorem 3.2 is formally the same as Theorem 4.1 of [SY85], we

a 0

see that u € Loo(b, Q) if and only if A = (0 :

for any O < b < 1 in this case.
Next consider the case Q = (y —ys) with ¥y > Oand § € R\ {0}. Then, for0 < b < 1,

),a > 0. Thus Lo (b, 0)NIG = Leo(Q)NIG

é
b2 = pv (°°S" ‘S"“’) with @ = 8logb. In this case, 4t € Loo(Q) if and only if A = al,

sin@ cos 6
a > 0, as is shown [SY85]. If b = ¢"™/® withn € Z and n/8 < 0, then b2 = b¥ (—1)"I and
hence Loo(b, Q) N Ig = Ig. Otherwise, b€ is of the same type as Q and Lo (b, Q) N Ig =
Lo (Q) N Ig. Thus, Loo(b, Q) N I truly depends on b and, for some b, Lo (b, Q) N I is
strictly larger than Lo (Q) N Ig.
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4. Purely non-Gaussian distributions in L., (b, Q).

Now we give a representation of the Lévy measure of purely non-Gaussian u € Lo (b, Q).
For each x € R? \ {0}, let

B(x) = max{|8;] : 1 < j < q+2r, Tjx £0},
n(x, j) =max{n:n >0, (B — B;)"Tjx # 0 for Tjx # 0},
n(x) = max{n(x, j) : 1 < j <q+2r, Tjx #0,|B;| = ()},
log B(x)
logh
We show the following. Given two measurable spaces (@1, B1) and (®,, B;), we say

that {I'y,,0; € O}, a system of measures on (O3, B), is measurable in 6, if I, (E) is
measurable in 8 for every E € B;.

y(x) =

THEOREM 4.1. (i) Suppose that u is a purely non-Gaussian distribution in I (R%)
with nonzero Lévy measure v. Then u € Loo(b, Q) if and only if v is expressed as

“4.1) v(E)=/ vo(dx) Fx(da)Zb”"lE(B_"x), E € B(RY),
Sp 0,2y (%)) neZ

where vg is a nonzero finite measure on Sg and I'y, x € Sp, are nonzero finite measures on
(0, o0) measurable in x, each Iy is concentrated on (0, 2y (x)) and

(4.2) f vo(dx) Fe(do) Y " b™(IB"x[5 A1) < o0,
Sp 0,2y (x))

neZ i

(it) If a nonzero finite measure vy on Sg and nonzero finite measures I'y, x € Sg, on
(0, o©) measurable in x are given and if each I'y is concentrated on (0, 2y (x)) and (4.2) is
satisfied, then the measure v defined by (4.1) is the Lévy measure of some . € I (RY).

(i) If n € Loo(b, Q) has nonzero Lévy measure v and if v is expressed by vy and
Iy as in (i), then vo and Ty are unique in the following sense: if v and Iy give another
expression of v, then there exists a Borel measurable function h(x) with 0 < h(x) < oo
such that vo(dx) = h(x)vg(dx) and I'(da) = h(x) T, (da) for vo-a.e. x. The measures I'y
necessarily satisfy

4.3) f (@ '+ Qyix) —a) PN da) <o, wvpae x.
0,2y (x))

LEMMA 4.1. There exist positive constants C; (j = 5,6,7) and b;(x) (j = 1,2,3)
such that, for x € Sp,

(4.4) |B¥xlg < CsB(x)*k"™  for k> 1,
(4.5) |B¥x|g = ba(x)Bx) k"™ for k = by (x),

4.6)  Cea™' +b3(x)Q2y(x) —a) 2"®~1 <N (|B"x| A DT

neZ

<Cr@ '+ Q2y(x) =)D for0<a <2y(x).
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Ifa > 2y(x), then
@47 D (IB"x|H A Db = co.

neZ

PROOF. Let |x|g be defined by |x|g = fy (In@x|/u)du also to x € C¢. We have

(4.8) B*Tjx = (B; + (B — B;))*T;jx
kn(x,j)/\k k » ,
= p! ; (l)ﬁj (B—B;)'Tjx.
Thus

p
|B¥x1g < CgBx)F Y k"™ k>1.
j=1

Hence we have (4.4). It follows from (4.8) that there are bs(x) and bs(x) such that, for
k > bs(x),
1B*Tjx|g = 27"1B;[*k" %D (n(x, H) ™' (B — B)"*Tjx|g
> bs(x)|8; k"))
for all j satisfying Tjx % 0. Choose a norm || - || in C? as |x|| = Z;’___l |Tjx|g. Since
arbitrary two norms are equivalent, we have Co|x|g < ||x|| < Cjplx|g. Choosing j such that
B(x) = Bj and n(x) = n(x, j), we obtain

|B*x|g = Cig IB*x || = C1y 1B¥Tjx|g .

Hence (4.5) follows. Let 0 < a < 2y(x). Note that Y0___ b~*® = (1 — »%)~! and
Cne~! < (1 —-b%71 < C12071. We see from (4.4) that

o0 oo
Z IkaIZQb—k(! < ng 'B(x)2kk2n(x)b—ka
k=1 k=1

o0
= C52 Zbk(2y(x)—a)k2n(x) < C13(2y(X) _ a)—2n(x)—1 .
k=1

This proves the second inequality in (4.6). The first inequality is obtained from (4.5) as
follows. We have

Z |ka|2b—kot > bz(x)2 Z bk(2y(x)—a)k2n(x)
k=by(x) k>b;(x)
> be(x) 2y (x) — )™,
for some bg(x) > 0. Hence the first inequality in (4.6) is obtained. The proof of (4.7) for
a > 2y(x) is similar. [

PROOF OF THEOREM 4.1. In the following the conditions (a)—(d) refer to those in
~ Proposition 2.1. :
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(1) Let {vo, gn, n € Z} be the Sp-representation of v. Suppose that 4 € Lo (b, Q). It
follows from Propositions 2.2 and 2.3 that, for vg-a.e. x, there exists a measure I'; such that

gn(x) = / b Iy (da) .
[0,00)
By (c), I'y is nonzero. By (d), for any E € B(RY),

v(E) = / vg(dx)z f 1g(B™"x)b" T, (da).
SB nez v10,00)

Note that for any nonnegative measurable function 4 («) on [0, 00), f h{a) Iy (da) is measur-
able in x. By (b),

00 > Z/ gn (x)vo(dx) =f vo(dx)f I(da) ) b™.
S Sg [0,00)

n=0 n>0

Whena =0, ), ,b"* = oo. Hence

/ vo(dx) [ ({0}) = 0.
Sg

Next we have, by (d),

06 > f Iyl A Dv(dy)
R4

= Zf (IB™"x|% A 1)vo(dx) b" Iy (da)
Sg

nek (O’OO)

=f vo(dx) Fe(do) Y b"™(IB™"x5 A D).
SB (0,00)

nel

Thus by Lemma 4.1, we have
/ vo(dx) I'n(da) =0,
Sp [2y (x),00)

concluding (4.1), and the integrability condition (4.2) is also proved.
Conversely suppose that v has the representation (4.1) with vy and I satisfying (4.2).
Set

4.9 ' gn(x) =/ b"ry(da), nel.
' 0,2y (x))
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Then (4.1) and (4.9) imply (d). We observe that g, (x) in (4.9) satisfies (a), (b), and (c). As to
(b),

/S vo(dx) D _(IB™"x|j A Dga(x)
B

neZ

=/ vo(dx) Y (IB™"x|j A 1) b Iy (der)
S neZ 0.2y ()

= f vo(dx) I (da) Zb"“(lB_"xIZQ Al <o
SB 0.2y (x)) neZ
by (4.2). (a) and (c) are obvious because Iy (da) is nonzero for each x. Therefore {vop, gn,n €
Z} is the Sp-representation of v. It follows from (4.9) and Proposition 2.2 that g,(x) is
completely monotone in n € Z. Thus, by Proposition 2.3, u € Lo (b, Q).

(ii) In order to see that v is the Lévy measure of some u, it is enough to show that
v({0}) = 0 and that fRﬂ,(le2 A Dv(dx) < oo. The former is obvious from (4.1). The latter
follows from (4.2) since |x| < const. X |x]g.

(iili) To show the uniqueness, suppose that both {vg, I'y} and {vo, I represent v. Let

@0 aw=[  rnde. ge=[ .

0.2y (x)) 0,2y (x))
By the proof above, {vo, g} and {Vo, §,} are Sp-representations of v. Thus by the uniqueness
of them in Proposition 2.1, there exists a Borel measurable function A(x) with0 < h(x) < o0
such that Yo(dx) = h(x)vo(dx) and g,(x) = h(x)g,(x), vo-a.e. x for any n € Z. Thus by
the uniqueness assertion in Proposition 2.2(i)(b) and by (4.10), we conclude that I'; (da) =
h(x) I (de). The assertion (4.3) for Iy follows from (4.2) and (4.6). O

5. Proof of Theorem 1.1.

We first show that OSS(b, Q) C Loo(b, Q). Let u € OSS(b, Q). That is, for some
0O<a<1landc e R?,

(5.1) f(2)® = p(b2 )l .
Then

(5.2) i(2) = A9 24() .,

with

(5.3) A2) = (z) ~%e D

To show that i € Lo (b, Q), by the definition, it is enough to show that p € Lo (b, Q). Since
w e I(RY), p € I(R?). Hence by (5.2), u € Lo(b, Q). Since Lo(b, Q) is Q-completely
closed in the strong sense as mentioned in Section 1, p in (5.3) is in Lo(b, Q). Thus by
the definition, (5.2) implies that u € L;(b, Q). Repeating this argument, we conclude that
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m € Lyu(b, Q) forany 1 < m < oo and therefore u € Lo (b, Q). Hence OSS(b, Q) C
Lo (b, Q).

Since Lo (b, Q) is Q-completely closed in the strong sense, it only remains to prove “the
smallest”. Let K be any Q-completely closed class in the strong sense containing 0SS (b, Q).
First, notice the following fact. Let @ > 0 and r(z, x) = /&) — 1 — (g, x)/(1+1x]%). If vo
is a finite measure concentrated on Sp N {x : 2y (x) > «} satisfying

f vo(dx)Zb”"‘lb_"Qx|2 < 0
SB

n<0

and if u is a distribution with

A(2) = exp { f vo(dx) Y b"r(z, b‘”Qx)} ,
Sp

neZ
then u € OSS(b, Q), since (5.1) holds with a = b®. Now let i be a purely non-Gaussian
distribution in Lo (b, Q). Then its Lévy measure is represented as in Theorem 4.1, and we
have

p(z) = expi(y,z) + / vo(dx) r(da)) b"r(z,b7"Cx)
Sp 0.2 () oy
with some y € R?. For ¢ > 0, define ¢ by
fe(z) =expi(y,z) + | vo(dx) I (da) anar(z, b2yl
Sp (8.2y (x)—¢) neZ

Since the number of the possible values of y (x) is finite, 2y (x) — & > ¢ for all x, if ¢ is small
enough. Then, for fixed ¢ > 0, we can choose measures 1}(") (da) satisfying the following
conditions: I’x(") (da) is concentrated on the points (k27", k = 1,2,.--} N (g, 2y (x) — &),
" de) converges to I'y (da) for each x € Sp as n — oo, the total mass of '™ (da) does
not exceed that of I'y (d«) for each x € Sg, and {Fx(") } is measurable in x. Define ;ug") by

AP (@) =exp{ity.2) + f vo(dx) P,§">(da)2bf“r(z,b-f9x>}.
Sp (&.2y (x)—e) jezZ -

We see that ué”) is a convolution of a finite number of purely non-Gaussian distributions in

OSS(b, Q). Hence ,uf;") € K. We see from (4.6) that, for any fixed £ > 0,
(5.4) Cia <) b"(Ib7"%x[5 A1) < Cis for « € (¢,2y(x) —¢) and x € Sp.

neZ

Hence, by (4.2),
(5.5) / wo(dx) T (6, 2y (x) — £)) < 00.
SB

We show that, for fixed z € R%, 3, _, b"r(z, b~"Cx) is bounded in & € (g, 2y (x) — &)
and x € Sp, and continuous in «. Since |r(z, x)| < C16(|x|%2 A 1), we see the boundedness
from (5.4). The continuity is obvious. Thus by (5.5) and Lebesgue’s dominated convergence
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theorem, we have that asn — oo ,12’” — [1¢(2), and that u, € K. Finally, i, —> fias¢ | O.

Thus u € K. This proves that if 4 € Loo(b, Q) is purely non-Gaussian, then u € K.

If u € Loo(b, Q) is Gaussian, then by Theorem 3.4, w is a convolution of finite number
of Gaussian distributions in OSS(b, Q) C K, and thus u € K. As Proposition 2.3 shows,
any u € Loo(b, Q) is decomposable in L (b, Q) as the convolution of a Gaussian and a
purely non-Gaussian. Hence Lo (b, Q) C K and the proof is complete. [

6. Remarks on the case Q = /.

Let us consider the case @ = I. Let0 < b < 1. The classes L, (b, 1), 0 < m <
00, were introduced by Maejima and Naito [MN98], of which the paper [MSW99] was a
matrix generalization on R4. Distributions in Lg(b, I) are called semi-selfdecomposable.
Distributions in Lo (b, I) should be called completely semi-selfdecomposable. The class
OSS(b, I) consists of 4 € P(R?) that satisfies [1(z)? = f(bz)e'‘“? forsome 0 < a < 1
and ¢ € RY; namely it is the class of u € P(R?) that satisfies ﬂ(z)ba = [i(bz)e'{2) for some
0 < o < 2 and ¢ € R?. Thus distributions in OSS(b, I) are exactly semi-stable distributions
studied by many authors beginning with Lévy [L37]. Now we have B = bl, |x|g = |x]|,
and Sg = {x € R? : b < |x| < 1}. We write Sp as Sp. Further we have p = g = 1,
by =b,n; = 1,and f(¢) = ¢ — b. Since ¥g(A) = (1 — b?)A, Proposition 2.3 shows that
all Gaussian distributions are in Lo (b, I). Since B(x) = b and y(x) = 1forall x € RY, the
following result is obtained from Theorem 4.1.

THEOREM 6.1. (i) Suppose that u is in I (R?) with nonzero Lévy measure v. Then
W € Loo(b, I) if and only if v is expresed as

6.1) v(E) = / vo(dx) f Fx(da)Zb"“lE(b_"x), E € B(R%),
Sp 0,2)

neZ

where vq is a nonzero finite measure on Sp and I'y, x € Sp, are measures on (0, 2) measurable
in x satisfying

(6.2) f (l + ;) I'(da)=1.
0,2) (04 2 -«

(ii) If a nonzero finite measure vo on Sp and measures I'y, x € Sp, on (0, 2) measurable
in x satisfying (6.2) are given, then the measure v defined by (6.1) is the Lévy measure of some
u € I(R%).

(iii) If u € Loo(b, I) with nonzero Lévy measure v, then the measure vy in (i) is
uniquely determined by v and the measures I'y, x € Sp, are unique in the sense that f‘x =T,
for vy-a.e. x for any I, which expresses v by (6.1) in place of Iy.

PROOF. (i) We apply Theorem 4.1. Note that we do not assume that p is purely non-
Gaussian, since all Gaussians are in Ly (b, I). Suppose that u € Lo (b, I). Then we get
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(6.1) with some vg and I’y satisfying

/ vo(dx) / Fx(da)Zb"“((b_z"lxlz)/\‘1)<oo.
Sp 0,2)

neZ

This is equivalent to

f vo(dx) I'x(da) <Z b"* + Z b"”(z_“)) < 00.
Sp 0,2)

n>0 n<0

Since 3_,.ob"* ~ Ci7/aasa | Oand Y, b~ "?% ~ Ci3/(2—a) as & 1 2, the condition

is equivalent to
1 1
/ vo(dx) ( + ——) I'(da) < .
Sg ©.2) 2-

Let h(x) = f(o 2)(l/oe +1/Q2 —a)) Iy (de) and use A (x)vo(dx) and (1/h(x)) [y (de) in place
of vg and I, to obtain (6.2). The converse is s1m11arly proved. (ii) and (iii) follow from
Theorem 4.1(ii) and (iii), respectively. [

Another form of the theorem above is as follows.

THEOREM 6.2. (i) Suppose that i € I(R?) with nonzero Lévy measure v. Then
U € Loo(b, I) if and only if

(6.3) v(E) =f F(da)Zb”“va((b"E) NSy, EeBRY,
©0,2)

neZ

where I' is a nonzero measure on (0, 2) with

(6.4) f (1 -+ -—1—-) I'lda) < o©
0,2) 2 a

and vy, o € (0, 2), are probability measures on Sy, measurable in o.

(i) If a nonzero measure I' on (0, 2) satisfying (6.4) and probability measures v,
a € (0, 2), on Sp measurable in o are given, then the measure v defined by (6.3) is the Lévy
. measure of some 1 € I(R9).

(i) If u € Loo(b, I) with nonzero Lévy measure v, then the measure I' in (i) is
uniquely determined by v and the probability measures vy, a € (0,2), on S, are unique
in the sense that ¥y, = v, for I'-a.e. a for any ¥, that expresses v by (6.3) in place of vq.

PROOF: In order to go to the representation (6.3) from (6.1), consider the probability
measure (1/vo(Sp))vo(dx)((1/a) +1/(2 —a))I(da) on S, x (0, 2) and apply the existence
theorem for conditional distributions. Transfer in the reverse direction is similar. [

Finiteness and infiniteness of the moments of distributions in Lo (b, I) are determined
only by the measure I". This is an application of Theorem 6.2.

THEOREM 6.3. Let u be a distribution in Lo (b, I) with nonzero Lévy measure v.
Let I (dot) be the nonzero measure on (0, 2) uniquely determined by v in Theorem 6.2. Let
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oo € [0, 2) be the infimum of the support of I'. Then, finiteness and infiniteness of M, =
fra 1X1"1u(dx) are as follows.
(i) Ifn > ag, then My = oo.

(i) Ifa >0and0 < n < ap, then M, < o0.

(iii) Ifa > 0and I'({ap}) > O, then My, = o0.

(iv) If ag > 0 and I ({ao}) =0, then My, is finite or infinite according as f(ao,Z)
(1/(ax — ap))I" (da) is finite or infinite.

PROOF. It is known that M,, < oo if and only if f|x|>1 [x|"v(dx) < oo (Kruglov
[K70]). We have, from (6.3),

f |x|Tv(dx) = f F'da) | ve(dx) Zb”“lb""xl"lE(b_"x)
Ix|>1 (0,2) Sp

neZ
— f '(da) f e (dx)|x|" Zb"‘“—"),
©,2) Sh ne1

where E = {x : |x| > 1}. fn > oo, then }_,., 6”@ = oo for @ € [ao, 7) and
flxl>1 |x]"v(dx) = co. If g > 0 and 0 < 1 < ap, then

-1
If g > 0 and I"({ap}) > O, then

[ wivan = oo [ wg@nlaim Y1 = oo,
lx|>1 Sp

n>1

1
f x|Tv(dx) < —__bm/ r'{da) [x|Tve(dx) < 00.
|x|>1 - [@o,2) Sp

Hence we obtain (i), (ii), and (iii). Consider the final case, og > 0 and I ({@p}) = 0. Since
Y ons p"@=0) ~ Ci9/(a — ag) as & | ap, we have

1 1
Czof ——1I'(da) Sf |x|*v(dx) < C21/ —I'(da).
(2,2) & — @0 lx|>1 (e0,2) & — @0
Hence the assertion (iv) follows. [
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