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Abstract. We construct a new class of semi-selfsimilar processes as limiting processes of some random walks
in random scenery, which extends the class of selfsimilar processes studied by Kesten and Spitzer (1979).

1. Introduction and Results.

An R?-valued stochastic process X = {X (¢), t > 0} is said to be semi-selfsimilar if there
exista € (0, 1) U (1, 0o) and b > 0 such that '

(1.1) (X(a), t = 02X (), 1 >0},

where "2 denotes equality of all finite dimensional distributions. This notion of semi-self-
similarity has recently introduced by Maejima and Sato [MS99]. They have also shown under
mild conditions on {X (¢)} that there exists a unique H > O such that b = af for any pair
(a, b) satisfying (1.1). This H is called the exponent of semi-selfsimilarity of X. In this paper,
we construct a new class of semi-selfsimilar processes as limiting processes of random walks
in random scenery, which extends the class of selfsimilar processes studied by Kesten and
Spitzer [KS79].

Let Zg be an R¢-valued (non-Gaussian) strictly B-semi-stable random variable, where
0 < B < 2, and let ¢ be the characteristic function of Zg. Namely, ¢ satisfies that for some
r € (0,1),

(1.2) 0©) = (r?6), 6eR?.

Let I'(8) = {r > 0| (1.2)holds}. Then it is known that I'(8) = {rg,n € Z} for some
ro € (0,1) or I'(B) = (0,00). See, for instance, [Me73]. Throughout this paper, we fix
one r € I'(B) N (0, 1), and write it just . It is also known that non-Gaussian semi-stable
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characteristic function ¢ has the following Lévy-Khintchine representation (see [CS95]):

1.3) ©(0) =exp {iw, o)+ / y (dx) / Tl _ 1
S 0

—i(6, sx)I[sx € D]ld (— H:;s))] ,

wherec e R4, S = {x e R? : ||x|| =1}, D = {x € R? : ||x|| < 1}, y is a finite measure on
S, (-, -} is an inner product in R4, H,(s) is a nonnegative function such that
(1) H,(s)/sP is nonincreasing in s for each x,
(2) Hy(s) is right-continuous in s for each x and measurable in x for each s,
3) H:()=1,
(4) Hy(r'/Bs)y = Hy(s).
Next, let {§(k), k € Z} be independent and identically distributed R4-valued random
variables belonging to the domain of partial attraction of Zg in the sense that
I
(1.4) rf Y Ek)> Zg,
k=1

where [a] is the integer part of a and 2 denotes weak convergence. When 8 = 1, we assume
an additional symmetry condition on {£(k)} as follows: For some K,

1.5) |E[£(0); 1E(0)| < pll =K <00 forall p>0.

Also let {S,}22, be an integer-valued random walk, independent of {£(k)}, such that
-

where Z, is an a-stable random variable with 1 < a« < 2. Then consider the strongly

dependent sequence

£(S1), £(82),---,

which is a random walk in random scenery, and its partial sum
n
W, = &(S)).
j=1

We defined W; for n < s < n + 1 by the linear interpolation
Wi =W, + (6 —n)(Wpyy — Wp).

Kesten and Spitzer [KS79] studied the case whend = 1, Zp is a B-stable random variable
and {£(k), k € Z} satisfies that

1 n
n"E Zg(k) 5 Zg.
k=1 _
They proved that n~HW,,, where H =1 — 1/a + 1/af, converges to a selfsimilar process,

which is expressed by an integral of the local time with respect to a stable measure. In this
paper, we consider the same problem when Zg is a B-semi-stable random variable. Then as



SEMI-SELFSIMILAR PROCESSES RELATED TO RANDOM WALKS 71

will be seen, we have a new class of semi-selfsimilar processes as limiting processes of some
random walks in random scenery.

To describe our theorem, we need more notation. Let {Y,(¢), # > 0} be an «-stable Lévy
process such that the distribution of ¥, (1) is the same as that of Z,. Here we mean, by Lévy
processes, processes which have independent and stationary increments, start at the origin,
and whose sample paths are right continuous and have left limits. Since 1 < a < 2, L,(x),
the local time of {Y,(¢)} at x, exists, and we can take a version of L,(x) (denoted by L,(x)
again) which is continuous in (¢, x). Let {Zg(2), t € R} be another Lévy process independent
of {Y,(¢),t > 0} such that the distribution of Zg(1) is the same as that of Zg. Then, we can
define a stochastic integral

o0
(1.6) A(t) = f Li(x)dZg(x) .

—00
Our main theorem is the following.

THEOREM 1.1. Let

and
D) =r*" "W, an,, t>0, n=1,2,---.

Then {D, (), t > 0} converges weakly in C ([0, 00); R?) to the process {A(t), t > 0} defined
in (1.6).

REMARK 1.1. By Theorem 3.1 of [MS99], the limiting process {A(z), ¢t > 0} is semi-
selfsimilar and its exponent is H.

We prove the theorem by showing the following two propositions separately.
PROPOSITION 1.2.

(1.7) (Dn(t),t =0} 3{A(),t >0} as n— 0o,

d , . . g
where = denotes convergence of all finite dimensional distributions.

PROPOSITION 1.3. The family {D,(t),t > 0},n = 1,2,-.., is tight in C([0, 00);
Rd). ;

Proposition 1.2 will be proved in Sections 2 and 3, and the proof of Proposition 1.3 will
be given in Section 4.

2. Proof of Proposition 1.2.

We start with the relation

2.1) W =) &) =) Nai),
j=1

ueZ



72 TAKUJI ARAI

where N, (u) is the number of visits of random walk {S,} to the point « in the time interval
[0, n]. All that are needed for us about the occupation time N, (u) of {S,} and the local time
L;(x) can be found in [KS79]. We state some of them as lemmas below.

Forn <s <n+1andall u € Z, define

Ns(u) = Ny (1) + (s — n)(Np+1(u) — Np(u)) .
For —00 < a < b < 00, define
" 1
T (a,b) = - N
(@, b) =~ le e (40)
a<n"%u<b

and
b
I'i(a, b) =f Li(u)du .
a
LEMMA 2.1 ([KS79]). Foranyk >1andt), tp,--- ,tx > 0,
{T(aj, b)), 1 < j <k} > {I1;(aj, b)), 1 < j <k.
LEMMA 2.2 ([KS79]). Foranyp > 1,

sup E[Ns ()] = o(s”(“%))

ueZ
and
P{N;(u) > O for some u with |u| > R(s + 1)%} <e(R) forany s > 0,
where e(R) — 0 as R — oo and €(R) is independent of s.
LEMMA 2.3 ([KS79]).

lim sup Ng(u)s~ =0 in probability .

§—>00 uez
We have, with the replacement of s by r ~*” in Lemma 2.3,

2.2) lim sup N,—an (u)r®™® =0 in probability .

n—>00 ,eZ
We need more lemmas.

LEMMA 2.4 (The joint distributions of A(¢)). Foranyk > 1, t1,--- ,tx > 0 and
019"' 99’( eRda

E I:exp[ijkglejA(tj)]] =F |:exp [/;:f (;;L,j(u)ej) du}] ,

where f = log¢ and ¢ is the characteristic function of Zg.

Since {Zg(t)} is a Lévy process, the proof of Lemma 2.4 can be carried out exactly in
the same way as in Lemma 5 in [KS79]. We thus omit it.
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LEMMA 2.5. Foranyk >1,t,---,tx >0and6y,---,6k € R4,
k
}:f( anH ZN —any, ()8 ) / (Z L, (u)e,-> du.
ueZ 00 Jj=1

Denote the charactenstlc function of £(u) by
(2.3) AB) = E[¢©5M), 9 eR?.
Then we have the following.

LEMMA 2.6. logA(6) ~loge(@) as@ — O.

We postpone the proofs of Lemmas 2.5 and 2.6 to the next section and proceed to the
proof of Proposition 1.2. We have, by (2.1)~(2.3) and Lemmas 2.4-2.6,

I,:=E exp{ Z(e,, ronH ,_an,j)”
i k
=E exp{ Z<9,, “"HZN —ang; (u)E(u)>]:|

j=1 ueZ

B k
(2.4) =E|Y A (r“"H D Np-any, (u)e,-)]

L ueZ j=1

and

. T H
Jim 1y = Jim m( S 0|

| ueZ

_ lim_E | exp [Z f ( anH Z Ny—any, (u)9,-> ”

uel j=1

=E :exp [f_oof (;Ltj(u)e,-) du”

i k
= E | exp {i > (6;, A(t,-))” :
| L L=

This completes the proof of Proposition 1.2.

3. Proofs of Lemmas 2.5 and 2.6.

In the following, C will denote an absolute positive constant, which may differ from one
expression to the other. We need a lemma for proving Lemma 2.5.
"LEMMA 3.1. Let
¢ =1 ifl<B<?2,
0<¢<p ifB=<1.
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Then, for any 61, 6> € R?,
|£(61) — £B)] < C{l161 — 62111 + 16111 + 116211 + 161 — 62[I°} .

PROOF. By (1.4) and Lemma 4 of [M96], we have

| f(61) — f(62)| = [i(61 — 62, )

1
+ [ y(dx) ./ [ ®s%) — & @25%) (6, — 65, 5x)1d (_ HXES))
S 0 s

+ /‘ S (dx) fm[ei(9|,sx) _ e"(o?'”)]d _Hx(s)
S 1 sB

1, H,(s)
< cl|61 — 621 + 21161 — 62111161 1] + 11621 fs y(dx) fo s d(— =

_ o0
+2° |1, -ezuffy(dx)f std (—H";s)) .
S 1 s

In order to prove Lemma 3.1, it is enough to show that the following.

1
() fy(dx)f 2 (= ES)) _ o
s 0 sP
(i1) fy(dx)foostd (_Hx(s)) < 00
s 1 sP

Firstly, we prove (i). We put b = r1/8_ Since H,(s)/s? is nonincreasing, we have

forao [} va(-552) = [ran 5 [ e (-52)
f Y(dx)z_(:)bz" fbf :ld(—H:;S))
= [ vian szk (_ B | If,(%;:))
szk bllcﬂ ( 1) y(S)

< OQ.

We next prove (ii) in the same way as in the proof of (i). We have

o0 Hy(s) & L Hy(s)
¢ _x\w) k¢ -
frao ["sa(-252) s [raod v [ a(-52)

2 .1 (1

< 0o0.
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This completes the proof of Lemma 3.1.
PROOF OF LEMMA 2.5. Recall that
p©) = ¢(r?6).
Thus, we have by iteration
00" = p(r#9).

We have
H . cm(l—l) k n
oY Nyan; 06 ) = D logo (7 @ Ny-ang, (u)r6;
ueZ j=1 ueZ i=1

ueZ

Hence it is enough to prove that

k 00 k
(3.1) Zrnf (rn(a—l) Z Nr““"tj (u)Gj) __"_l_}) / f (Z Ltj (u)) du s
j=1 —eo \j=1

ueZ

in order to prove Lemma 2.5.
For some small T > 0 and large M, define

Apy=fueZ:lrzr"<u<(+Dtr ™"}, lel,

k
U, M,my= Y r'f (r"(“—l)ZNr-an,j(u)9j>
j=1

lu|>Mzr—"

and

_py 1 .
Ve M= Y Al f | OV — 30 D Neen; (065 ]

-M=<i<M yEA,,J j=1

where |A, /| is the number of integers in A, ;. Then

k
I:= Zrnf (rn(a—l) ZIN,_an,j(u)ej) —U(@,M,n)—-V(,M,n)
J=

ueZ

k
Z Z g {f (rn(a—l) ZNr—“‘"tj (u)gj)
j=1

—M<I<M u€A,,;

1 3
—f eV — D0 D Ny, (0065

r—n <
Y€An j=1

Let us denote

' 1
gj = Ny—ang; (u) and hj:= — —A¥1<ai)iM Z Ny-ang; (y) .
- YEApn

k
= Zr" log @ (rom(l_%) Z Ny-any, (u)Oj) .
j=1

75
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By Lemma 3.1, Holder’s inequality and Minkowski’s inequality,

k
(9; —hj)b;
=1

E[[IN<C-2M max |A,;|r" max max [E I:,.n(a-l)
-M<Il<M =

—M<I<M ueh,,

k k
<1+rn(a—1) Zgje,- + D Zhj@j ):I
j=1 =1
k ¢
+E | @D 1% (g; — kj)6;
j—1

—M<l<MueA,

21/2
k
<CMt max max r"(“'l)EI:Z(gj—hj)Oj ]
j=1

172
k /

> g

j=1

+ rn(a—l)

2‘)(/2

k 2
D hjb; )
j=1

E (1 + =D

+rnée—D (E l:

k
Z(gj —hj)6;
j=1

B 2
k k
< n(a—1) —h; 112
<CMr_max max ir E|12 (g —hp| | 21651
\ | 1j=1 Jj=1
k B k 2 2
L+ D N gl | |E[ D g |+ |E||D ki
- Ni= N L= =

k 2] & £/2
(3.2) +rnéle=D (E [ D (gj—h)p) ] D e; 112)
. j=1

On the other hand, we have, by Lemmas 2 and 3 of [KS79],

I2 a—lr—2n(a——1) .

max max El|g; —hj|° <Ct

—~M<l<M ueA,

Moreover, if we let p = 2, s = r~%" in the first assertion of Lemma 2.2, then we have

sup E[N,-an ()] = O(r~2"@-Dy
ueZ
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Hence,

E[|]] < CMz{r"@~Dy/Cra-1p=2ne-D
(1 + r"@=D/p=2n@=1) 4 pr@=D,/r-2n@-D)
4 prtle—D o f@=1,~2n@-D} )
a— (@=1)
=CMz(z*T + ).

If we replace s by r “*"¢ in the second assertion of Lemma 2.2, then we obtain the following
estimate:
(3.3) P{Ny-any(u) > O for some u with [u] > R(r~*"t + )= } < e(R)

forany n>1, t>0,

where ¢(R) — 0 as R — 00, £(R) is independent of n and ¢ > 0. We thus see that for any
n > 0, we can choose C; > 0 such that for any M > 0 and t > O satisfying Mt > Cy,

P{U(r,M,n) #0} <n.

Recall @ > 1. If we choose t above so small (and thus M so large) that
CMr(t&?' + ti(_af—'u) <n?,
then we have

(3.4) Pl >n] <21.

Hence, all we have to do in order to prove Lemma 2.5 is to show the convergence of V (z, M, n).
Note that Lemma 2.1 remains true, even if we replace T, (a, b) by

TMa.b)=r"" > Nean ).

ar~"<u<br—"

k
Y f (r“"H > " Ny-any, (u)e,-) —V(z,M,n)

ueZ j=1

Thus, we have

k
V(r, M, n) = Z II:n g1 (._1. Z Uz, + 1)1’)91) s

-M<l<M

which, as n — 00, converges weakly to
k.1 pU+hr
(3.5) DYDY —[ Ly, (»)dyb; ) .
_M<i<M \j=1 ¢ JIt

where we have used |A, ;|/r™" — 7.
Finally, it follows from the continuity and the compact support property of L that (3.5)

converges to
00 k
/ f (Z Ly (u)ej) du
o \ S



78 TAKUIJI ARAI

ast — 0and M — oo. This together with (3.4) shows (3.1) and completes the proof of
Lemma 2.5. O

PROOF OF LEMMA 2.6. This is an extension of Lemma 6.1 of [MM94] to the semi-
stable case. The idea of the proof is found in [MM94].
By (1.4), we have

(3.6) l_l}go A(r%e)[""] = @(#) uniformly on any compact set of 6 .
n

We first prove

(.7 lim A(r#6)"" = @(8) uniformly for § with rF <ol <1.
n—

Foreachn > 0,letg, = r~" — [r~"]. Then
A(rFo) " =a(rFo)r A (ro)™ .
Hence, it is enough to show

(3.8) lim A(r#6)* =1 uniformly for 0 with r# < ||§]| < 1

n—0oo

in order to show (3.7) by (3.6). For any ¢ > O, there exists an N > O such that if |z| < § :=
|rN/8| then |A(z) — 1| < &. Forany n > N and any 6 € R? with r1/8 < ||6| < 1,

Ir#6] < |r#] < |r¥| =
so that
MrP0) =1+, |l <e.
Thus, for any & > 0, there exists an N > 0 such that for any n > N and 8 € R¢,
Ar#6)" = +&)f =1+E, |E| < conste.

Therefore, (3.8) holds, and thus, we obtain (3.7).
By 3.7),
log A (r% 6)
im ———~ =
n—co r" log ¢(6)
Moreover by (1.2),

1 uniformly for @ with r < [|9]] < 1.

- log A(rﬁe)
n— og (p(r%e)

So that, for all » > N, we have

1
=1 uniformly for 8 withr? < |8 < 1.

log A(rﬁe)

= 1l <e¢.
logp(r#6)
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Furthermore, let 8§ = |rV/8| (> 0) then, for any 6 satisfying ||8]] < & (< 1), there exist a 6p
with r1/8 < ||6p|| < 1 and anng > N suchthat = rmo/B@,. Hence, for 0 satisfying ||6|| < 8,
we have

log A (6) 1' _ |logA(r76) -,
which completes the proof of Lemma 2.6. O

4. Proof of Proposition 1.3.

To show the tightness in C ([0, 00); R?), it is enough to show it in C([0, T]; R?) for
every T > 0 (see Theorem 6 of [W70]). We are going to show that, for every T > 0,
{D,®),0<t<T},n=12,---,istightin C([0, T]; RY). Firstly, we shall prove three
lemmas as follows.

LEMMA 4.1. Forany e > 0, there exists an A(e) such that

P(N,-an,(u) > 0 forsome |u| > A(e)r "andt <T) <

9

™

foralln > 1.

PROOF. Consider ¢(R) in (3.3). For any ¢ > O, there exists an A(¢e) such that e(A(e)(T+
1)~Ve) < g/4. Thus, by (3.3) with R = A(e)(T + )"/ andt =T,

P(N,-an,(u) > O for some |u| > A(e)r " andt < T)
= P(N,-en7(u) > O for some |u| > A(e)r™")

= P(N,—ang(u) > O for some |u| > A@E)(T + 1)"ar—"(T + 1)&)
< P(N,—ang (1) > O for some |u| > A(e)(T + 1)"2 (+™"T + 1)&)

_1
< (AT +1)7?)
€
<-.
— 4
This completes the proof of Lemma 4.1. O
LEMMA 4.2. Forany e > 0, there exists a p(€) such that
_n £
4.1) (2A(e) + Dr {1 — P(I£0)| < p(e)r™#)} < 1
foralln € Z.

PROOF. For each y > 0, we define

.2) HO) = [ By,
By Theorem 4 of Section 25 of [GK54], for all x > 0, we have
4.3) r—"P(lé‘(O)l > r_%x) — Hx)x? asn— oco.
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Since lim,—, oo H(x)x~# = 0, we can choose a large xo such that H (xo)xo— A <e/(16A(e) +
8). By (4.3), there exists an ng such that, for all n > ny,

n & _
—n %7 B
maxr P(I€(0)| > r*Fxg) < 16AG) 738 + H(x0)xy " -

Namely, we have

n £
—n -3 &
max r P(IE©)| > r Fxp) < BAG) 74"
Note also that there exists an n; < 0 such that
n £
“"P(|E0 B < —,
maxr =" P(EO)] > r™Px0) < gty
Hence, there exists a p(€) such that
n £
"P(lEQ B < -,
max r (€@ >r78p()) < A T4
and thus (4.1) holds. v O

LEMMA 4.3. There exists a Cy > 0 such that
P(E0)] > y) < C:H(y)y ™ ?,
forally > 0.
PROOF. Foreachn € Z and all x € (o(1)r'/8, p(1)],
r"P(I£0)] > r"/Px) L ITP(EO)| > r 8 p()r?)
H(x)x—# - H(p(1))p(1)=P

_ r VP > p)r D)

H(p(W)p(1)~Pr
1 1

< .
T (BA() +4) H(p()p(D)~Pr
If we let y = r—"/Bx, then the range of y is (0, 00). For all y > 0, we have, by (4.4),

“4.4)

P(I£(0)| > y)
_ T < C s
Hyy*? -7
where we have used H (r"/#y) = H(y), which follows from the assumption that H, (r!/8s) =
H,(s) and (4.2). O

Next we introduce the following notation:
EL(u) == E)ITIE@)| < p(e)r™#],
EE(); =" Y " Ny-an, W) E[£E ()],

ueZ

D) :=r*"™ Y " Np-an, u) {5 () — E[EE ()]} .
ueZ
We shall prove four more lemmas.
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LEMMA 4.4. Foranye > 0, there exists a C3(g) > 0 such that
21
(4.5) E[|D:(12) — DE(t)I?] < Ca(e)|tr — 11> =,

forall0 <ti <ty <Tandn > 1.

PROOF. By the definition of DZ(¢) and independence of {§(u), u € Z},

(4.6)  E[D:(r2) — D))

= rZanHE [Z{(Nr—omtz (u) — Nr—"”’tl (u))(grf (u) — E[Srf (u)])}2]

ueZ

< r2enH E1£€(0)121E [Z(N,_an,z(u) — Ny-onyy (u))z] :

ueZ
By [KS79],
4.7) E [Z(N,-antz(m ~ Ny-any, (u))z] < C4r™(n — n)* e
ueZ
— C4r—2an+n (tr — t1)2——é .
Moreover,
(4.8) E[E£(0)|*) = E[£%(0); |£(0)| < p(e)r F]

2,-2n/B

p(&)

< f P(EO)? > x)dx
0
p(e)r—"/P

_ fo PE0)] > y)2ydy

pleyr /P
< /O C2H(y)y~P2ydy

=2C;, Y f H)y Pydy
P

k=—oo Y p(E)r—k/P
< Cs(e)r"(=2/0.
The estimates (4.6)—(4.8) give us (4.5) with C3(g) = C4Cs(¢e). This completes the proof. []
LEMMA 4.5. Foranye > 0andn > 0, we have

lim sup P sup |Di(t2) — D;(t1)| = T1=o.
5—*0,,21 0<n,tr<T 4
fta—n|<é

We need a lemma for proving Lemma 4.5.
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LEMMA 4.6. Let {X,(t),0 <t < T} be a sequence of stochastic processes whose

sample paths are in C([0, T1; R?). If there exist y > 0, p > 1 and a nondecreasing, contin-
uous function F on [0, T] such that

1
P{lXn(r2) = Xn ()| Z A} = | F(82) — F@n|?

holds forall0 <t) <ty <T,n > 1and A > 0, then for any €1 > O, there existsa K > 0
such that

Z P[ sup [Xn(s) — Xn(jo)I 281]
j<é-IT jé<s<(j+1)$

p—1
K .
< [F(T) — F(0)] |: max |F((j + 1)d) — F(Ja)l] ;
81 j<8_lT
if 67T is integer.
PROOF. See the proof of Theorem 12.3 of Billingsley [B68]. a

PROOF OF LEMMA 4.5. By Chebychev’s inequality and Lemma 4.4, for n > 0 we
have

16
P{IDs) - D)1 = 7} = S EUDE G — Dien) ]
n

16 1
< ?Czs(s)ltz —1|*

forall0 <# <t <Tandn > 1. Thus {D;(¢+),0 <t < T},n =1,2,-.., satisfy the
condition of Lemma 4.6 with y = 2, p = Qa — 1)/ and F(t) = C3(e)*/?*~D¢. Hence, by

Lemma 4.6 and the Corollary to Theorem 8.3 of [B68], we have

P{ swp D) -Die)l=21< 3 Pl sup IDi(s)—DEGS = =t
< < 4 . 10<s<(j 12
0<t),10<T j<s-lT Joss<(j+1)s
[r2—t]<8
144
< —KC3(e)Ts'" %,
n
if 5717 is integer and 8 < 1. Since 1 — 1/& > 0, we have
limsupP | sup |D5(r) — D)l =+ | =0,
§—-0,>1 0<t1,<T 4
i2—nl<é
which completes the proof of Lemma 4.5. O

LEMMA 4.7. Foranye > 0, there exists a Cg(e) > O such that
|E,(t2) — EL(t1)] < Ce(e)lt2 — 111,
forall0 <ty <tp <Tandn > 1.
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PROOF. Note that
> Ny W) Elg5 w)] = E[;(0)] ) Ny-an (1)

ueZ ueZ

= E[E2 ]t +1).
Thus in order to get Lemma 4.7, it is enough to prove that for 0 < 8 < 2,
(4.9) |E[EE(0)]] < Co(e)r" #  for some Cg(s) > 0.

When 0 < 8 < 1, we can show (4.9) by the same argument as for (4.8). When 8 = 1, we can
obtain |E[££(0)]| < Ce(e) by (1.5). When 1 < B < 2, we first show E[§(0)] = 0. To this
end, observe, by (1.2),

4077 @)/ ®) = ¢'(@P0)qF, 6 eR,
where g = 1/r. Thus, we have
@? — )¢/ (©) =0,
and hence E[£(0)] = 0. This together with Lemma 4.3 yields
|E(&E(0)]] = |E[£(0); [EO)| < p(e)r™™/P]|
= |E[£(0); [£(0)| = p(e)r—/P]]

< f( _— P(E©)| > y)dy + p(e)r P P(|£(0)| > o(e)r—"/8)
pEr—"

<C [ f § H)y Fdy + p(e)r P H(p(e)r™B)(p(e)r—/B)=F ]
pE)r—"

00 p(s)r—(n+k+l)/ﬁ
<aiy [ H(p(e)r~ 018 (o (a)r=+0/8)~P
k=0 Y p(e)r—(n+h)/B

+ p(e)l*f’r““”ﬂ)H(p(s))]

< Co(e)r" (71D
The proof of Lemma 4.7 is thus completed. a
By Lemma 4.7, we have

(4.10) limsupP | sup [ES() — ESG) = 2 | =o0.
8—0,>1 0<t;.t<T 4
lrp—r11<8

LEMMA 4.8. Foranye > 0andn > 0, we have

P <SUp|Dn(t) — D;(t) — E, ()] = —) <Z
t<T 4 2

foralln > 1.
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PROOF. By the definition of D,(t), D;(¢t) and E(¢),
Dy(t) — D5(t) — ES(6) = ™ H Y " Nyoany (u) (E () — £5(w)) .
ueZ
Thus, by Lemmas 4.1 and 4.2, for all n > 1, we have

'

D Np-ang () (E () — &£ (u))

> 0 for some t < T)

ueZ
<P Z Ny-an;(u)(E(u) — ;-‘,f(u)) >0forsomet <T
lul<A(e)r—"
+P > Np-an,(u)(E(u) — &5 ()| > Oforsomet < T
|lul>A(e)r—"n
< P(E(w) # £ () for some lu] < A@)r ™) +
- €

< A+ 1Dr"P((0) #£;(0) + 2

€
< -.
-2

This completes the proof of Lemma 4.8. a
Finally, we have

(4.11) |Dn(£2)—Dp(t1)| < |Dp(t2) — Dy (t2) — E; (1)
+ |Dn(t1) — Dy (1) — E;(t)| + | D;(82) — D;(t)| + |ES(2) — ES(11)] .
Consequently, by (4.10), (4.11), Lemmas 4.5 and 4.8, we obtain

lim sup P sup |D,(t) — Dy(t1))|=n | =0.
8—0,>] 0<t;,tr<T
lt2—1]<8
Thus the family {D,(t),0 <t < T},n = 1,2, -, is tight in C([0, T]; R?) and hence in
C([0, 0o0); R¥). The proof of Proposition 1.3 is finished.
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