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Abstract. In this paper we examine the question: given n > 1, find a function f : N → N where m = f (n)

is the smallest integer such that Km is intrinsically n-linked. We prove that for n > 1, every embedding of K� 7
2 n� in

R3 contains a non-splittable link of n components. We also prove an asymptotic result, that there exists a function

f (n) such that limn→∞ f (n)
n = 3 and, for every n, Kf (n) is intrinsically n-linked.

1. Introduction

A graph, G, is intrinsically linked if every embedding of G in R3 contains a nontrivial
link. Conway and Gordon [3] and Sachs [8] first showed the existence of such graphs by
proving that the complete graph on six vertices, K6, is intrinsically linked. Sachs [8] proved
that the graphs in the Petersen family are minor minimal, namely they are intrinsically linked
and that no proper minor of them is intrinsically linked. Then Robertson, Seymour, and
Thomas [7] proved that any intrinsically linked graph contains a graph in the Petersen family
as a minor. Together these results fully characterize intrinsically linked graphs.

The concept of intrinsically linked graphs can be generalized to a graph that intrinsically
contains a link of more than two components. A link L is split if there is an embedding of a

2-sphere F in R3 � L such that each component of R3 � F contains at least one component
of L. A link that is not split is called non-splittable (or non-split). A graph G is intrinsically

n-linked if every embedding of G in R3 contains a non-splittable n-component link. Fla-
pan, Naimi, and Pommersheim investigate intrinsically 3-linked graphs (or intrinsically triple
linked graphs) in [5]. They proved that K10 is the smallest complete graph to be intrinsically
3-linked. Bowlin and Foisy [2] also looked at intrinsically 3-linked graphs. They exhibited
two different subgraphs of K10 that are also intrinsically 3-linked, thus proving that K10 is not
minor minimal with respect to being intrinsically 3-linked. However, it is not known if either
of these subgraphs is minor minimal. Flapan, Foisy, Naimi, and Pommersheim addressed
the question of minor minimal intrinsically n-linked graphs in [4], where they constructed
families of minor minimal intrinsically n-linked graphs.
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In this paper we examine the question: given n > 1 find a function f : N → N where
m = f (n) is the smallest integer such that Km is intrinsically n-linked. The analogous ques-
tion for complete bipartite graphs was considered in [6]. There it was shown that the com-
plete bipartite graph K2n+1,2n+1 (and the complete tripartite graph K2n,2n,1) are intrinsically
n-linked. It is not known if K2n+1,2n+1 is the smallest intrinsically n-linked complete bipar-
tite graph, however the smallest is one of the following three graphs, K2n,2n, K2n+1,2n, or
K2n+1,2n+1. Since K2n,2n,1 is a subgraph of K2n+2n+1 this gives an upper bound of 4n + 1
for the number of vertices m needed for the smallest complete graph Km which is intrinsically
n-linked. On the other hand, based on the number of disjoint simple closed curves needed in
Km, we obtain a lower bound m ≥ 3n. This lower bound is realized in the n = 2 case, but not
for the n = 3 case, where m = 10 [5].

In this paper we present two bounds for m obtained through a variety of techniques. In

Section 2 we prove that every embedding of K14 into R3 contains a 3-linked K9. This is then
used to prove, for n > 1, that K� 7

2 n�, (where �x� denotes the largest integer less than or equal

to x), is intrinsically n-linked. In Section 3 we use a combinatorial argument to prove an

asymptotic bound: there exists a function f (n) such that limn→∞ f (n)
n

= 3 and, for every n,

Kf (n) is intrinsically n-linked.
These results are interesting for two reasons. For small n, the results of Section 2 together

with the fact that f (n) = m ≥ 3n give a tight set of bounds for f (n). For large n, Section 3
shows that if f (n) has a coherent closed form presentation, the linear part of it must be 3n,
that is, f (n) = 3n + o(n). This might also be susceptible to further refinement; at the least
it indicates that “most” of the simple closed curves in a non-splittable n-component link in a
minimal Km must be triangles.

2. K� 7
2 n� is intrinsically n-linked

Let a simple closed curve containing exactly three vertices be called a triangle, and one
containing exactly four vertices be called a square. Let a non-splittable n-component link be
called an n-link. The edge between the vertices x and y will be denoted by xy. The complete
graph on n vertices with vertices labelled v1, v2, . . . , vn will be denoted by 〈v1, v2, . . . , vn〉.
All proofs will use mod (2) linking. So when two simple closed curves are said to link this
should be taken to mean that they have non-zero linking number mod (2). Let the graph G be

embedded in R3, and let γ be a simple closed curve in R3 � G. We say γ links G if there
exists a triangle J in G such that γ links J . Similarly, a simple closed curve γ links a link L

if there is some component J of the link L such that γ links J .
In this section we prove a number of constructive lemmas and, the proposition that every

embedding of K14 contains a 3-link of triangles. Together these results are used to prove the
main result of this section, that K� 7

2 n� is intrinsically n-linked. The lemma below follows

from the proofs in [5].
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LEMMA 1. Given an embedding of K6 in R3 and a simple closed curve γ in R3 � K6,
if γ links K6 then one of the following holds:

• γ links four triangles of K6 all of which contain a common edge
• γ links six triangles which are of the form pqx and prx where p, q and r are fixed

vertices and x is a vertex such that x �= q and x �= r

• γ forms a 3-link L with two of the triangles of K6, where at least two pairs of the
components of L link.

As in [5], a simple close curve γ which links four triangles all containing the edge pq

will be said to link in a 4-pattern pq . A simple closed curve γ that links six triangles which
are of the form pqx and prx, where p, q and r are fixed vertices and the vertex x is such that
x �= q and x �= r , will be said to link in a 6-pattern p

q
r . Though the form of the 3-link is not

made explicit in [5], all proofs were done using mod (2) linking so the a 3-link where at least
two of the components of the link are linked, is the only 3-link that is detectable.

LEMMA 2. Given an embedding of K7 in R3 and a simple closed curve γ in R3 � K7,
if the curve γ links K7 then one of the following holds:

• γ links five triangles of K7 all of which contain a common edge
• γ links eight triangles which are of the form pqx and prx where p, q and r are fixed

vertices and x is a vertex such that x �= q and x �= r

• γ is in a 3-link L with two triangles in K7, where at least two pairs of the components
of L link.

PROOF. The proof consists of examining all of the K6 subgraphs of K7 and using
Lemma 1. Label the vertices of K7 = 〈1, 2, 3, 4, 5, 6, 7〉. If γ is in a 3-link L with two
triangles, where at least two pairs of the components of L link, we are done. So suppose γ

links some triangle J and γ is not in a 3-link with two triangles. Without loss of generality,
J is in the complete graph on 6 vertices 〈1, 2, 3, 4, 5, 6〉. By Lemma 1, the curve γ links
〈1, 2, 3, 4, 5, 6〉 in a 4-pattern or a 6-pattern.

Suppose γ links 〈1, 2, 3, 4, 5, 6〉 in a 6-pattern which, without loss of generality, we

take to be the 6-pattern 12
3. So γ links 124, 125, 126, 134, 135, and 136. Now consider

〈1, 2, 3, 4, 5, 7〉, then γ links 124, 125, 134 and 135. Since there is no edge that appears in

all four of these triangles, γ must link 〈1, 2, 3, 4, 5, 7〉 in a 6-pattern, either 12
3 or 14

5. Sup-

pose that γ links 〈1, 2, 3, 4, 5, 7〉 in the 6-pattern 12
3, so γ also links 127 and 137. Then γ

links 〈1, 2, 4, 5, 6, 7〉 in the 4-pattern 12, γ links 〈1, 3, 4, 5, 6, 7〉 in the 4-pattern 13, γ links

〈1, 2, 3, x, y, z〉 with x, y, z ∈ {4, 5, 6, 7} in the 6-pattern 12
3, and γ does not link any triangles

in 〈2, 3, 4, 5, 6, 7〉 because all triangles in 〈2, 3, 4, 5, 6, 7〉 appear in one of the before men-
tioned K ′

6s. This accounts for all of the K ′
6s in K7. So these eight triangles: 124, 125, 126,

127, 134, 135, 136, and 137 are all the triangles that γ links. Note that all of these triangles
are of the form pqx and prx with p = 1, q = 2, r = 3 and x ∈ {4, 5, 6, 7}.

Next suppose that γ links 〈1, 2, 3, 4, 5, 6〉 in the 6-pattern 12
3 and γ links 〈1, 2, 3, 4, 5, 7〉

in the 6-pattern 14
5. So γ links 124, 125, 126, 134, 135, 136, 147 and 157. The simple closed
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curve γ links 〈1, 2, 4, 5, 6, 7〉 in the triangles 124, 125, 126, 147, and 157. So γ must link

〈1, 2, 4, 5, 6, 7〉 in the 6-pattern 12
7, and it links 167 in addition to the previously mentioned

triangles. Then γ links 〈1, 2, 3, 5, 6, 7〉 in the 6-pattern 15
6, γ links 〈1, 2, 3, 4, 6, 7〉 in the 6-

pattern 14
6, γ links 〈1, 3, 4, 5, 6, 7〉 in the 6-pattern 13

7,and γ does not link any of the triangles

of 〈2, 3, 4, 5, 6, 7〉 because all of these triangles appear in one of the K ′
6s mentioned above.

This accounts for all of the K ′
6s in K7. So γ links the nine triangles: 124, 125, 126, 134,

135, 136, 147, 157, and 167. Notice that these are all of the triangles of the from 1xy with
x ∈ {2, 3, 7} and y ∈ {4, 5, 6}. Consider the subgraph K3,3,1 ⊂ 〈1, 2, 3, 4, 5, 6, 7〉 with the
three sets of vertices of the tripartite graph being {2, 3, 7}, {4, 5, 6}, and {1}. The graph K3,3,1

is in the Petersen family, and it always contains a link of a square S and triangle T [8]. In this
case S = axby and T = 1cz with {a, b, c} = {2, 3, 7} and {x, y, z} = {4, 5, 6}. Thus T is
one of the triangles that γ links. Since T links S, then T links one of the triangles axb or bya;
call this linking triangle Q. Thus γ links T and T links Q, so γ ∪ T ∪ Q forms a 3-link with
two triangles. This contradicts the assumption that γ is not in a 3-link with two triangles.

Finally, suppose γ links 〈1, 2, 3, 4, 5, 6〉 in a 4-pattern, without loss of generality we

may assume it is the 4-pattern 12, and γ does not link any K6 in a 6-pattern. Then in
〈1, 2, 3, 4, 5, 7〉, the curve γ links 123, 124, 125, and by assumption must link in a 4-pattern.

So γ links 〈1, 2, 3, 4, 5, 7〉 in the 4-pattern 12. Thus γ links 12x for all x ∈ {3, 4, 5, 6, 7}.
There are five such triangles. As with the previous case by looking at all the K ′

6s in K7 we
see these are the only triangles that link γ in K7. �

If a simple closed curve γ , embedded in R3 � K7 links five triangles of K7 all of which
contain a common edge pq , it will be said to link K7 in a 5-pattern pq . If a simple closed
curve γ links eight triangles which are of the form pqx and prx where p, q and r are fixed
vertices and x is the vertex such that x �= q and x �= r , the curve will be said to link K7 in an
8-pattern p

q
r . Lemma 2 enables us to prove the following key constructive lemma.

LEMMA 3. Given an embedding of a complete graph G in R3, if G contains an n-link
L where L = L1 ∪ J , L1 is an (n − 1)-link, J links L1, and there are at least four vertices of
G not in L, then G contains an (n + 1)-link L2 = L1 ∪ T0 ∪ T1 where T1 links L1 ∪ T0 and
L1 ∪ T0 is an n-link.

PROOF. Fix an arbitrary embedding of G. By assumption G contains an n-link L with
a component J such that L � J is an (n − 1)-link. Also by assumption J links L, so there is
a simple closed curve γ in L that links J . The component J can be assumed to be a triangle.
Suppose instead of linking a triangle J that γ links a square S. Since G is a complete graph
there is a diagonal edge e of S. Let τ0 and τ1 be the triangles formed from the edges of S and
the edge e. Since γ links S, then [S] is nontrivial in H1(R3 � γ ; Z2). In H1(R3 � γ ; Z2)

we have the following equation [τ0] + [τ1] = [S]. So one of [τ0] or [τ1] is nontrivial in

H1(R3 � γ ; Z2). Thus one of these triangles links γ , call it J . So J contains three vertices
and there are four vertices in G that are not in L. Label the vertices of J ∪ (G � L) as
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{1, 2, 3, 4, 5, 6, 7}. Let H be the complete graph 〈1, 2, 3, 4, 5, 6, 7〉. The simple closed curve
γ links J so, by Lemma 2, γ links H in a 5-pattern or an 8-pattern or it forms a 3-link with
two triangles in H , where two pair of the components of the 3-link link.

Suppose γ forms a 3-link with two triangles in H say T0 and T1. There are two ways
the 3-link can be formed: either γ links both of the triangles, T0 and T1, or γ links T0 and T1

links T0. In both of these cases let L2 = (L � J ) ∪ T0 ∪ T1 which forms an (n + 1)-link in G,
T1 links (L � J ) ∪ T0, and (L � J ) ∪ T0 forms an n-link.

Suppose γ links H in a 5-pattern, then we may assume, without loss of generality that γ

links H in the 5-pattern 12. So γ links all of the triangles in H containing the edge 12 and no
other triangles in H . The graph H is a complete graph on seven vertices, so each edge of H

is contained in a 2-link [2]. Thus 12 is in one component, say T0, of a link T0 ∪ T1 in H . So
γ links T0, and L2 = (L � J ) ∪ T0 ∪ T1 forms an (n + 1)-link in G, T1 links (L � J ) ∪ T0,
and (L � J ) ∪ T0 forms an n-link.

FIGURE 1. The graph G7.

Suppose γ links H in an 8-pattern, then we may assume, without loss of generality that

γ links H in the 8-pattern 12
3. So γ links 12x and 13x with x ∈ {4, 5, 6, 7}. Consider the

subgraph G7 ⊂ H with 1 the vertex of valence three, {2, 3, 4} the vertices of valence four
and {5, 6, 7} the vertices of valence five. The graph G7 shown in Figure 1, is a graph in the
Petersen family, and it always contains a link of a square S containing that vertex 1 and triangle
T [8]. In this case S = 1axb and T = ycz with {a, b, c} = {2, 3, 4} and {x, y, z} = {5, 6, 7}.
The triangle T does not contain the vertex 1, so γ does not link T . If a or b = 4, then γ

links 1ab and does not link xab, thus γ links S. So we see that we are done as follows, take
S to be T0 and T to be T1 and L2 = (L � J ) ∪ T0 ∪ T1 forms an (n + 1)-link in G, T1 links
(L � J ) ∪ T0, and (L � J ) ∪ T0 forms an n-link. Otherwise S = 12x3 and T = y4z. So
either 12x or 13x links T . Take the appropriate triangle to be T0 and let T = T1. So again,
L2 = (L � J ) ∪ T0 ∪ T1 forms an (n + 1)-link in G, T1 links (L � J ) ∪ T0, and (L � J ) ∪ T0

forms an n-link. �

Notice that Lemma 3 may be applied iteratively producing a link with an additional
linking component for each set of four free vertices in a complete graph. The following more
general version of Lemma 1 and Lemma 2 is needed to prove Proposition 1.

LEMMA 4. Given an embedding of Kn in R3 where n ≥ 6 and a simple closed curve

γ in R3 � Kn, if the curve γ links Kn then one of the following holds:
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• γ links n − 2 triangles of Kn all of which contain a common edge pq , (called an
(n − 2)-pattern pq)

• γ links 2(n − 3) triangles which are of the form pqx and prx where p, q and r are
fixed and x �= q and x �= r , (called a 2(n − 3)-pattern p

q
r )

• γ is in a 3-link L with two triangles in Kn, where at least two pairs of the components
of L link.

PROOF. This proof is by induction on n. The case n = 6 is Lemma 1, proved in [5].
The case n = 7 is Lemma 2. Assume the lemma holds for some n ≥ 7. Now consider an
embedding of Kn+1 = 〈1, 2, . . . , n + 1〉 in R3 and a simple closed curve γ in R3 � Kn+1.
For ease of notation let the complete graph on n vertices 〈1, 2, . . . , j − 1, j + 1, . . . , n + 1〉
be denoted 〈ĵ 〉. If γ is in a 3-link L with two triangles in Kn+1, where at least two pairs of
the components of L link, we are done. So suppose γ links some triangle T in Kn+1 but it is

not in a 3-link with two triangles in Kn+1. Without loss of generality T is in Kn = 〈n̂ + 1〉.
By the inductive assumption, γ links Kn in an (n − 2)-pattern or a 2(n − 3)-pattern.

Suppose γ links 〈n̂ + 1〉 in a 2(n − 3)-pattern which, without loss of generality, we

take to be the 2(n − 3)-pattern 12
3. So γ links 124, 125, . . . , 12n, 134, 135, . . . , 13n. Now

consider Kn = 〈n̂〉. The curve γ links 124, 125, . . . , 12(n − 1), 134, 135, . . . , 13(n − 1).
Since the triangles are all of the form 12x or 13x, the curve γ must link 〈n̂〉 in the 2(n − 3)-

pattern 12
3. Then γ links 〈3̂〉 in the (n − 2)-pattern 12, γ links 〈2̂〉 in the (n − 2)-pattern

13, γ links 〈v̂i 〉 with vi ∈ {4, 5, . . . , n + 1} in the 2(n − 3)-pattern 12
3, and γ does not

link any triangles in 〈1̂〉 because all of the triangles in 〈1̂〉 appear in one of the previously
mentioned K ′

ns. This accounts for all of the K ′
ns in Kn+1. So these 2(n + 1 − 3) triangles:

124, 125, . . . 12(n + 1), 134, 135, . . . , 13(n + 1) are all of the triangles that γ links. Notice
that they are all of the triangles of the form pqx and prx with p = 1, q = 2, r = 3 and

x ∈ {4, 5, . . . , n + 1}. So γ links Kn+1 in the 2((n + 1) − 3)-pattern 12
3.

Finally, suppose γ links 〈n̂ + 1〉 in an (n − 2)-pattern which, without loss of generality,

we may assume is the (n − 2)-pattern 12, γ does not link any Kn in a 2(n − 3)-pattern and γ

is not in a 3-link of triangles in Kn+1. Then in 〈n̂〉, the curve γ links 123, 124, . . . , 12(n− 1).

So γ links 〈n̂〉 in the (n − 2)-pattern 12. Thus γ links 12x for all x ∈ {3, 4, . . . , n + 1} (there
are (n+ 1) − 2 such triangles). As with the previous case these are the only triangles that link

γ in Kn. So γ links Kn+1 in the ((n + 1) − 2)-pattern 12. �

PROPOSITION 1. Every embedding of K14 in R3 contains a 3-link L = T0 ∪ T1 ∪ T2

of triangles, where T0 links T1 and T1 links T2.

PROOF. Since K6 is intrinsically linked, in any embedding of K14 in R3 there must be

at least
(14

6

)
distinct pairs of linked triangles. There are

(14
3

)
triangles in K14. By Lemma 4,

each triangle T in K14 either does not link any of the triangles in K11 (the graph defined by
the vertices of K14 � T ), or links K11 in either a 9-pattern, or a 16-pattern, or is in a 3-link
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L with two other triangles, where two pairs of the components of L link. So the greatest
number of triangles a triangle T can link and not be in a 3-link L = T0 ∪ T1 ∪ T2 of triangles,
where T0 links T1 and T1 links T2, in K11 is 16. So the maximum total number of pairs of
linked triangles there can be in K14 without the existence of a 3-link of triangles of this form

is
(14

3

) 16
2 , where the second term is divided by two because each pair of linked triangles is

counted twice, once for each triangle in the pair. Since
(14

6

)
>

(14
3

) 16
2 , every embedding of

K14 contains a 3-link L = T0 ∪ T1 ∪ T2 of triangles, where T0 links T1 and T1 links T2. �

The following additional constructive lemmas are needed to prove the main result of this
section.

LEMMA 5 ([5]). Given an embedding of K4 in R3 and an embedding of a simple

closed curve γ in R3 � K4, γ links an even number of triangles of K4.

LEMMA 6. Suppose we have an embedding of K6 in R3, and two non-split disjoint
links L of n components and J of m components, where L = L1 ∪ T , J = J1 ∪ S, L1 and J1

are non-splittable links, and T and S are disjoint triangles in K6. Let γ be a component of L1

that links T and let α be a component of J1 that links S. Then there is a square (or triangle)
R in K6 such that J1 ∪ R ∪ L1 is an (n + m − 1)-link and R links both γ and α.

PROOF. Let K6 = 〈1, 2, 3, 4, 5, 6〉. Recall that γ is a component of L1 that links T and
α is a component of J1 that links S. Without loss of generality, label the vertices of T with
{1, 2, 3} and the vertices of S with {4, 5, 6}. Note that by Lemma 1, γ and α will link triangles
in K6 other than T and S, respectively. If α and γ link the same triangle in K6, take it to be
R. Then J1 ∪ R ∪ L1 forms an (n + m − 1)-link.

Suppose α and γ do not link the same triangle in K6. In particular α does not link 123
and γ does not link 456. Consider the K4 subgraph G = 〈3, 4, 5, 6〉 of K6. Since α links
456 then, by Lemma 5, α must link another triangle in G, and in particular one that contains
the vertex 3 (as 456 is the only triangle that does not). Without loss of generality, suppose α

links 345. Next consider H = 〈2, 3, 4, 5〉 then, since α links 345, it must link at least one of
234, 235 or 245. Suppose α links 234 or 235, without loss of generality suppose α links 234.
Since α does not link 123 and γ does not link 456, γ and α both link the square 1243. So take
R to be 1243 and J1 ∪ R ∪ L1 forms an (m + n − 1)-link. Finally, suppose that α links 345
and 245. The simple closed curve γ links 123 so it must link one of 124, 134, or 234 in the
K4 subgraph 〈1, 2, 3, 4〉. All three of these triangles share an edge with one of the triangles

that α links, either 24 with the triangle 245 or 34 with 345. Thus there is a square R that links
both γ and α, so that J1 ∪ R ∪ L1 forms an (m + n − 1)-link. �

Notice that the number of vertices of the resulting link J1 ∪R∪L1 in Lemma 6 is at most
two less than the sum of the number of vertices L and J . This is because the two triangles
in K6 are replaced with a square or a triangle. Let �x� denote the largest integer less than or
equal to x, as usual.

THEOREM 1. Given n > 1, every embedding of K� 7
2 n� contains an n-link.
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PROOF. For n = 2, K� 7
2 n� = K7 ⊃ K6. Since K6 is intrinsically linked [3], K7 is

as well. For n = 3, K� 7
2 n� = K10 which is known to be intrinsically 3-linked [5]. For

n = 4, K� 7
2 n� = K14. Let K14 be embedded in R3. By Proposition 1, K14 contains a 3-link

L1 = T0 ∪T1 ∪T2 of triangles where T0 links T1 and T1 links T2. So L1 �T2 is a 2-link. There
are five vertices of K14 that are not used in the link L1 and T2 links T0 ∪ T1, so by Lemma 3
K14 contains a 4-link.

We will proceed by induction for n ≥ 5. We will write n in the form n = 2a+5 or 2a+6

for some integer a ≥ 0, so that � 7
2n� = 7a + 17 or 7a + 21. The proof is by induction on a

for n odd, then the case n even follows from Lemma 3 above. The inductive hypothesis for n

odd is that every embedding of K7a+17 contains a (2a + 5)-link L, where L = L0 ∪ R0 ∪ R1

and L�R1 is a (2a + 4)-link. Also, the link L0 is a (2a + 3)-link that contains at most 7a + 9
vertices, and there is a triangle T in L0 such that T links L0 �T and L0 �T is a (2a+2)-link.

Suppose n odd, and thus � 7
2n� = 7a+17. First consider a = 0, so n = 5 and � 7

2n� = 17.

Fix an embedding of K17 in R3. Since 17 > 14, by Proposition 1 the graph K17 contains a
3-link L0 = T0 ∪T1 ∪T2 of triangles where T0 links T1 and T1 links T2. So then both L0 � T0

and L0 � T2 are 2-links. There are nine vertices in L0 so there are eight vertices in K17 which
are not used in L0. By Lemma 3, with each additional set of four vertices an additional linked
component can be added, so we can find L, a 5-link in K17, with a component that links at
least one of the other components and when removed leaves a 4-link.

Fix an embedding of K7(a+1)+17. Choose a K7a+17 ⊂ K7(a+1)+17, then by the inductive
assumption, K7a+17 contains a (2a + 3)-link L0 that contains at most 7a + 9 vertices, and
there is a triangle T in L0 such that L0 � T = L1 is a (2a + 2)-link and T links L1. So
there are 15 vertices of K7(a+1)+17 that are not in L0. Let H be the complete graph defined
by these 15 vertices. Since 15 > 14, by Proposition 1, H contains a 3-link J1 = T0 ∪ T1 ∪ T2

of triangles where T0 links T1 and T1 links T2. So then J1 � T0 and J1 � T2 are both 2-links.
By Lemma 6, given L0 and J1 there is a (2(a + 1) + 3)-link L1 = T0 ∪ T1 ∪ R ∪ L1 that
contains at most (7a + 9)+ 9 − 2 = 7(a + 1) + 9 vertices. Given that J1 � T0 is a 2-link with
T0 linking J1 � T0, the link L1 � T0 is a (2(a + 1) + 2)-link with T0 linking L1 � T0, since
the construction given by Lemma 6 does not change the links outside of the triangles replaced
with a square (or triangle). At this point there are at least 8 = 7(a + 1) + 17 − (7(a + 1) + 9)

vertices of K7(a+1)+17 that are not in L1. By Lemma 3, with each additional set of four
vertices an additional linked component can be added. So we can find L, a (2(a+1)+5)-link
in K7(a+1)+17, with a component that when removed leaves a (2(a + 1) + 4)-link.

Now suppose n is even and thus � 7
2n� = 7a + 21. Fix an embedding of K7a+21. Choose

a subgraph K7a+17 ⊂ K7a+21. The construction above produces L, a (2a + 5)-link in K7a+17

with a component that, when removed, leaves a (2a+4)-link. There are at least 4 = 7a+21−
(7a + 17) vertices that are not in L. By Lemma 3, with each additional set of four vertices an
additional linked component can be added, so we can find a (2a + 6)-link in K7a+21. �
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3. Asymptotics

We begin with the main result of this section:

THEOREM 2. There exists a function f (n) such that

lim
n→∞

f (n)

n
= 3

and for every n, Kf (n) is intrinsically n-linked.

REMARK 1. The bounds in this theorem improve the linear bounds of Theorem 1 for
sufficiently large n.

REMARK 2. Using the methods in this section, functions f (n) as in Theorem 2 can be
constructed explicitly. The function with the best asymptotic behavior that can be constructed
using Proposition 2 directly is of the form 3n + A log n + B for some constants A and B.

To prove this result, we will first introduce some terminology. Consider the triangles
in Km. There are two numbers which measure the size of a set S of triangles. One is the
magnitude of the set S, that is, the number of triangles in the set. This we denote by |S| as
usual. Another notion is the disjoint size (S) of S which is the maximal magnitude of any
subset S′ of S so that all the triangles of S′ are disjoint, that is, so that no two of them share a
vertex.

LEMMA 7. Let S be a non-empty set of triangles in Km with (S) = n.
Suppose m > 3n + 8, then

|S| ≤ 11nm2 .

PROPOSITION 2. For n > 0, every embedding of K660n in R3 contains a triangle
which is linked with n − 1 other triangles.

A key ring link is a link where one of the components, the ring links all of the other
components, the keys. So Proposition 2 implies that there is a key ring n-link of triangles. Let
�x� denote the smallest integer greater than or equal to x, as usual.

REMARK 3. This proposition can be strengthened at the cost of a much lengthier
proof. In particular, there exist numbers ρ, c with ρ < 29 and −17 < c < −16 such

that every embedding of K�ρn+c� in R3 contains a key ring n-link of triangles.

We will prove Lemma 7 and Proposition 2 after the proof of Theorem 2.

PROOF OF THEOREM 2. Each n ∈ N can be written as n = x2−x+1 for some positive

real number x. Let f (n) = �3x2 + 663x�. Since 3x2 + 663x ≤ f (n) ≤ 3x2 + 663x + 1 and

lim
x→∞

3x2 + 663x

x2 − x + 1
= lim

x→∞
3x2 + 663x + 1

x2 − x + 1
= 3 .
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So

lim
n→∞

f (n)

n
= 3

as desired.
We will show that for every n, Kf (n) is intrinsically n-linked. This is trivial for n = 1

and for n = 2 it follows from K6 being intrinsically linked. So we shall assume that n ≥ 3.

Thus �x� ≥ 2. For a given n ∈ N, fix an embedding of Kf (n) in R3. Notice that

3�x�2 + 663�x� ≤ �3x2 + 663x� = f (n) .

We will restrict our attention to a subgraph H = K3�x�2+663�x� ⊂ Kf (n). By Proposition 2

and the fact that �x� ≥ 1, since 3�x�2 + 663�x� > 660�x�, there is a key ring �x�-link of
triangles in H , call the link L1. There are 3�x� vertices in a �x�-link of triangles. Removing

the vertices in L1 we are left with an embedding of K3�x�(�x�−1)+663�x� in R3. Since

3�x�(�x� − 1) + 663�x� ≥ 660�x� ,

we can apply Proposition 2 again. Continuing in this way, let g : N → Z be the function
g(i) = 3�x�(�x�−i)+663�x� which gives the number of vertices of H that are not contained
in one of the �x�-links of triangles L1, . . . , Li after i applications of Proposition 2 to H . Since
g(i) ≥ 660�x� for i ≤ �x� + 1, we may apply Proposition 2 to H, �x� + 2 times. In this
way we find that the given embedding of H ⊂ Kf (n) contains �x� + 2 disjoint �x�-links of
triangles L1, . . . , L�x�+2. For i ∈ 1, . . . , �x� − 1, label two of the keys of the ith key ring
Li as Ai and Bi and the ring Ci. Both Li � Ai and Li � Bi are (�x� − 1)-links. Then we
perform �x� + 1 applications of Lemma 6 on the disjoint links L1, . . . , L�x�+2 of triangles
in H . In the i application of Lemma 6 the components Bi and Ai+1 are replaced by a single
component that links both Ci and Ci+1. So the resulting link N is a non-splittable link with

�x�(�x�+ 2)− (�x�+ 1) = �x�2 +�x�− 1 components, where A1 links N �A1 and N �A1

is an �x�2 + �x� − 2-link. Finally, g(�x� + 2) = 657�x� > 4, so by Lemma 3 we can add a

component to the link, obtaining a �x�2 + �x�-link L in H .

Since �x� > x −1, we see �x�2 +�x� > x2 −x. Since x2 −x = n−1 it is an integer, so

then �x�2 + �x� ≥ x2 − x + 1 = n. Thus L is a non-splittable link of at least n components.
�

PROOF OF PROPOSITION 2. Assume n > 0, and let m = 660n. Fix an embedding of

Km in R3. For each triangle T in Km, let ST denote the set of triangles linked to T in the
given embedding. There are

(
m
3

)
distinct triangles and

(
m
6

)
distinct complete graphs on six

vertices K6, each of which contains a pair of linked triangles (each pair is distinct, though not
necessarily disjoint, because each K6 is distinct). Then(

m

3

)
max

T ⊂Km

|ST | ≥
∑

T ⊂Km

|ST | ≥ 2

(
m

6

)
.
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Hence

max
T ⊂Km

|ST | ≥ 2
(
m
6

)(
m
3

) .

Now we can calculate

max
T ⊂Km

|ST | ≥ 2
(
m
6

)(
m
3

) = 1

60
(m − 3)(m − 4)(m − 5) ≥ 1

60
(m − 3)2(m − 6) .

Continuing, substituting m = 660n,

max
T ⊂Km

|ST | ≥ (m − 3)2
(

11n − 6

60

)
≥ 11(m − 3)2

(
n − 6

60

)
> 11(m − 3)2(n − 2) .

This counting argument shows that there is a triangle ∆ in Km such that |S∆| > 11(m −
3)2(n − 2). The set of triangles that ∆ links, S∆ are in the subgraph Km−3 = Km � ∆. So
since |S∆| > 11(m − 3)2(n − 2) by Lemma 7, (S∆) > n − 2. Thus ∆ is linked to more
than n − 2 disjoint triangles in Km−3. Consequently, there are n − 1 disjoint triangles in S∆,
that is, there is a key ring link of n disjoint triangles in this embedding of Km, proving the
proposition. �

PROOF OF LEMMA 7. Let T1, . . . , Tn be a set of disjoint triangles in S. Let Si be the
subset of triangles in S which intersect Ti and no other Tj . Let Sij be the subset of triangles
in S which intersect Ti and Tj and no other Tk . Finally, let Sijk be the subset of triangles in S

which have vertices in Ti , Tj , and Tk .
Fix i. If Si contains two disjoint triangles, then Ti could be replaced with those two

triangles to make a larger set of disjoint triangles in S. This would imply that (S) > n, a
contradiction. Therefore no two triangles in Si are disjoint.

Now let us examine three cases.
1. Every triangle in Si intersects Ti in at least two vertices.
2. There exists a triangle in Si which intersects Ti in only one vertex, but not every

triangle in Si contains that vertex.
3. There exists a triangle in Si which intersects Ti in only one vertex, and every triangle

in Si contains that vertex.
For ease of notation, let R = m − 3n. This is the number of the vertices of Km excluding the
union of those in the Ti . Recall that R > 8 from the hypotheses of the lemma.

In Case 1, Si could contain at most the triangle Ti along with 3R triangles which each

contain two vertices of Ti , for a total |Si | ≤ 3R + 1 < R2 since R > 8.
In Case 2, there exists a triangle P in Si which intersects Ti only in the vertex v and

another triangle Q ∈ Si which misses that vertex. Now let U be a triangle in Si which is not
Ti , P or Q.
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There are two possibilities. One is that U contains the vertex v and a vertex of Q. There
are fewer than 3(R + 1) such triangles, because we can choose the third vertex from the
vertices in Ti or outside all Tj but not the vertex v or the vertex chosen from Q.

The other possibility is that U contains separate vertices other than v from both Ti and
P . There are at most 2 × 2 × (R + 1) such triangles, since there are two vertices other than v

in each of Ti and P to pick from and the final vertex could come from Ti or outside all Tj . So

the total number of such U is at most 3(R + 1) + 4(R + 1). Thus |Si | ≤ 7R + 10 < R2 since
R ≥ 9, counting the three triangles Ti , P , Q as well.

In Case 3, |Si | ≤ (
R
2

)+ 2R + 1, where the first term is for those triangles which intersect
Ti in one vertex, the second term for those triangles that intersect Ti in two vertices, and the

third term for Ti itself. This bound is 1
2R2 + 3

2R + 1 < R2 since R ≥ 9.
Now note that

|S| =
∑

1≤i≤n

|Si | +
∑

1≤i<j≤n

|Sij | +
∑

1≤i<j<k≤n

|Sijk | .

Now a triangle in Sij either has all three vertices from Ti and Tj or has a vertex from outside
all Tk . In the first case, there are nine ways of picking two vertices from Ti and one from Tj

and nine ways of doing the reverse, for a total of 18 possible triangles. In the second case,
there are 3 × 3 × R, for a total bound of |Sij | ≤ 9R + 18 ≤ 11R since R ≥ 9.

A triangle in Sijk has one vertex each from the three disjoint triangles Ti , Tj , Tk so

|Sijk | ≤ 27. Combining these inequalities with |Si | ≤ R2 and R, n ≤ m yields

|S| ≤ nR2 + 11R

(
n

2

)
+ 27

(
n

3

)
< nm2 + 11

2
n2m + 27

6
n3 ≤ nm2 + 10n2m ≤ 11nm2

as desired. �
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