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Abstract. We study a way of coding of irrational rotations, by which Denjoy systems are represented as
subshifts. First, we state the subshift generated by a coding sequence is conjugate to a Denjoy system. Next, by using
an adic model of a Denjoy system we give a sequence of substitutions to generate the coding sequence.

1. Introduction

Let A=1{0,1,...,d} be an alphabet and .A* be the free monoid over A with respect to
the concatenation, having the empty word (identity element) gy. A substitution o over A is
a map from an alphabet A to A* \ {gg}. It can be extended to a morphism of A* naturally.
The reversal of a finite word w = wj - - - w,, is the word w = wy - --wi. The reversal of a

substitution o is the substitution o defined by

o(i)=0() (eA.
Notice o (w) = &_(5)_ A word v is a prefix of a word u if u = vw for some w € A*.
The set of right infinite (resp. biinfinite) words over A is denoted by AZ+ (resp. AZ).
Let (01, 02, ...) be a sequence of substitutions over .A. We say that (0;,),eN generates
a right infinite word w = wowy - - - if for each n, there exists N such that wow; - -- wy, is a
common prefix of o107 - - - on(i)’s, i € A: or equivalently,

w= lim o102---0,(i) forany i € A.
n—>oo

We say that (0,,),eN generates a biinfinite word - - - w_j.wowq - -- if (0,)neN generates
wow - -+ and (cr:)neN generates w_jw-_p - - -.

In this paper, we study a coding under an irrational rotation. Take o € (0, 1) \ Q. Let
S' = R/Z and R, : S' — ' be the rotation Ry (w) = w + « (mod 1). Identify (0, 1]
with S! naturally. Consider a partition {£(0), #(1)} of S! = (0, 1] where 1(0) = (0, «] and
t(1) = («, 1]. Define a map J, : (0,1] — {0, 1}Z by Jo(@), = i if Ri(w) € t(i). A
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Sturmian sequence is given by J,(w) for some @ and w. (Precisely, we need to consider
another decomposition [0, 1) = [0, «) U [, 1) to see all Sturmian sequences.) Let o =
[0; a1, az, a3, . ..] be the simple continued fraction expansion. The following is a folklore
theorem.

PROPOSITION 1. Leto,(0) =01---1,0,(1) =0 for eachn € N. Then the

1..-1
——
ay times a, — 1 times

sequence (o1, 02, 03, 04, ...) generates Jy (o).

PROOF. Letu(0) = [0,1 — ) and u(1) = [1 — «, 1). Usually (for example, refer to
[5]), Sturmian sequences are given as K, (w), where K, : [0, 1) — {0, 1}Z is defined by

0 if R} (w) € u(0)

K, n =
(@) 1 if R%(w) € u(l).

It is well-known that (see [4])

the sequence (511, 72, 73, 74, -+ ) generates K (0)
where 7,(0) = 0---0landn,(1)=0---01.

a, — 1 times a, times

Proposition 1 follows this fact immediately, because the following diagram

10) C (0. 1] —2> (0. 1]

A

RO{
u(l)y c [0,1) ——10, 1)

commutes (where = : (0,1] — [0,1) : x —» Xx = 1 — x), we see Jy(w), =
1 — Ko (0)—p—1. O

In this paper, we pay attention to a generalization of Proposition 1. For each w € S!,
denote by O,, the orbit of w under R, that is,

Ow = {R!(») |n€Z}.

A subset A C S! is said to be non-coorbital if {O,, | @ € A} is mutually disjoint. Take a
finite non-coorbital subset A with a € A.
Let A={wy<w; <--- <wg—1}and A = AU {1}. So A1 gives a partition of S1, that is,

st={JwG)
icA

where 79(0) = (0, wp] and 19(i) = (wj—1, wi] (0 <i <d,wz = 1).



DENJOY SYSTEMS AND SUBSTITUTIONS 35

w1 (1)
“Wo
to(0)

Wy

to(d)

Wd—1

Define J : S! — AZ by J(w), =i if R} (w) € to(i). Clearly, in the case of d = 1,
J(w) is a Sturmian sequence. In this meaning, we can regard J (w) as d + 1 letters Sturmian
sequences. The main goal of this paper is to construct a sequence of substitutions which
generates J (o).

First, we state that the subshift generated by J («) is conjugate to a Denjoy system, which
is defined as follows. We call ¢ : S! — S! a Denjoy homeomorphism if ¢ is an orientation-
preserving homeomorphism with irrational rotation number which is not conjugate to a rota-
tion (see [2], §4). A Denjoy system is the unique minimal subsystem of some Denjoy home-
omorphism. In [6], an adic model (Bratteli-Vershik system) of a Denjoy system is concretely
constructed. Next, we observe that this adic system naturally corresponds to a sequence of
substitutions. We see that this sequence generates J (c).

We consider that Denjoy systems, generalized Sturmian sequences and adic systems have
close association each other, but it does not seem to have been clarified yet ([2]). We study a
link between them.

In Section 2, we state the main result. In Section 3, we show that a Denjoy system is
conjugate to a generalized Sturmian subshift in our sense. Section 4 is devoted to the natural
substitution system associated with an ordered Bratteli diagram of constant rank. In Section
5, we recall an HPS-adic presentation for a Denjoy system given in [6]. Section 6 is devoted
to proof.

We introduce some notations. Denote by N (resp. Z ) the set of positive integers (resp.
non-negative integers).

For i € A, denote L,—L by i¢. Let S, be a finite set. For s, = sisp--- € ]_[neN Sy,

a times

51841+ - Sm (resp. S;y18142 - --) is denoted by sy ) (resp. $(,00)) and so on. A subset A C
[T.en Sn is said to be non-cotail if for any distinct sy, 1, € A, s, # t, for infinitely many
n. Let S, be a totally ordered set. Put the total order (lexicographic order) <jex on ]—[n eN Sn
defined by that s, <jex t« if 57 < #; where [ = min{n € N | s, # 1,}.

For distinct z, w € S', denote by (z, w] the left-open right-closed arc between z and w which
lies in the positive direction from z. Define the interior of (z, w] as int(z, w] = (z, w) =
(z, w] \ {w}. Foran open arc I = (z, w), letinf/ =z and sup/ = w.

ACKNOWLEDGMENT. The author appreciates the valuable suggestions of the referee.
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2. Main result

Leta = [0; a1, az, a3, . . .] be the simple continued fraction expansion, and
[p1 po} _ [1 0] Pn=anpn-t P2
g-1 4o 0 1 Gn = anqgn—1 + qn—2
Now, we introduce the dual Ostrowski numeration system. Let
My = {x* = (Xn)neN € l_[{os L....an} | Xp = an = Xn41 :0} .
neN

It is well-known ([3]) that for each w € [0, 1], there is x, € M, such that

o
w = anlqn_loz — pn—1] (dual Ostrowski expansion of ) .

n=1

For each x, € M,, define

00
V(xy) = ananla — Dn—1l.

n=1

OBSERVATION 1. We can regard v as a map from My to S' where S is the set [0, 1]
identifying 0 and 1. Then the following hold.

(1) Ifw € Oy, then v_'(w) is a two-point-set of the form:
v @) = (x0.00 - -, x0.m) (X0 — Dany10a,430---}.
(Especially, v () = {100 - --, 0ax0as---} and v='(1)={00---, a10a30---}.)

Ifw ¢ Oy, then v_'(w) is a singleton.
(2) Let {x4,x,} C My. Ifthere is n € Zy such that x(;.00) = x

Oy(x,)- (Indeed, then v(xy) — v(x}) € Oy.)

/

(n.00)° then v(x}) €

By Observation 1 (1), for each w € (0, 1], we can choose
Xy (@) 1= x1(w)x2(w) - - - € v (w) such that x,, (w) # 0 for infinitely many n
and regard x.(-) as amap x4 : (0,1] > My : o — x1(w)x2(w)---. Sov o x, = id. By
Observation 1 (2), we see thatif A C S! is non-coorbital, then x,(A) is non-cotail. Especially,
we have

x4(a) = 0a20ay4 - - -, x4(1) = a10a30--- . (619)
DEFINITION 1 (n-tail and n-th comparison). Define
X(n,00) (@) = Xp41(@)Xp2(@) - - -
foreach n € Z,. Foreach w € Ay, let

Ch(w) =#Ar e Ay | x(n,oo)()‘) <lex x(n,oo)(a))} .
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We call C,, the n-th comparison.

Since x,(A1) is non-cotail, C, is a bijection from A to A. By the definition of C,, we
see that x(;,o0) (A1) is arranged in the following way

X(n,00) © Cpp 1(0) <iex X(n,00) © Cpp (1) <lex **+ <lex X(n,o0) © Cy ' (d) -
DEFINITION 2. Foreach (c,i) € {0,...,a,} x A, define
e, iln = #{k € A1 | Xu—1,00 (M) <lex € X(n,00) © C; ' (D))
where ¢ X(n,00) (@) = ¢ Xp41(w)Xy42(w) - --. Foreachn € Nand i € A, define
o) = {ro, Tl iTa- o Tan ile a0 G0 =0
[0,i1al1,iln---[an —1,i], otherwise.
Then o, is a substitution over A, and the main result is the following:

MAIN THEOREM. The sequence (o1, 02, 03, 04, . . .) generates the biinfinite sequence
J ().

EXAMPLE 1 (d = 1). Let A; = {a, 1}. Then by (f),

o). Co (D) (1,0) ifnisodd 0> 019
o), = oy :
" " 0,1) ifniseven, |1 0191,

So Proposition 1 is a special case of Main Theorem.

EXAMPLE 2 (d =2). Let Ay = {«, w, 1} and x, = x,(w). Then we have

(2,0,1) ifnisoddand x,+;1 =0
2,1,0) ifnisoddand x,+1; > 0

(Cn(a), Cp(w), Cp(1))
" " " (1,0,2) ifnisevenand x,4+1 =0

(0,1,2) ifnisevenand x,4; >0

and

0 — 029
if x, = xy41 =0,then o, : 31 12% ;

2> 12071

01> 024
ifx, =0and x,41 > 0,then o, : {1+ 0291 ;
2> 201
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0+ 01*r2%%n
ifx, >0andx,.; =0,then o, : {1 > 01%—12an—xutl .

2 > 1%~ 1pan—%n

01> 012
ifx, >0andx,;1 > 0,then o, : {1 +> 01" n2an—xn=1

2 > 1%~ 1pan=%n

3. Denjoy system and Sturmian subshift

Let ¢ : S!' — ' be a Denjoy homeomorphism, that is, an orientation-preserving
homeomorphism with irrational rotation number « € (0, 1) \ Q, which is not conjugate to
any rotation. We review Poincare’s rotation number theorem. There exists a degree 1 map
F : S' — ! satisfying the following:

(1) RyoF=Foe.

(2) Let A={ze S"|#F 'F(z) = 1} and X = cl A (the closure of A). Then X is

a Cantor set which is the unique minimal set under ¢. Moreover F(X) = S!. A

connected component of S \ X is called a cutout interval (indeed, an open arc).
The set of endpoints of cutout intervals is X \ A.
(3) Let Fx be the restriction of F to X. There exists an at most countable non-coorbital

subset A C S! such that

Fx(X\A) = O,.

weA

For each cutout interval I, F(cl[) is a singleton, and Fy ! (w) is the set of endpoint
of a cutout interval for any w € Fx(X \ A). We call Fx(X \ A) the double point
set and A a transversal of the double point set.

Such F is unique up to rotation. Denote the restriction of ¢ to X by

T:X—>X,

and the subsystem (X, T) is called a Denjoy system. Notice that the cardinality #A of A is
independent of the choice of . We call #A the double orbit number of (X, T'). By choosing
appropriate F, we can assume « € A.

DEFINITION 3. For each w € Fx(X \ A), there exists a cutout interval I, such that
F~!(w) = cl 1,. Pick @ € I,.

From now on, we consider only the case of finite double orbit number.
Let Ay = AU{l} ={wo < w1 < -+ < wg}. Then A induces a partition of X:
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X =J20)

icA
where z0(0) = (@g, @] N X, z0(i) = @;j—1, ;1N X (1 <i <d).

REMARK 1. Foreachi € A, zo(i) = ¢l Fy ' (intfo(i)).

L,
O )
' L,
)’/-
20(0)
S L,
7 zo(d)
.
NI,

Notice that zo (i) is closed and open (clopen) in X, and independent of the choice of @;’s.

Define Jx : X — A% by Jx(x), =i if T"(x) € zo(i).
We can see the following relation between Jx (x) and J (Fx (x)).
PROPOSITION 2. (1) Ifx € X\ {suplgnw) | n € Z, ® € A}, then
Jx(x) = J(Fx(x)).

Especially, Jx (inf I,) = J («).
(2) Ifx =sup IR (@), then

Ix(X)—m—1=0, J(Fx(x))-m—1 =4,
Ix(X)—m = J(Fx(x))—m + 1,
Ix()n =J(Fx(x))p (0 #—m,—m —1).
(3) Ifx = sup Igne) withw € A\ {a}, then
Ix(X)—m = J(Fx(X))—m + 1,
Jx(Xn = J(Fx(x)n  (n# —m).
PROOF. Letw_1 := wy. Notice
Fx(zo() \ {suplo,_,}) =10(i) (i €A.

Soifx € X\ {supl, | € A1}, then x € z9(i) and Fx (x) € to(i) for some i.

39

Ifx € X\ {suplrnw) |n € Z, v € A}, then T"(x) € X \ {sup/, | € A} forall n.

Hence (1) holds.
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Now, we show (2) and (3) in the case of m = 0. Let zo(d + 1) := z0(0). Notice
sup L, € 20(i + 1), Fx(suply,) = w; € 10(i) (i € A).

(2) Whenx =supl, € zo(i + 1), we have Fx(x) = o € 1 (i), T_l(x) =suply, €
z0(0), R;l(Fx(x)) =wq € to(d),and T"(x) € X \ {supl, | w € A1}ifn #0, —1.

(3) Whenx =supl, € z9(i + 1) for some w € A\ {«}, we have Fy(x) € (i) and
T"(x) € X\ {supl, | w € A1}ifn #0. |

PROPOSITION 3. A Denjoy system (X, T) is conjugate to the subshift (Jx(X), S) via
Jx.

PROOF. Since X is compact and Jyx(X) is Hausdorff, it suffices to show that Jx is
continuous and one-to-one. For each x € X, the set

[
N 77" (200x(0m) =1y € X | Jx (0 = Jx () (<1 <1 <D}

n=—1

is a neighborhood of x. Hence Jy is continuous.

Let x, y € X be distinct.
Consider the case of F(x) # F(y). Since Ry is a minimal isometry, there exists n € Z such
that F(x) € R} (intfo(i)) and F(y) € R} (int#o(j)) with i # j. This implies 77" (x) € zo(i)

and T7"(y) ¢ z0(j). So Jx(x)—n # Jx(¥)-n-
Consider the case of F'(x) = F(y). Then x, y are the endpoints of some cutout interval, that
is, there exists w; € A (0 <i < d) and n € Z such that

{x, y} = {inf Irn(w;), Sup Irn(wy)} -

So T7"*({x, y}) = {inf I, sup I,,}. Since infl,, € zo(i) and sup I, € zo(i + 1), we have
Ix (x)—n # Ix (¥)—n. Anyway, Jx (x) # Jx(y). o
By Proposition 3, Jx (X) is the orbit closure of Jx (x) for any x € X.

4. Natural substitution system

In this section, we shall introduce a main tool, that is, a substitution system (o;),eN Via
an ordered Bratteli diagram of constant rank.

4.1. Ordered Bratteli diagram. A Bratteli diagram is an infinite directed graph B =
(V, E), such that the vertex set V and the edge set E can be partitioned into finite sets

V= U V, and E:UEn
neZ4 neN

with the following properties: s(E,) = V,—1 and r(E,) = V, for all n, where s : E — V is
the source map and r : E — V is the range map. For each n € Z.., pick a bijection

v, 1 {0,1,..., ¢, — 1} > V,, where ¢, = #V,,.
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So V, = {v,(0), v, (1), ..., vy(cp, — D}. Let A, be the ¢, X ¢,—1 matrix defined by

(An)ij = #s ™ wam1 () Nr L (wa (i)

and call A, the n-th incidence matrix of B. Define the infinite path space X p of B by

Xp = {e* = (en)neN € l_[ Ey | r(en) = s(en+1) for alln} .

neN

An ordered Bratteli diagram B = (B, <) is a Bratteli diagram B = (V, E) together with
a partial order on E so that edges e, ¢’ € E are comparable if and only if r(¢) = r(e’). Then
we put the adic order on X p (partial order) by that e, < f if there exists N € N such that
ey < fvande, = f, foralln > N, and write Xg = (Xp, <).

min

M and a unique maximal path e}'®*, then B is said to be

If there exist a unique minimal path e
properly ordered.

For a properly ordered Bratteli diagram B, define the adic transformation 6g : Xg — Xp as
follows: if e, # e, then Op(ex) = min{f, € XB | f« > e}; and Op(ef™) = e*mi“. The

system (Xg, Op) is called a Bratteli-Vershik system or an adic system.

3 (ex)

4.2. Natural substitution system. When P = {p] < p» < --- < psp} is a totally
ordered finite set, we denote the arrangement of the elements of P in its order, p1 p2 - - - pgp,
— —
by P.Foramapn: P — Q,define n( P) =n(p1)---n(psp).
A Bratteli diagram is said to be of constant rank if #V,, is independent of n € Z. We
call the number #V,, the rank of B, and denote it by rank(B).
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DEFINITION 4. Let d € N and B = (B, <) be an ordered Bratteli diagram of
rank(B) = d + 1. Define a substitution o, by

0n(i) = v, o s W (D)) .

We call the sequence of substitutions (0y,), <N the natural substitution system of B.

Clearly, the n-th incidence matrix A, of B is the “incidence matrix" of oy, that is, (A,);;
is the number of occurrences of j in o, (7).
Let B = (B, <) be properly ordered of rank(B) = d + 1. Define

s:Xp— Vy:es > s(er)
and define a map Jg : Xg — AZ by
Jelen =i ifvy' os@p(es) =i.
Then we have the following.

THEOREM 1. If (XB, 0B) has no periodic points, then the natural substitution system
(0n)neN of B generates the biinfinite word Jg (e*mi").

(For its proof, see Subsection 6.1.)

5. HPS-adic presentations of Denjoy systems

5.1. HPS-adic presentation. Let Y be a Cantor set and U : ¥ — Y be a homeo-
morphism. We call (Y, U) a Cantor system if U is minimal. For any Cantor system (Y, U),
Herman, Putnam and Skau ([1]) had shown that there exists a Bratteli-Vershik system which
is conjugate to (Y, U). We shall recall their construction.

A Kakutani-Rokhlin (KR) tower partition of (¥, U) is a partition of the form:

P = {Uk(Z(j)) |0<j<c, 0<k<h(j)} where Z(j) isclopenandc, h(j) € N.
Let P/ = {UK(Z'(i)) |0 <i < ¢, 0 <k < h'(i)} be another KR partition of (¥, U). If P’ is
finer than P, then foreach 0 <i < ¢/, 0 < j < c, there exists H;; C [0, h'(i)) N Z such that

zih=J U vran. (%)
0<i<c’ peHj

To visualize this refinement, it is convenient to consider a graph (W, E) with a partial order <
on E, where the vertex set W = VUV": V = {v(0),...,v(c—1}, V' = {V/(0), ...,V (' —
1)}; and the edge set

E={w(),p, V(i) |0=<j<ec 0<i<c, peHj}

and the partial order < on E defined by
(), p, V' (@) < ("), p/ V(@) ifi =i"and p < p'.



DENJOY SYSTEMS AND SUBSTITUTIONS 43

Then by (x) there is a correspondence between E and {p € P’ | p C U0§j<c Z(j)} via
(), p, V' (D)) < p =UP(Z'(i)) with p C Z(j). If (v(j), p, V' (D)) < (v(j"), p', V' (")),
then U?' (Z'(i")) is a forward image of UP(Z'(i)) (indeed Z'(i") = Z'(i)).

Now, let (Pp)nez, be a refining sequence of KR partitions of (¥, U) where P, =
{Uk(Zn(i)) |0 <i<cp, 0<k < hy(@}. ThenforeachO <i <c,and0 < j < ¢;—1,
there exists (Hy);j C [0, h,(i)) N Z such that

Zia=J U vr@an.

0<i<cy pe(Hn)ij

We call {(Hp);;} the hitting time sets of (P,)neN-
From {(H,);j}, we construct an ordered Bratteli diagram B({P,}) associated with
(Pr)nez.. as follows:

Vo ={va(0), ..., va(cp — D},
Ey ={(n-10)), p, va (@) | p € (Hp)ij},
Wa—1(1)s ps Un () < (Wa=1(j), o', va (@) if i = i"and p < p',
SWn—1(1), P, Ua (D)) = Va-1())
r(Wn—1(), P, va (D) = va (@) .
PROPOSITION 4 ([1]). There exists a refining sequence of KR partitions (Pp)nez. ,
where P, = {Uk(Zn(i)) |0 <i<cy, 0<k <h,(i)}and co = ho(0) =1, Zo(0) = Y

such that B = B({P,}) is properly ordered, and the corresponding Bratteli-Vershik system
(XB, 0B) is conjugate to (Y, U). A conjugacy ¢ is given by

n

(D (Wn—1(in=1)s P> Va(i))ne)} = () Zn (z sz> where Zy (in, k) := UN(Z,(in)) -

neN =1
Moreover,
perm =M U z.0.
neN 0<i<cy

We say (X, 0B) is an HPS-adic presentation of (Y, U), and call ¢ the natural conjugacy.

5.2. HPS-adic presentations of Denjoy systems. Consider a Denjoy system (X, T)
of rotation number o and double orbit number d. Let A be a transversal of its double point
set with @ € A, and A; = A U {1}. In [6], the author, Sugisaki and Yoshida constructed a
concrete HPS-adic presentation of (X, T') (based on dual Ostrowski numeration system). We

shall introduce its construction.
First, we introduce a modification of dual Ostrowski numeration system. Let

a=[0;b1+1,b2,b3,...]
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be the simple continued fraction expansion of «, thatis, by = a; — 1, b, = a, (n > 2), and

M = {x*e TTi=1.0. 1 b} | xw = by = xur =—1}.
neN

Define the signed expansion x§ : (0, 1] - M}, by

. {xn(w) —1 ifn=10rxy_1(®) = dy_i
X (w) =

Xp(w) otherwise .

Next, we define

C): A — Awhere C)(w) =#{1 € A | x‘(‘n’oo) (M) <lex x(sn,oo)(a))}.

DEFINITION 5. Foreachn € N, let
g =x30(C3_plandg, = Cio(C3_7L.

Let (51, 92)(J) = (6 (j), gn(j)). Associated with (§,, ga), define

DEn, gn) = {(x, i) € {=1,0,....0p} x Al x =bp & i < ga(d)},
and for each j € A,

{(x, 1) € D(&n, gn) | (x, 1) <iex (§n, gn)(0)} ifj=0

D( ns n)' =
o ! :{(x’ i)e DE&n,gn) | Guy g0)(J — 1) <tex (X, 1) <tex (§n, gu)(j)} otherwise

where (x,i) <jex (v, j)ifx <y,orx =yandi < j.

(The definition of (&,, g,) is different from the one in [6], but Prop. 8.2 in [6] ensures that
both are the same.)
Let

ey iT) = #{h € A1 | X1 o)) <lex € Xy o9 © (C T ().

LEMMA 1. (1) D(&, gn) = U D(&n, gn)j-
jeA
(2) If(c.i) € D(n, gn). then (c,i) € D(&n, gn)fe.its-

PROOF. First, we claim that
Ens 90)(J) <tex Gno g)(J+ 1)
Indeed, notice that x(sn!oo) ) (C,i)_l(i) <lex x‘(‘n’oo) o (Cfl)_l(j) <= i < j. So by the
definition of (§,, g,), we have
X100 © (Co_ D7) <tex Xy_1.00© (Co_ D' G+ 1)
&) <&+ 1), or§,(j) =& ( + 1) and
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X 00 © (C2) 71 (90(1)) <tex Xy 0y © (C) 7 (G (G + 1)
= (&un, ) () <tex Gns ) (G + 1)

(1) By the definition of D(&,, g.);, clearly D(&,, g.) D Uj D(&,, gn)j. It suffices
to show that (&,, g,)(d) = (by, gn(d)), that is, §,(d) = b,. By the above claim, §,(d) =
max{&,(i) | i € A} = max{x)(w) | @ € A1}. By (#) in Section 2, we see that max{x} (w) |
w € A1} = b,.

(2) Letj = [c,il;. By the definition of [c, i},

X100 @ (Co_ D7 G = 1) <tex € X 00y © (C) 70 Stex X[y o0 0 (Ch_ )T ().
Notice that
s sy—1 N s -1,
€ X(n,00) © (Cn) (@) <lex X(n—1,00) © (Cn—l) ()
¢ < &), ore =& () and x, o) 0 (€710 Stex X0 © (€ (Gn (/)
— (¢, 1) <tex En> gn)(J) »

Similarly, we can see that

X100 © (Co_ DTN = 1) <tex € X(, 00y © (€T = Enb g)(G — 1) <tex (¢, 1) -
O

For each n € Z, let ny = max{n, 0} and

0 ifnisodd
&p =
1 ifniseven.

Define

(—ent1(=D"gqn + (x — by + Sn)(_l)n_lfh—l)+ if—1<x<b,

Sp(X) =
n(®) 0 ifx =b,.

Hence we see that
if n is odd, then s, (—1) < 5,(0) < --- < s,(b, — 1) ;
if n is even, then s,(—1) > 5,(0) > --- > s5,(b, — 1).
The next proposition follows Th. 5.1, Lem. 7.1, Cor. 7.1 and Cor. 7.2 in [6].
PROPOSITION 5. For a Denjoy system (X, T) of finite double orbit number d and
rotation number o, there exists a refining sequence of KR partitions (73,{( Jnez, whose form is
PX = (TK(z,(i)) | i € A, 0 <k < hy(i)} (n > 1), with hitting time sets given by

(Hpio = {s1(x) | (x, 1) € D1, g1)},
(Hp)ij = {sn(x) | (x,0) € DGn. gn)j} (n=2),
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such that B = B({P,f( 1) is properly ordered, and the associated Bratteli-Vershik system

m

(XB., 6B) is conjugate to (Y, S). Moreover ¢ (e}
gacy, and

iy = inf I, where ¢ is the natural conju-

o= U 7126

ieA(x,i)eD(1,91);

(zo(j)’s are defined in Section 3.)

6. Proof

6.1. Proof of Theorem 1. First, we prepare some lemmas to prove Theorem 1. Let B
be an ordered Bratteli diagram. Let Py ,,)(v) (1 <! < m, v € V) be the set of finite paths
from V;_; to v, thatis,

P = {etm € [T Ea | r(en) = s(eas) A = n < m), rien) = v}

n=lI

Naturally the order of Bratteli diagram induces a total order on Py ,,1(v): e, m] < fi.m] if
there exists/ < N <m suchthatey < fy ande, = f, forall N <n < m.
For each ey ,u) € Py m(v), define s(ej,m)) = s(er).

LEMMA 2. (1) X has a unique minimal path if and only if for each n > 2, there
exists N > n such that s(min Py, n1(v)) is independent of v. In this case, s(min Pj, n)(v)) =
s(emin).

(2) XB has a unique maximal path if and only if for each n > 2, there exists N > n
such that s(max Py, n1(v)) is independent of v. In this case, s(max Pp, n1(v)) = s(e)™).

PROOF. We prove (1). Note Xp is compact. For each n € N, let
Xn = {ex € X | e[1,n) = min Pp1,)(r(en))} .

Then (), X, is the set of minimal paths. Observe X, D X,4+1 and X,, is non-empty closed.
Therefore (), X, is non-empty, that is, there exist minimal paths.

min
*

Suppose e
n>2,

is the unique minimal path of X3, that is, (), X, = {eM}. Then for each

ﬂ Xy N{esx € XB | e(1,n—1] # eﬁf‘;,]]} =0,
NeN

Therefore for any n > 2, there exists N > n such that

XN Cles € X len-11= eﬁi,[,l,_l]}~

min

This implies that s(min P[,,,N](v)) =r(e)) = s(eznin) forany v € Vy.
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Conversely, suppose that for each n > 2, there exists N > n such that s(min Py, y1(v))
is independent of v. Let ey, fi be minimal paths and n > 2. Since ey, fx € Xn, we see that
s(en) = s(fn) = s(min Ppp N1(v)) and

e[1,n—1] = fi1,n—1] = min Py »—1j(s(min Py §1(v))) .
Since n is arbitrary, this implies e, = f. a
Let B be a properly ordered Bratteli diagram. By the definition of 6, we have the
following.
REMARK 2. Ifey # ™, then there exists N such that forany n > N, e, = 6p(es)y.
LEMMA 3. Let B be a properly ordered Bratteli diagram. Then (X, 6) has a peri-
odic point if and only if

lim min #P}q,,(v) < 00.
n—-ooveV, :

PROOF. Notice that min, ey, #P[1,,(v) < minvevnﬂ #P(1 n+11 (V).

Suppose 9}’; (ex) = ex (p € N). If e, # e then Op(ex) > es. So there exists
0 < ¢g < p such that 91% (ex) = e™. Then e = 9{; - (e*mi“). By Remark 2, there exists N
such that forall n > N, ef™* = e,‘{li“. Letn > N. Since min r_l(r(e,‘{li“)) = eMmin — emax _

n n
max r ! (r(ep®™)), we see rl (r(ezni“)) = {e,‘:“i"}. Then

#P ) (r (™)) = #Pyp o (r(e™D)) .

n

Therefore lim min #P[; ,(v) < oo.
n—-ooveV,

Conversely, suppose lim min #P[; ,j(v) < oo. There exist N, p € N such that
n—-o0 peV,
min #P ,(v) = p foranyn > N.
veV, '

To prove the existence of a periodic point, we show the following claims.

Claim 1. There exists f, € Xp such thatr_l(r(fn)) = {fu}foralln > N.
Foreachn > N, letY, = {e« € XB | #P[1,n(r(ex)) = p}. For e, € Y41, we have

p=H#Pasn(rlens)) = Y #Puaw(s(e) = #Pum(r(en)) = p,

eer=!(r(en41))

hence r_l(r(e,H_l)) = {ey+1} and e, € Y),. In particular, Y, 41 C Y,,. Since Y, is non-empty
and closed, ngN Y, is non-empty. Let f, € ngN Yy, then f; is the desired one.

Claim 2. LetZ = {e« € X | en = fuforalln > N}. Then 6g(Z) C Z.
Foreachn > N,let Z, = {ex € Xg | ex = fu}. S0 Z = (),on Zn. For e, € Z,41,

en € 7 (s(ent1)) = r N s (i) = 171 (i) = (o). Hence Zyi1 C Zy.



48 KENICHI MASUI

Foreachn € N, let X,, = {e« € XB | €[1,,) = min P[q ,)(r(es))}. Then X, 41 C X, and
(Mpen Xn = {e*mi“}. Foreachn > N, min P11 (r (f)) fin,00) € Xn N Z, since r () =
{fa}. So X, N Z,, is non-empty and closed. Clearly X,,+1 N Z,+1 C X, N Z,,. Therefore

D () XaNZo C () X = ().

n>N n>N

Thus " € Z.

Letes, € Z. If e, = ™™, then Op(es) = einin € Z. If e, # e, then by Remark 2,
there exists N’ such that for any n > N’, Og(es), = e,. If N' < N, then Og(ey) € Z. If
N’ > N, then 6g(ex) € (), n+ Zn. Since Z, 11 C Z,, Og(es) € Z.

The existence of a periodic point follows Claim 2 and #Z < oo. a

LEMMA 4. Let B be an ordered Bratteli diagram of constant rank and (6,,),eN be the

natural substitution system of B. Then
-1 > 2 .
V10 S(P[l,m](vm (i) = 010141 - - o (i) .

PROOF. Fix [ € N. We use induction on m (> [). It is clear for m = [. Suppose the

claim holds for m. Here we have the following partition
P[l,m+l](vm+l(i)) = U {e[l,m]em+l | e[l,m] € P[l,m](s(€m+l))} .
€m+1 er—! (V1))

Let e m+11, fiim+11 € Pum+11Wms1 (D). If eyt < fiug1, OF €1 = fng1 and e ) <
Si.m1» then e mi11 < fi1,m+1]- Hence when

1 1 2 k 1
r (mt1 () = e, 1€y €y (Where k =#r™ (Um41(0))),

we see that
_ —_— _ ’ _ ’
v 0 S(Pumt 11 Wit (1)) = v 0 s(Prm(s(ep 1)) -+ vy 0 S(Pymy(s(eb )

=o- 'ocrm(vnjl o s(e}n“)) ...0] 'ocrm(vnjl o s(efn+1))
=07 opmt1(0). g
By the definition of g, we have the following.

OBSERVATION 2. Suppose that B is a properly ordered Bratteli diagram. Let e, € X
and P = Pyy,11(r(e;)). If e[1,;] = min P, then

_ —>
9§(€*)[1,1]911;(€*)[1,1]"'9§P Yeonn=P.

PROOF OF THEOREM 1. Lete, € Xg and P = Py 1(r(e;)). If e[1,;)) = min P, then by
Observation 2 and Lemma 4,

Je(e)odB(e) - - Jp(en)sp—1 = 0102 -~ 0o1(v; ' o r(en)).
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Letn > 2and Q = Py ,—11(r(e™)). Notice that eﬁi_';l_l] = min Q. By Lemma 2 and 4,

n
there exists N such that

1

_ i 1
v, os(ey™)

a ) = v, os(min Py, Nj(vn (D)) = (040n+1---on (@)1 (€ A).
Hence
Te (@™o g (€™ -+ JB(E™wo-1 = 0102+ 0y—1 ((040ut1 - - ON (1) -
By Lemma 3, #0 — 0. So (0y,),eN generates Jp (e*mi“)OJB(efin)l e
Similarly, we can see that (&;)neN generates JB(e*mi“),l JB(e;“in),z cee O

6.2. Proof of Main Theorem. By Proposition 5, we have a properly ordered Bratteli
diagram B = B({P,f(}) and an HPS-adic presentation of (X, T): (X, 6g). But B is not of
constant rank (co = 1, ¢, =d + 1 (n > 1)). Here, define a properly ordered Bratteli diagram
D of constant rank by

Vi = {wn(0), wp (1), ..., wa(d)},
Eyp = {(wn—-1()), sn(x), wa (D)) | (x,i) € D(&n, gn)j},
(Wa=1(7)s P, wn (D) < (Wa—1(j), o', wu (i) if i = i"and p < p’.
Moreover define ¥ : D — B by
Y (wo()), p, w1(D))) = (vo(0), p, v1 (D)),
Y (wn-10)), ps wa (D)) = (Wp—1(j), p, va(@)) (n=2).
Then by Lemma 1 (1), ¥ induces a conjugacy ¥: (Xp, fp) — (Xg, 6p) with & (eM") = emin,
PROPOSITION 6. Jp(e™™) = Jx(inf I).
PROOF. By Proposition 5, ¢ o ¥ (e™") = inf /. Note
Y({es € Xp | s(ex) = j}) = {ex € X | e1 = (v0(0), 51(x), v1()), (x,i) € D(&1, 91);}.
By Proposition 5,
po¥({ex € Xp | s(ex) = j}) C20())-
This completes the proof. a
So we will study the natural substitution system of D.
LEMMA 5. i =< g,(d) &= & 11() =—1
PROOF. By (#) in Section 2, notice that

o ifnisodd

1 ifniseven.

CcH ) = {
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Therefore
i< gu(d) == xf, o) 0 (€7 Stex (= Dbusa(=Dbyag -+ <= Enp1 () = —1

O
PROPOSITION 7. Let
(i) = [bn, 1), if x5, 0 (CH7Hi) = —1
[—1,i1500,i15 --- by — 1,015,  otherwise.
Then the natural substitution system of D is (1, ;2, 73, ;4, L.
PrOOF. By Lemma 1,
| {(wnfl(ransi]fl): sn(bn), wn(i))} ifi < gn(d)
r(wy (@) =
{wn—1(Tx,i15), 52 (xX), wa () | =1 <x <b,} otherwise.
By Lemma 5, i < g,(d) is equivalent to x;H o (Cz)_l(i) =—1.
Leti < g,(d). Then
o (i) = w;_ll o s(wy—1([by, i-|f,)y Sn(bn), wn (i) = [by, l-|f, =1,(0) = a(l) .
Leti > g,(d) and n be odd. Since s, is increasing on {—1,0, ..., b, — 1}, we see that
1 o
T (wp (@) = (Wp—1 ([=1,173), sp(=1), wy (D)) (wr—1(0,773), 5,(0), wu (i)
s (W1 ([by — 1, i-|f,)y Sn(by — 1), wy(@)) .
Therefore
1 1
w (F @) = T= 110,15 -+ T = 1,415 = 7).
Leti > g,(d) and n be even. Since s, is decreasingon {—1,0, ..., b, — 1}, similarly, we can
S —
see that w, (r’1 (wy, (i))) = 1,(i). O

Combining Proposition 2 (1), 6, 7 and Theorem 1, we get the following.
PROPOSITION 8. The sequence (11, %_2, 13, a, ---) generates J (o).

To complete the proof of Main Theorem, we observe the relation between (tq, 72, - - -)

and (o1, c?z, ---). Indeed, it suffices to show that

< -

01020304+ = TIT2T3T4 - * - .
To show this, we prepare some definitions. Let

iy = | oI i 0 (HROESS
[0,i"1,11,i7n---Tan — 1,i"], otherwise
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where i’ = C,, o (CZ)_I(i). Moreover define iy, i, A by

M, = {x(n,oo) | Xe € Mo}, in: My, — A, in(x(n,oo)) =#re Ay x(n,oo)()‘) <lex x(n,oo)}§

Myi = {y(n,oo) | y« € Mé} s i,S, : M,S, — A, iZ(y(n,oo)) =#re A xgn,oo)()‘) <lex y(n,oo)}§

o0 o0
Az | My = [ My, Anoo) = Gnp) 4 (ng2) -+
n=1 n=1

We have the following:

e For each i € A, there exist Xx(;,00) € My, Yin,00) € M, such that i,,(x(;,00)) =
i (Yn,00) = 1.
® X000 =A0 x(sn!oo).

e For y(;,00) yén’oo) e M, if ypt1 = y,’1+] = —1,0r yp+1, y;lH > 0, then
Y(n,00) <lex y(n,oo) — A()’(n,oo)) <lex A(yfn,oo))-

The following formula gives characterizations of o, 7, and ;.

FORMULA 1. The following holds.

. 1(0 N if =0
(1) Gn(in(x(n,oo))): in—1( x(n,oo)) In l(anx(n,oo)) I Xp+1

in—10x(z,00)) -+ * in—1((@n — DX(n,00)) otherwise.

5 (b if =-1
@) Tli3 () = | 1) "o

iflfl (=D ym,00) - -iflfl ((bn — D)ym,00)) otherwise.
in—1 (anA(.Y(n,oo))) if ypqp1 =—1

3) G moe) = .
Y L O0AG o)) - in1 (@ — DA(ynoey)  otherwise.

PROOF. (1) Let x(4,00) € My. Since 0a,420a,44 - -+ € X(4,00)(A1), we have
Xng1 =0 = x,41C; in(X(n,00) = 0.
Assume that there exist A € A; and 0 < ¢ < g, such that

€ X(n.00) lex X(n—1.00)(A) <lex € X(n.00)Cpy  (in (X (n.00))) -
Then we can see
X(n,00) Zlex Xn.00)(A) <lex X(n,00)Cp (i (X(n,00))) -
This contradicts the definition of i, and C,,. Therefore we have
(¢, in(X(n,00) Tn = in—1(C X(n,00)) -

This completes the proof of (1). Similarly we can show (2).
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(3) Let y(u,00) € M. Since (—D)byi2(—=1)byys--- € xfn’m)(Al), we have

Ynt1 = —1 &= x5 (CH TN Ginoo) = —1.
First, consider the case of y,11 = —1. Assume that there exists A € A such that
dan A(y(n,oo)) <lex x(nfl,oo)()t) <lex An X(n,00) (Cysl)_l(i;(y(n,oo))) .
Then we can see
Yn,00) =lex xfn,oo) (A) <lex xgn,oo)(cii)il (iysl(y(n,oo))) .
This contradicts the definitions of i;, and C;. Therefore we have
[an. Ca(C3) ™ (i (Y00 1 = in—1(an A¥(n,00))) -
Next, consider the case of y, 41 > 0. Assume there exist A € A and 0 < ¢ < a, such that
¢ AY(n,00)) Slex X(n—1.00)(A) <lex € X(,00) (C3) ™ (i (Vin.00))) -
Then we can see
Y(n,00) =lex xfn,oo) (A) <iex xgn)oo)(cz)fl (i,S,(.V(n,oo))) .
This contradicts the definitions of i;, and C;. Therefore we have
[c, Cn(CyS,)_l(in,(y(n,oo))ﬂn =iz_1(c A(y(n,oo))) . O
By Formula 1, 7; = ]. Moreover 7, 7,41 = o, (equivalently, 7, 7,41 = c?,,r,;H).
Indeed, if y,42 = —1,
T Tt 1 (i (Vn41,00))) = T (i (Bug1 Ynt1.00)))
=iy—1(0ADy41 y(n-',-l,oo))) cerdpm1((an — 1) Abp4a .V(n—',-l,oo)))
= in-10ap+1AQYn+1,00) - in—1((an — Dan+1AYn+1,00)))

P

= 0Op (in(an-‘rlA(y(nJr],oo)))) = UnT;;+] (iz_:,.](y(nJrl,oo)))) .
If ypi2 # —1,

T,/,Tf:rl(i,iﬂ Vnt1,000)) = T (@5 ((Bpg1 — 1) Yng1,00) = i ((=1) Ynt1,00))
=ip—10A(Dn+1 — 1) Yt1,00)) - - in—1((an — DA((bn+1 — 1) Y(ut1,00)))

in—1(0A0 )’(n+],oo))) < ip—1((ap — 1)AQ© )’(n+],oo))) in—1(anA((—=1) y(n+1,oo)))

=iy—10(an41 — 1)A()’(n+l,c>o))) codpo1((ap — D(anyr — I)A(.V(n-i-l,oo)))
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in—1(00A (.V(n—i-l,oo))) ceipo1((an — 1)()A(y(n-i-l,oo))) in—1(a,04 (.Y(n—i-l,oo)))

P

= 0y (in((@ny1 — 1)A(y(n+l,oo))) T in(OA(y(n+],oo)))) = Unt,/,+1(if,+1 (y(n+l,oo)))) .

Therefore we have

P

- . P A,

T = T T34 - = O|THyT3T4 -+ = O102T4T4 -+ = + -+ = 0020304 - - - .

This completes the proof of Main Theorem.
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