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Abstract. Let X beacompact Hausdorff space and C (X) the Banach algebraof all complex-valued continuous
functionson X. We consider the following property of C(X): for each f € C(X) thereexistag € C(X) and positive
integers p and ¢ such that p does not divide ¢ and f¢ = gP. When X is locally connected, we give a necessary
and sufficient condition for C(X) to have this property. We aso give a characterization of afirst-countable compact
Hausdorff space X for which C(X) has the property above. Asacorollary, we prove that if X islocaly connected,
or first-countable, then C(X) has the property above if and only if C(X) isalgebraically closed.

1. Introduction and the statement of results

Let X beacompact Hausdorff space and C (X) the Banach algebraof all complex-valued
continuous functions on X with respect to the pointwise operations and the supremum norm
|l - lloo- Suppose that X is locally connected and A is a uniform algebra on X. Cirka [2]
proved that if to each f € A there correspondsa g € A suchthat f = ¢2, then A = C(X).
On the other hand, there is no continuous function on the unit circle St in the complex plane
C, whose square is the identity function on St. Hatori and Miura [8, Theorem 2.2] gave
a characterization in order for C(X) to be square root closed, that is, to each f € C(X)
there corresponds a g € C(X) such that f = ¢2. To be more explicit, C(X) is square root
closed if and only if the covering dimension of X is less than or equal to 1 and the first Cech
cohomology group with integer coefficient istrivial.

Let P(x,z) be a monic polynomia over C(X): for a positive integer n and
ao, at, ..., dp—1 € C(X), P(x,2) = 2" + ap—1(x)z" 1 + - - + a1(x)z + ap(x) for x € X.
We say that C(X) is algebraically closed if for each monic polynomial P(x, z) over C(X)
thereexistsan f € C(X) suchthat P(x, f(x)) = Ofor every x € X. By definition, C(X)
issquare root closed if C(X) isalgebraically closed. Deckard and Pearcy [4, 5] proved that
C(X) isalgebraically closed if X isa Stonian space, or atotally disconnected compact Haus-
dorff space, or alinearly ordered and order-complete topological space. They also remarked
that if X isthe closure of the graph of the function y = sin1/x, 0 < x < 1, then there exists
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acontinuous function f of X into C suchthat f # ¢ forany g € C(X). Countryman, Jr. [3]
gave some necessary and sufficient conditions for a first-countable compact Hausdorff space
X inorder that C(X) isalgebraically closed. For example, C(X) isalgebraicaly closed if and
only if C(X) issquare root closed. Moreover, for every first-countable space, these are also
equivalent to the condition that X is hereditarily unicoherent and almost locally connected.
Miura and Niijima[13] gave some necessary and sufficient condition for alocally connected
compact Hausdorff space X in order for C(X) be algebraically closed.

It seems that Gorin and Karahanjan [7] strengthened the above result of Cirkaas follows:
If A isauniform algebraon alocally connected compact Hausdorff space X with the property
that foreach f € A thereexistag € Aandap € N, p > 2suchthat f = ¢g”,then A = C(X).
Furthermore, Karahanjan (cf. [9, Theorem 1]) weakened the hypothesis in the following way
and proved that A = C(X) whenever X islocally connected:

(x) Forevery f € Athereexistag € Aand p,qg € Nsuchthatg/p ¢ Nand 4 = g”.

Note that if wereplace“q/p ¢ N" with“g/p € N" in (x), then the condition («) obviously
holdsfor every A.

In this paper, we give a necessary and sufficient condition for alocally connected com-
pact Hausdorff space X in order that C(X) satisfies the condition (x). Asacorollary, we also
provethat if X islocally connected, or first-countable, then the condition () holds for C(X)
if and only if C(X) is agebraically closed; In this case, (x) for C(X) is equivalent to the
sguare root closedness of C(X).

We say that atopological space T isalmost locally connected if 7 contains no mutually
digoint connected closed subsets C, (n € N), which are open in the closure of U,cnCy,
in T, with the following property: There exist x,,, y, € C, such that {x,},en and {y,},en
converge to distinct points. For example, the closure of the graph of the functiony = sin1/x,
0 < x < lisnot amost locally connected.

We say that atopological space T is hereditarily unicoherent if M N N is connected for
every pair of closed connected subsets M and N of T. For example, the unit circle ST is not
hereditarily unicoherent.

Let Y beanormal space and n anon-negative integer. The covering dimension dimY of
Y islessthan or equal to n if for every finite open covering 21 of Y there exists a refinement
B of 20 such that each y € Y belongs to at most (n + 1) elements of 9B. It is well-known
that dimY < n if and only if for every closed subset F of Y and every S"-valued continuous
function f on F, there exists an $”-valued continuous function f on Y such that f|r = f,
where S" isthe n-sphere (cf. [14]).

Let X beacompact Hausdorff space. Then H1(X; Z) denotesthefirst Cech cohomology
group of X with integer coefficients. Let C(X)~* be the multiplicative group of all invertible
elements of C(X) and expC(X) = {e/ : f € C(X)}. It iswell-known that H1(X; Z) is
isomorphic to the quotient group C (X)~1/ exp C(X), by atheorem of Arens and Royden [6].
In particular, H(X; Z) istrivial if and only if C(X)™! = expC(X).

Now we are ready to state our main result. The main result of this paper is as follows:
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THEOREM 1.1. Let X bealocally connected compact Hausdorff space. Then the fol-
lowing conditions are equivalent.

(8 Foreach f € C(X) thereexist p,g € Nand g € C(X) suchthatg/p ¢ N and
fi=g".

(b) X ishereditarily unicoherent.

() dimX < land H(X;Z) istrivial.

(d) {g?:g9 e C(X)}isuniformlydensein C(X) for every p € N.

(e) Foreach f € C(X)and p € Nthereexistsa g € C(X) suchthat f = ¢”.

COROLLARY 1.2. Let X bealocally connected compact Hausdorff space. Then the
following conditions are equivalent.

(8 Foreach f € C(X) thereexist p,g € Nand g € C(X) suchthatg/p ¢ N and
fi=g".

(b) {g? :¢g e C(X)}isuniformlydensein C(X) for every p € N.

(c) Foreach f € C(X)and p € Nthereexistsa g € C(X) suchthat f = ¢”.

(d) C(X)isalgebraically closed.

(e) C(X) issquare-root closed.

(f) X ishereditarily unicoherent.

() dimX <1and HX(X; Z) istrivial.

COROLLARY 1.3. Let X bea first-countable compact Hausdor ff space. Then each of
the following conditions implies the other.

(@ Foreach f € C(X) thereexist p,g € Nand g € C(X) suchthatg/p ¢ N and
f1=g".

(b) C(X)isalgebraically closed.

(c) C(X) issquare-root closed.

(d) X ishereditarily unicoherent and almost locally connected.

() X isalmost locally connected, dim X < 1 and H1(X; Z) istrivial.

2. Lemmas

We require some lemmas before proving Theorem 1.1. To prove Lemmas 2.1 and 2.2,
we use ideas by Countryman, Jr. [3, LemmaZ2.1, Lemma2.3].

LEMMA 2.1. Let X be a compact Hausdorff space. If the condition (a) of Theorem
1.1 holds, then X is hereditarily unicoherent.

PrRoOOF. Assume that the condition (a) holds. We will show that X is hereditarily uni-
coherent. Suppose not. Then, by definition, there exist non-empty closed connected subsets
M and N of X suchthat M N N isdisconnected. So, there are non-empty closed subsets A
and B suchthat M NN = AUBand AN B = . Let f beacontinuous mapping of X into
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the closed unit interval [0, 1] suchthat f(x) =0on A and f(x) = 1on B. Put

exp(in f(x)) xeM

hix) =
exp(—inf(x)) xe N\ M.

Then we seethat 7 is continuouson M U N. Let h € C(X) beamapping so that /1| yuy = h.
By the condition (@), there exist positive integers p, g and an element g in C(X) such that p
doesnot divideg and 29 = §7. Putq = sp+r, wheres andr areintegerswithl < r < p—1
(noteg/p ¢ N). Since & does not vanish on M U N, the function g = g|yun/h* isawell-
defined continuous mapping of M U N into C. Since 7% = P, foreachx € M U N we
obtain

b g(x))”_ RO amspey
9(x)—(hs(x> = gy =TT = @),

andsoh” = g” on M U N. Since
9P (x) = " (x) = exp(inrf(x))
forx € M, weget

9(x) = 0 (x) exp(i”ri m)

for every x € M, where w(x) is one of the p-th roots of 1. The above equation and the
continuity of f and g imply that w(x) is a continuous mapping of M into the set of all p-th
rootsof 1. Since M is connected, w must be constant. So thereisa p-th root wg of 1 such that

inrf(x))
p

(1) g(x) = wp exp(

for each x in M. In away similar to the above, we see that there exists a p-th root yg of 1
such that

2 g(x) =yo eXp( - imf(x))

p

foreachx in N.
Pick an xg € A arbitrarily. Sincexg € A C M N N, the equations (1) and (2) imply that

wo exIi)(l?trf%) = g(x0) = 0 exp( - W) .

Recall that f = 0on A and f = 1on B, and so f(xg) = 0. We thus obtain wg = 0. For
y € B, itfollowsfrom (1), (2) and wg = yp that

inr inr
wo eXp(T) = g(y) = wo exp( - 7) ,
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because B € MNN. Thuswehaver/p € N, which contradicts1 < r < p — 1. We conclude
that X is hereditarily unicoherent. O

LEMMA 2.2. Let X be a compact Hausdorff space. If the condition (a) of Theorem
1.1 holds, then X isalmost locally connected.

ProOOF. Assumethat (a) holds and suppose that X is not almost locally connected. By
definition, X contains mutually disjoint connected closed subsets C,, (n € N), which are open
in U,enGy, the closure of U,enCy, in X, with the following property: to each n € N there
correspond x,, y, € C, suchthat {x,},en and {y,},en convergeto distinct points, say xo and
yo. Put F = U,enCp,. Since X isacompact Hausdorff space, there exist open neighborhoods
A and B of xo and yo respectively such that A N B = (. Let f be a continuous mapping of
X into theinterval [—1, 1] such that f(x) = 10n A and f(x) = —1 on B. We consider the
following mapping & of F into C:

f(x)+i(1—f2(x)) x € Cyp:niseven
n

h() =1 )= L@ = f2(x))  xeCpinisodd
n

Jx) xeF\F.

Weseethat h € C(F). Leth € C(X) beamapping with 1| = h. Since the condition (a) of
Theorem 1.1 is assumed to hold, there exist a continuous mapping ¢ € C(X) and p,q € N
with g/p ¢ N suchthat ¢ = §P on X. Put ¢ = sp + r, where s and r are integers with
1<r<p—1(noteg/p ¢ N). Now we define the mapping g of F into C asfollows:

h* (x)

90O e B ) #£0
g(x) = )
0 x€eF,h(x)=0.

Recall that /1| z = h. Since h? = §P on X, for eachx € F with h(x) # 0 we obtain

pon _ (F@ON R
g9 (x)_<h5(x)) = P =h17P(x)=h"(x),

and so 1’ (x) = ¢P(x) whenever x € F, h(x) # 0. Itfollowsthat ¢ € C(F) such that
h" =gPonF.

Pick ann € N arbitrarily. By the definition of 4, there is a continuous mapping 6,, of C,
such that i(x) = |h(x)|exp(if,(x)) for every x € C, and that 6,(C,) C [0, 7] if n is even
and 6,(C,) C [—m, 0]if nisodd. Sinceh” = ¢” on F, foreachx € C,

g7 (x) = [h(x)|" exp(irth(x)) ,



408 DAl HONMA AND TAKESHI MIURA

and so thereisa p-th root w, (x) of 1 such that

Since h, g and 6,, are continuous, w, (x) isa continuous mapping of C, into the set of al p-th
roots of 1. Furthermore, since C,, is connected, w, (x) must be constant, say w,. So,

) 900 = wnlhO[” exp(@) xeCy).

Since {x;, }nen and {y, }nen CONvergeto xo € A and yg € B, respectively, we may assume
that {x,}nen C A @nd {yalnen C B. Recall that f = 1on A and f = —1 on B. So, we get
h(x,) = land h(y,) = —1forevery n € N. Since 62,(C2,) C [0, 7] and 62,—1(C2,—1) C
[—m, O] foreveryn € N, it followsfromtheequation z(x) = |h(x)| exp(i6,(x)) that 6, (x,) =
0, 62, (y2,) = w and 02, _1(y2,—1) = —n forevery n € N. It followsfrom (3) that g(x,,) = w,
converges to g(xp). On the other hand, since ¢(y,) convergesto g(yo), we see from (3) that
both g(y2,) = wz, exp(irm/p) and g(y2,—1) = wp,—1 €XP(—irm/p) convergeto g(yo). That
is,

irm —irm
g(x0) exp(—) = g(yo) = g(x0) exp( > .
P P

Since |g(xo0)| = |h(x0)|"/? = | f(x0)|"/? = 1, we seethat exp(irm/p) = exp(—irm/p). In
other words, r/p € N, which contradicts 1 < r < p — 1. We thus conclude that X is ailmost
locally connected. ]

The following results, Lemma 2.3 and 2.4 are deduced from [13, Theorem 3.3]; More-
over, Lemma2.4 iswell-known (cf. [11, Chap.VIII 857 Section |11, Theorem 3, p.438]). Here
we give a proof for the sake of completeness.

LEMMA 2.3. Let X be a locally connected compact Hausdorff space. If X is heredi-
tarily unicoherent, thendim X < 1.

PrROOF. Let 2 = {O};_, be afinite open covering of X. We show that there is an
open refinement B for 21 such that every x € X isin at most two elements of B. Since X is
assumed to be locally connected, it follows from [13, Lemma 3.2] that X is an A-space, that
is, the class of all open sets whose boundaries are finite sets forms an open base. Without loss
of generaity we may assume that each Oy has at most finitely many boundary points. Put
B = UZ:l(O_k \ Og), where~ denotes the closure in X. We define mutually digoint open
family {Vy};_, asfollows:

k—1
Vi= 01\ B and Vk=0k\(BuU0_j) for k=2,3,...,n.
j=1

Since {Ox}};_4 isan open covering of X, we seethat Uici Vi = X\ B.
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Since B consistsof at most finitely many points, to each x € B there correspondsan open
neighborhood U, of x with the following property: U, C Oy forsomek and U, N U, = @
whenever x,y € B, x # y. Put® = {Vi}j_; U{Uy : x € B}. Weseethat B is an open
covering of X. Recall that both {V};_; and {Uy : x € B} are mutually digoint. Thisimplies
that if x € X, then a most two elements of 8 contain x. So, wegetdimX < 1. O

LEMMA 2.4. Let X bealocally connected compact Hausdorff space. If X is heredi-
tarily unicoherent, then (X, Z) istrivial.

PrRoOOF. Assumethat X ishereditarily unicoherent. By atheorem of Arensand Royden,
it isenough to show that the equality C(X)~! = exp C(X) holds: SinceexpC(X) ¢ C(X)~ L,
it suffices to prove that C(X)~! ¢ expC(X). To do this, pick f € C(X)~1 arbitrarily.
Since X islocally connected, each connected component of X isopen. It follows that X has
at most finitely many connected components. Without loss of generality, we may assume
that X is connected. Recall that f € C(X)~1, and so f vanishes nowhere. Since X is
locally connected, for each x in X there exists a connected open neighborhood V, of x and
a continuous mapping g, of the closure V, of V, into C such that f = e% on V,. Since X
is compact, there are finite number of points x1, x2, ..., x,+1 such that UZ:ika = X. For
simplicity, we denote g = gy, and Vyx = V,, fork = 1,2,...,n + 1. Note that {W}Zj
is aclass of non-empty connected closed sets with UZI}W = X. Since X is connected, V1
intersectsat least oneof Vo, Vs, ..., V,,1; wemay assumethat Vi meets V,. Thenedt = f =
€92 0n V1 N Vo, and so we have e91792 = 1 on V; N Va. Since X is hereditarily unicoherent,
V1N V3 is connected. Hence by the continuity of g1 — g, the equation e91-92 = 1 impliesthe
existence of an integer k1 such that

g1— g2 =2kimi on ViNVa.
We define amapping g1 of V1 U V5 into C asfollows:

g1(x) xewv,

g1(x) = _
G(x) + 2kimi x € Vo )\ V1.

Itiseasy to seethat g1 is continuouson Vi U V; and

f=en on ViUVs.

In the same way, V1 U V> intersects at least one of V3, Va, ..., V,411. We may assume
that V1 U V5 meets V3. Theequation %2 = f = 9% holdson (V1UV2)NVa, andsoef~% = 1
on (V1 U V,) N Va. Since X is hereditarily unicoherent, (V1 U V) N V3 is connected. Hence
by the continuity of g1 — g3, there exists an integer k> such that

Gi—g3=2komi on (ViUV2)N V3.
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We defineamapping gz of (V1UV,)UVzinto C asfollows: If x isin ViUV, let ga(x) = g1(x),
and let g2(x) = ga(x)+ 2komi otherwise. Itiseasy to seethat g2 iscontinuouson ViU VU Vs
and

f=e? on ViUVUV3.
Continuing this process, we have a continuous mapping g, of UZIin such that

n+1
f=e% on U Vi
k=1

Since Ugm = X, we havethat f € expC(X). Since f € C(X)~! was arbitrary, we
conclude that C(X)~! ¢ exp C(X) and the proof is complete. O

LEMMA 2.5. Let X be a compact Hausdorff space. If dmX < 1 and I-VIl(X; Z)is
trivial, then {g? : ¢ € C(X)} isuniformly densein C(X) for every p € N.

PrROOF. Pick p € Nand f € C(X) arbitrarily. We show that for every ¢ > 0 there
existsag € C(X) suchthat || f — g7 |l < €. Without loss of generdity we may assume that
I flloo < 1. Chooseak € N sothat 27 /eP < k. Then put

1
Ek={xeX:|f(x)lz;}.
SincedimX < 1, thereexistsau € C(X)~! with |u| = 1 on X suchthat u = f/| f| on Ex.
Then i(x) = max{| f(x)|, 1/k}u(x) isin C(X)~* withi| = f on Ej. Since HY(X;Z) is
trivial, by atheorem of Arens and Royden there existsav € expC(X) such that i = v”. We
define mappings ¢ and i asfollows:

gy = ATy
[v(x)]
0 fx)=0
h =1 f&)
W fx) #0.

Thenweseethat g, h € C(X), |glleo < 1and f = ¢g?~1h. Since f (= i) = vP on Ex, we
seethat ¢ = v = h on Ej. Therefore

lg — hlloo =sup{lg(x) — h(x)| : x € X \ Ex}
1/p
525up{{’/|f(x)| xe X\Ek} < 2<%) <e.

Since f = ¢g?h and | |l < 1, it followsthat

1f = 97 leo = 19”7 h = 9" loo < 197 Mloo 1R = glloo < &
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This completes the proof. O

The case where p = 2 in Lemma 2.6 was essentialy proved in [1, Corollary 5.9]. Here,
we generalize the result to the case where p > 2.

LEMMA 2.6. Let X bealocally connected compact Hausdorff space and p € N with
p > 2. If {fuPlien C C(X) converges uniformly to f € C(X), then there is a Cauchy
subsequence of { 1, }.eN-

Proor. Foreachk € N, set
1
E(k):{xeX:|f(x)|> %} .

Note that the closure E (k) of E(k) in X is acompact subset of E(2k). Since X islocally
connected, each connected component of E (2k) isopen. So, there arefinitely many connected
components C(k, 1), C(k, 2), ..., C(k, Ni) such that C(k, j) N E(k) # ¢ foreach j, 1 <
Jj < Nj and that

Ni
(4) E(k) | JCk j)cE@b.

j=1
Pick xi,j € C(k, j)N E(k) foreachk e Nand j, 1 < j < Ni. By adiagonal argument, we
obtain a subsequence of { f,,},en converging at each point xy, ;, which we denote by the same

letter { f,},en- We show that { f,,},en IS @ Cauchy sequencein C(X). Put w; = exp(2ii/p)
forl =0,1,2,..., p— 1. Fixk € N arbitrarily. We define ¢ (k) asfollows:

. 1 1\?” 1 P
(5) S(k)me{z—k—<§) (E |wl—1|) }

Sincelim,— [ fu” — flloo = 0 and since { f,,} converges at each point x, ;, we have, for a
sufficiently largen(k) € N,

(6) ”fnp_fmp”oo <8(k)7
(7) I £u? — Fllos < e(k),
(8) | oGt ) = fn G )] < (VP

forn,m >n(k)yand j =1,2,..., Ny. Fixn,m > n(k) and x € E(2k) arbitrarily. Since

p—1

P ) = fu? ) = [ (o) = 1 fu (),

1=0
it follows from (6) that there existsan / with 0 </ < p — 1 such that the inequality
(9) | () = @1 fu ()] < (k)P
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holds. To prove the uniqueness of such /, suppose that there exists another I/, I # I’ such that
the equation (9) isvalid for I” in place of [. We get

lwr — wp| | fin ()] < Nwp fn () = fu ()| + | fu(x) — @p fr (X))
<2e()MP < %m— 1,
and so
(10) lwr — wp| | fm(x)] < %le—lL

On the other hand, since x € E(2k), theinequality (7) implies that

[ fn QO = [ f) =1 f(x) = fi ”(x)|>i—8(k)> L ’
" = " 2k —\2k)

It follows that
1
lwp — wp || fimn(X)] = lw1 — 1] | fin(x)] = lel -1,

which contradicts (10). Hence the uniquenessiis proved.
Sincex € E(2k) wasarbitrary, we have proved that to each x € E (2k) there corresponds
aunique! such that (9) holds. Thisimpliesthat if we define

Gi(k) = {x € E2k) : | fu(x) — w1 fin(x)]| < e(k)¥/P)

forl = 0,1,...,p — 1, then {Gl(k)}l”:’ol is a mutually digoint family with E(2k) =
Ul’:OlGl(k). Since G;(k) isopenfor/ = 0,1,2,..., p — 1, each connected component
of E(2k) is contained in a unique G;(k). By the inequality (8), we get x; ; € Go(k) for
j=1,2,...,Nr. Hence C(k, j) C Go(k) for j = 1,2, ..., Ni. By the definition of G;(k),
it follows from (4) that

(12) | fa () = fn ()| < e(k)MP

forevery x € E(k). If x € X \ E(k), then we see from (7) that

P < 1f )] + 60 <+ + = < 2.
k 2k k
Thus, we have that
N\ 1/p
(12) a0 = )] < (0] + | fin(@)] < 2<E)

for every x € X \ E(k). It follows from (5), (11) and (12) that

o\ Vp
”fn_fin”oofz(z) .

Sincek € N andn, m > n(k) arearbitrary, { f, }nen i1Sa Cauchy sequencein C(X). O
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Although Lemmas 2.7 and 2.8 are well-known (cf. [11, Chap.VIII 857 Section |, The-
orem 8, p.435] and [11, Chap.V1I1 846 Section XI, Theorem 2, p.165], respectively), for the
sake of completeness we give a proof.

LEMMA 2.7. Let X beacompact Hausdorff space. Then the following conditions are
equivalent.

(@ HY(X;Z)istrivial.

(b) For each connected component X, of X, ﬁl(XA; Z) istrivial.

For a compact Hausdorff space X, it iswell-known that

(#) Every connected component X, of X istheintersection of all clopen sets G, of X
suchthat X, C G.

We can prove the following as an application of (f).

() If O isopenwith X, C O for some connected component X, of X, then thereis
clopen G suchthat X; ¢ G C O.

Infact, if G, D X, isclopenwith(,.; G, = X;, then {X \ G} ./ becomes an open
covering of the closed subset X\ 0, andso X\ O C J/_;(X\G,,) forsomep1, uo, ..., iy €
1. Thentheclopen (/_; G, satisfies X, c (-, G, C O.

PROOF OF LEMMA 2.7. First we show that (a) implies (b). Suppose that (@) is true.
Let X, be an arbitrary connected component of X. It is enough to show that cxy 1=
expC(X;) by a theorem of Arens-Royden. Since expC(X;) C C(X;)~1, we show that
C(X;)™ ! c expC(X;). Pick an f € C(X;)~ ! arbitrary. By the Tietze extension theorem,
there exists a continuous extension f of f to al of X. Continuity of f impliesthat f does
not vanish on a certain open set O that contains X ;. Therefore, combining with the condition
(), we obtain a clopen set G which satisfiesthat X, € G € O. Now we define a mapping
3 of X into C asfollows: Let §(x) = f(x) if x € G, and F(x) = 1 otherwise. Then we
seethat § € C(X) L with§ = f on X,. Because H(X; Z) is assumed to be trivial, there
existsag € C(X) suchthat § = expg. It follows that f = exp(g|x,). Thus we see that
f € C(X;)~ L. Since f was arbitrary, we conclude that C(X;)~1 c expC(X)).

Next we show that (b) implies (a). Suppose that (b) is true. It is enough to show that
C(X)™! c expC(X). Pickan f € C(X)~L arbitrarily. Since (b) is true, to every connected
component X, of X, the equation C(X;)™! = expC(X;) holds. Thus to each %, there
corresponds a g, € C(X;,) such that f |x, = expg, holds. Let g, be acontinuous extension
of g, to thewhole space X. If weput i1, = f/exp i, on X, then i, = 1 on X;.. Continuity
of h, implies that there exists an open neighborhood 0 > X, such that 7, (0;) C {z € C :
|z — 1| < 1/2}. Therefore, combining with (), we obtain a clopen set G, which satisfies
X, C G, C 0;. Since hy(G;) C {z € C: |z — 1| < 1/2}, acontinuous logarithm log of
{ze C:|z—1| < 1/2}into C iswell-defined. So, we get

f =h,expg, =exp(G, +logh,) on G
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Since {G,}, isan open covering of the compact space X, this covering has afinite open sub-
covering {G;, };_,. The corresponding mappingsto G are denoted by g, hi (k=1,...,n).
Since every member of this covering is clopen, without loss of generality, we may assume
that Gkkl N G,\kz = 0 (k1 # k2). Now we define a mapping g of X into C as follows. If
x € X, then there exists a unique k such that x € Gy; Let §(x) = G (x) + loghy (x). Then
weseethat j € C(X) and f = expj. Thuswe conclude that C(X)~! c expC(X) and this

completes the proof. ]
LEMMA 2.8. Let X beacompact Hausdorff space. Then the following conditions are
equivalent.
(@ dmx <1.

(b) For each connected component X, of X, dim X, < 1.

PROOF. A proof of () = (b) iselementary and omitted (cf. [14]).

Conversely, suppose that (b) istrue. Let F be aclosed subset of X and f an S1-valued
continuous mapping of F. We show that there exists an S-valued continuous mapping f on
X such that f|F = f. Let X, be a connected component of X. Since dimX, < 1, there
exists an S1-valued continuous extension g, of f| rnx, to X,. We define a mapping 4, of
F U X, into C asfollows: Let i) (x) = gy (x) ifx € X;,and h, (x) = f(x)ifx € F\ X,.
Then we see that &, is an S1-valued continuous mapping on F U X;, satisfying k; = f on
F. Let h;, be a continuous extension of 4, to al of X. By definition, || = |hx] = 1 on
F. Continuity of &, implies that there exists an open neighborhood 0;, of X such that ;
never vanishes on 0,. Therefore, combined with (), there exists a clopen set G, such that
X, C Gy C 0;. Thus h;, never vanishes on G,. Since {G,}, is an open covering of the
compact space X, {G,}, has afinite subcovering {G;, };_; for X. Since every G, is clopen,
without loss of generality, we may assume that Gkkl N G)‘kz = @ (k1 # k2). Now we define
amapping f on X asfollows. If x € X, then there exists a unique k such that x € Gy, We
put £(x) = hy, (x)/|hy, (x)|. Since h;, = f on F for every k, we seethat f isan S1-valued
continuous mapping of X suchthat /| = f and this completes the proof. |

3. Proof of results

PrROOF OF THEOREM 1.1. (a) = (b) By Lemma2.1. (b) = (c) By Lemma 2.3 and
2.4. (c) = (d) By Lemma2.5. (e) = (a) By definition.

(d) = (e) Supposethat {g” : g € C(X)} isuniformly densein C(X) for every p € N.
Pick f € C(X) and p € N arbitrarily. By hypothesis, there exists a sequence {g,,” },en such
that g,” convergesto f asn — oo. By Lemma 2.6, thereisa Cauchy subsequence {g,; } jen
of {gn}nen. Since C(X) is complete, thereexistsa g € C(X) such that g, convergesto g as
j — oo. It followsthat f = ¢” and the proof is complete. ]
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REMARK. Let usconsider the following two conditions.

(d) {g”:g e C(X)}isuniformly densein C(X) for some p € N with p > 2.

(¢) Thereexistsap € N, p > 2 with the following property: For each f € C(X)
thereisag € C(X) suchthat f = g”.

Then the implications (e) of Theorem 1.1 = (¢) = (d') are obvioudy true. If, in
addition, X islocally connected, then (d) with Lemma 2.5 impliesthat every f € C(X) is
the p-th power of ag € C(X). So, we get (d) = (€). Consequently, both (d') and (€) are
also equivalent to al of the conditions from (a) to (e) of Theorem 1.1 whenever X islocally
connected. Note that Kawamura and Miura[10, Theorem 1.3] proved that if X isacompact
Hausdorff spacewithdim X < 1, then the condition (d') aboveis equivalent to that HY(X;2)
is p-divisible.

It is well-known [13, Theorem 3.3] that if X islocally connected, then C(X) is alge-
braically closed if and only if C(X) issquareroot closed asis stated in the following theorem.

THEOREM A ([13]). Let X bealocally connected compact Hausdor ff space. Then the
following conditions are equivalent.

(1) C(X) isalgebraically closed.

(2) C(X) issquare-root closed.

(3) dimX < land HX(X; Z)istrivial.

(4) X ishereditarily unicoherent.

PROOF OF COROLLARY 1.2. Thisisjust an application of Theorem 1.1 and Theorem
A. O

If X is first-countable, then we see that the condition (&) of Theorem 1.1 holds if and
only if C(X) isalgebraicaly closed. To prove this, we need the following result, which was
essentially proved by Countryman, Jr. [3] (see aso [13]).

THEOREM B ([3,13]). Let X beafirst-countable compact Hausdorff space. Then the
following conditions are equivalent.

(1) C(X) isalgebraically closed.

(2) C(X) issquare-root closed.

(3) X isalmost locally connected and hereditarily unicoherent.

(4) X isalmost locally connected and for every connected component X, of X, X is

locally connected, dim X, < 1and H(X,; Z) istrivial.

PrROOF OF COROLLARY 1.3. (b) < (d) < (e): By Theorem B, each of the conditions
(b), (d) and (e) impliesthe other.

(8 = (b): It followsfrom Lemmas 2.1 and 2.2 that (a) implies (b).

(e) = (&: Itisobviousthat (€) implies (a).

Finally, we show that (c) is equivalent to the condition (4) of Theorem B. It followsfrom
Lemmas 2.7 and 2.8 that (4) of Theorem B implies (c). Conversely, we prove that (c) implies
(4) of Theorem B. By [3, Proof of Lemma 2.5], we see that each connected component X, of
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X islocally connected. It follows from Lemmas 2.7 and 2.8 that (c) implies (4) of Theorem
B, and the proof is complete. m]
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