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Abstract. It is shown that, for any coaction α of a locally compact groupK on a properly infinite von Neumann
algebra A and a closed subgroup H of K, α is cocycle conjugate to a coaction which comes from a coaction of H
if and only if the dual action α̂ is induced by an action of H . We also include applications of the result concerning
almost periodic coactions and the ranges of 1-cocycles on measured equivalence relations.

1. Introduction

Let K be a locally compact group and A be a von Neumann algebra. The coactions of
K on A are special unital normal ∗-isomorphisms from A into W∗(K) ⊗ A, where W∗(K)
is the von Neumann algebra which is generated by the left regular representation of K . It is
known that group coactions are defined as a dual notion of group actions. Indeed, if a group

K is abelian, then all coactions of K can be considered as actions of the dual group K̂ , and
vice versa.

For each closed subgroup H of K , there exists a natural inclusion map I from W ∗(H)
to W∗(K). So, if the range of a coaction α of K on A is contained in I (W∗(H)) ⊗ A,
then α comes from a coaction of H , i.e., (I−1 ⊗ id) ◦ α is a coaction of H on A. In the
recent work of the author and T. Yamanouchi, they treated the exchangeability of coactions
which fix Cartan subalgebras ([1]). Namely, for each coaction α of K which fixes a Cartan
subalgebra and closed subgroupH ofK , they gave a necessary and sufficient condition that α
is cocycle conjugate to a coaction which fixes the common Cartan subalgebra and comes from
a coaction of H . They proved that, a coaction α of K on A satisfies such properties if and

only if the dual action α̂ ofK on the crossed product K̂ α�A is induced from an action of H
([1, Theorem 7.2]). But, in their proof, they use the fact that α fixes a Cartan subalgebra and
comes from a 1-cocycle on a discrete measured equivalence relation. Hence their arguments
can not be directly applied to general situations.

So it is natural to ask that their theorem is valid for general coactions. Our aim of this
paper is to give an affirmative answer to this question for all coactions on properly infinite
von Neumann algebras (Theorem 3.5). By using our arguments, we succeed in characterizing
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the ranges of 1-cocycles on (not necessarily discrete) measured equivalence relations and the
flow of weights in terms of corresponding coactions (Corollary 4.1 and Corollary 4.2).

Moreover, we also apply our arguments to almost periodic coactions. We will prove that,
if a coaction α is almost periodic, then the dual action α̂ is induced by an action of a discrete
group (Theorem 3.2). We note that the assumption of our theorem contains the case that α is
an almost periodic group action. So our theorem is a generalization of the theory in [3] which
describes the connection between discrete decompositions and continuous decompositions of
type III von Neumann algebras (Corollary 3.3).

The idea to prove our main theorem is to develop the arguments in [3] to general coac-

tions. We will show that, if a coaction α ofK comes from a coaction α0 ofH , then the system

{K̂ α�A, α̂} is induced by {Ĥ α0�A, α̂0} (Proposition 3.1). To prove the converse, we use the
Takesaki duality theorem. We will prove that, if an action κ of K is induced by an action of
H , then the dual coaction κ̂ is cocycle conjugate to a coaction which comes from a coaction
of H (Proposition 3.4).

The organization of this paper is as follows: Section 2 is devoted to summarizing the
basic facts about coactions and induced actions. In Section 3, we will give a proof of our main
theorem. We also give applications to 1-cocycles in Section 4. In Appendix, we mention the
construction of coactions from 1-cocycles on the flows of weights.

The author would like to thank Professor Takehiko Yamanouchi for fruitful conversations
and constant encouragement, and Professor Masaki Izumi for suggesting a problem concern-
ing coactions and 1-cocycles on the flows of weights. He is also grateful to the referee for
many helpful comments about earlier versions of the paper.

2. Preparation

In this section, we recall the basic facts about coactions and induced actions. Further
details about these matters are found in [1], [2], [3], [4], [7], [8], [9] and [10].

We assume that all von Neumann algebras in this paper have separable preduals.
For a Hilbert space H with a inner product 〈·, ·〉H, we denote by B(H) the algebra of all

bounded linear operators on H. For a faithful normal semifinite weight ϕ on a von Neumann
algebra A, set nϕ := {x ∈ A : ϕ(x∗x) < ∞} and mϕ := n∗

ϕnϕ . We denote the Hilbert space

obtained from ϕ by the GNS-construction by Hϕ , and the natural injection from nϕ to Hϕ by
Λϕ .

2.1. Group coactions on von Neumann algebras. Let K be a (second countable)
locally compact group with the left Haar measure µ and the module δK . We denote the left
(resp. right) regular representation ofK on L2(K,µ) by λK (resp. ρK ) and the von Neumann
algebra generated by {λK(k)}k∈K (resp. {ρK(k)}k∈K) by W∗(K) (resp. W∗

r (K)).
We recall that the coproduct ∆K of W∗(K) is a unital normal ∗-isomorphism from

W∗(K) into W∗(K)⊗W∗(K) which is defined by the following:

∆K(x) := WK(1 ⊗ x)W∗
K (x ∈ W∗(K)) ,
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whereWK is a unitary on L2(K ×K,µ× µ) defined by

(WKξ)(k1, k2) := ξ(k−1
2 k1, k2) (ξ ∈ L2(K ×K), k1, k2 ∈ K) .

Suppose that A is a von Neumann algebra. A unital normal ∗-isomorphism α from A

into W∗(K)⊗ A is called a coaction of K on A if α satisfies the following:

(id ⊗ α) ◦ α = (∆K ⊗ id) ◦ α .
We note that, by using the Fourier transformation, ifK is abelian, then coactions ofK coincide

with actions of the dual group K̂ .

DEFINITION 2.1. Let α be a coaction of a locally compact groupK on a von Neumann
algebra A.

(1) α is called faithful if {(id ⊗ ω)α(a) : a ∈ A, ω ∈ A∗}′′ is equal to W∗(K), where
A∗ in general stands for the predual of A.

(2) The fixed-point algebra Aα is the von Neumann subalgebra of A defined by

Aα := {a ∈ A : α(a) = 1 ⊗ a} .
(3) Suppose that a is in A and V is a closed subset ofK . The spectrum Sp(α), the spec-

trum Spα(a) of a, the spectral subspace Aα(V ) and the discrete spectrum Spd (α)
are defined by the following:

Sp(α) =
⋂

{Ker(φ) : φ ∈ A(K), αφ = 0} ,
Spα(a) =

⋂
{Ker(φ) : φ ∈ A(K), αφ(a) = 0} ,

Aα(V ) = {a ∈ A : Spα(a) ⊆ V } ,
Spd(α) = {k ∈ K : Aα({k}) 
= {0}} ,

where A(K) = (W∗(K))∗ is the Fourier algebra of K and αφ is determined by the
following:

ω(αφ(a)) = (φ ⊗ ω)α(a) (φ ∈ A(K), a ∈ A, ω ∈ A∗) .

(4) α is called almost periodic if (i) α is faithful; (ii) The spectral subspaces
{Aα({k})}k∈K generates a σ -strongly∗ dense subspace ofA; (iii) There exists a faith-
ful normal state ϕ on A which satisfies the equation (id ⊗ ϕ)α(a) = ϕ(a) for each
a ∈ A. We call ϕ an α-invariant state on A.

By [2, Proposition 3.3], if α is almost periodic, then Spd(α) is countable and
there exists a mutually orthogonal family of projections {Pk}k∈Spd (α) with sum 1
such that the canonical implementation VK of α is determined by the following:

VK :=
∑

k∈Spd (α)

λK(k)⊗ Pk .

Namely, the equation α(a) = VK(1 ⊗ a)V ∗
K holds for each a ∈ A.
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(5) The crossed product K̂ α�A is a von Neumann algebra which is generated by α(A)

and L∞(K)⊗ C. It is known that K̂ α� A is equal to the fixed-point algebra of the
stabilization α̃ := Ad(W∗

K ⊗ 1) ◦ (σ ⊗ 1) ◦ (id ⊗ α) on B(L2(K))⊗A, where σ in
general stands for the flip.

(6) The map α̂k := Ad(ρK(k) ⊗ 1)|
K̂ α�A

is an action of K on K̂ α� A and called the

dual action of α. It is known that the fixed-point algebra of α̂ on K̂ α�A is equal to
α(A).

(7) A unitary R in W∗(K) ⊗ A is called an α-1-cocycle if R satisfies the following
equation:

(∆K ⊗ id)(R) = (1 ⊗ R)(id ⊗ α)(R) .

For each α-1-cocycle R, the map Ad(R)◦α is also a coaction ofK . We denote it by

Rα. We call a coaction α′ of K on A is cocycle conjugate to α if there exist an α-1-

cocycleR and an automorphism π onA such that α′ is equal to (id⊗π)◦Rα ◦π−1.

We note that the system {K̂ α� A, α̂} is determined by only the cocycle conjugacy
class of α.

Let H be a closed subgroup of K . By [7, Lemma 3.1], there exists a unique normal
∗-isomorphism I from W∗(H) into W∗(K) which satisfies the equation I (λH (h)) = λK(h)

for each h ∈ H . It follows that the equation ∆K ◦ I = (I ⊗ I) ◦ ∆H holds. So, for each

coaction α0 of H on A, (I ⊗ id) ◦ α0 is a coaction of K on A.
We further suppose that β is an action of K on a von Neumann algebra M . The crossed

product K β�M is a von Neumann algebra which is generated by W∗(K)⊗ C and πβ(M),

where πβ(X)(k) := βk−1(X) for each X ∈ M and k ∈ K . Set β̃k := Ad(ρK(k)) ⊗ βk for

each k ∈ K . It is known that K β�M is equal to the fixed-point algebra of the action β̃ of

K on B(L2(K))⊗M . Moreover, the map β̂(X) := Ad(WK ⊗ 1)(1 ⊗ X) for X ∈ K β�M

is a coaction of K on K β � M . We call β̂ the dual coaction of β. By the Takesaki duality

theorem, the bidual coaction ˆ̂α onK α̂�K̂ α�A is conjugate to α̃ on B(L2(K))⊗A. By using
the arguments as in the proof [9, Theorem V.2.4], if A is properly infinite, then there exists an
α-1-cocycle R such that ARα is also properly infinite. It follows that, for each coaction α on

a properly infinite von Neumann algebra A, ˆ̂α is cocycle conjugate to α.
For each action β of K on a von Neumann algebra M , the map Tβ defined by Tβ(x) :=∫

K
βk(x)dµ(k) is an operator valued weight from M to Mβ . Set nTβ := {x ∈ M : Tβ(x∗x) ∈

Mβ} and mTβ := n∗
Tβ

nTβ . It is known that Tα̂ is a semifinite operator valued weight from

K̂ α� A to α(A), i.e., mTα̂ is dense in K̂ α� A.

2.2. Inclusions of group–subgroup with the induced actions on von Neumann al-
gebras. Let P be a von Neumann algebra andH ⊆ K be an inclusion of (second countable)
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locally compact group–subgroup. For each action β of H on P , we define (mutually com-
mute) actions γ of H and κ of K on L∞(K)⊗ P by the following:

γh(X)(l) := βh(X(lh)) , κk(X(l)) := X(k−1l) (X ∈ L∞(K)⊗ P, h ∈ H, k, l ∈ K) .
Set Q := (L∞(K) ⊗ P)γ . The restriction of κ to Q is called the induced action by β. We

denote the pair {Q, κ} by IndKH {P, β}.
We will assume in what follows that H is a closed subgroup of K . By [4, Sec-

tion 2.6], there exists a rho-function ρ on K associated to a quasi-invariant measure on
K/H . For the (left) projection πK from K to K/H , choose a Borel cross section θ :
K/H → K . It is easy to check that the unitary V : L2(K) → L2(K/H) ⊗ L2(H)

defined by (V ξ)(p, h) := ξ(θ(p)h)ρ(θ(p)h)−1/2 yields an isomorphism from B(L2(K))

onto B(L2(K/H)) ⊗ B(L2(H)). Moreover, since πK(kθ(p)) is equal to kp, we have that

θ(kp)−1kθ(p) belongs to H for all p ∈ K/H and k ∈ K . So the map χ : K × K/H → H

defined by χ(k, p) := θ(kp)−1kθ(p) is a Borel 1-cocycle. It is known that the system

IndKH {P, β} is conjugate to {L∞(K/H) ⊗ P, δ}, where the action δ of K is defined by the
following (see [1, Theorem A.1]):

δk(X)(p) := β−1
χ(k−1,p)

(X(k−1p)) (X ∈ L∞(K/H)⊗ P, p ∈ K/H, k ∈ K) .
Conversely, suppose that κ is an action of K on a von Neumann algebra Q. If there

exists a K-equivariant embedding of L∞(K/H) into the center Z(Q) of Q, then there exists
an action β of H on a von Neumann algebra P such that the pair {Q, κ} is conjugate to

IndKH {P, β} (Imprimitivity Theorem).

3. Exchangeability of coactions by their dual actions

In this section, by showing a connection between the ranges of coactions and their dual
actions, we will give a proof of our main theorem. Firstly, we will show the following:

PROPOSITION 3.1. Suppose that α is a coaction of a locally compact group K on a
von Neumann algebra A. If there exists a closed subgroup H of K such that the subalgebra
{(id ⊗ω)α(a) : a ∈ A, ω ∈ A∗}′′ is contained in I (W∗(H)), the range of the ∗-isomorphism
I from W∗(H) into W∗(K) defined by I (λH (h)) = λK(h) (h ∈ H). Then the dual action α̂

of K on K̂ α� A is induced by some dual action β of H on a von Neumann algebra P .

PROOF. By the assumptions, α0 := (I−1 ⊗ id) ◦ α is a coaction of H on A. Set

P := Ĥ α0 � A, β := α̂0 and {Q, κ} := IndKH {P, β}. We will show that there exists a ∗-

isomorphism Φ from K̂ α�A ontoQ which satisfies the equation (id ⊗Φ) ◦ α̂ = κ ◦Φ. For

this, we first define a map ᾱ on K̂ α� A by the following:

ᾱ := (σ ⊗ id) ◦ (id ⊗ α0) = (I−1 ⊗ id ⊗ id) ◦ (σ ⊗ id) ◦ (id ⊗ α) .

We claim that ᾱ is a coaction of H on K̂ α� A.
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Indeed, a direct computation shows that the following equations hold on K̂ α� A:

ᾱ = (I−1 ⊗ id ⊗ id) ◦ (Ad(WK)⊗ id) ◦ α̃ ,
(id ⊗ ᾱ) ◦ ᾱ = (∆H ⊗ id ⊗ id) ◦ ᾱ .

So, for each z ∈ K̂ α� A, we have

ᾱ(z) = (I−1 ⊗ id ⊗ id)(Ad(WK)⊗ id)(1 ⊗ z) .

It follows that

(id ⊗ α̃)ᾱ(z) = (id ⊗ Ad(W∗
K)⊗ id)(id ⊗ I ⊗ id ⊗ id)(id ⊗ ᾱ)ᾱ(z)

= (id ⊗ Ad(W∗
K)⊗ id)(id ⊗ I ⊗ id ⊗ id)(∆H ⊗ id ⊗ id)ᾱ(z)

= (id ⊗ Ad(W∗
K)⊗ id)((id ⊗ I)∆H ⊗ id ⊗ id)

(I−1 ⊗ id ⊗ id)(Ad(WK)⊗ id)(1 ⊗ z)

= (id ⊗ Ad(W∗
K)⊗ id)((I−1 ⊗ id)∆K ⊗ id ⊗ id)(Ad(WK)⊗ id)(1 ⊗ z)

= (I−1 ⊗ Ad(W∗
K)⊗ id)(∆K ⊗ id ⊗ id)(Ad(WK)⊗ id)(1 ⊗ z)

= (I−1 ⊗ Ad(W∗
K)⊗ id)(id ⊗∆K ⊗ id)(Ad(WK)⊗ id)(1 ⊗ z)

= (I−1 ⊗ Ad(W∗
K)⊗ id)(id ⊗ Ad(WK)⊗ id)

(σ ⊗ id ⊗ id)(id ⊗ Ad(WK)⊗ id)(1 ⊗ 1 ⊗ z)

= (I−1 ⊗ id ⊗ id ⊗ id)(σ ⊗ id ⊗ id)(id ⊗ Ad(WK)⊗ id)(1 ⊗ 1 ⊗ z)

= (σ ⊗ id ⊗ id)(id ⊗ I−1 ⊗ id ⊗ id)(id ⊗ Ad(WK)⊗ id)(1 ⊗ 1 ⊗ z)

= (σ ⊗ id ⊗ id)(1 ⊗ ᾱ(z)) .

So we conclude that ᾱ(K̂ α� A) is contained in W∗(H)⊗ K̂ α�A, and ᾱ is a coaction of H

on K̂ α� A.

It follows that ᾱ(K̂ α� A) is equal to the fixed-point algebra of the dual action ˆ̄αh :=
Ad(ρH (h) ⊗ 1 ⊗ 1) on Ĥ ᾱ� (K̂ α� A). Now, we define a unitary U from L2(K × H) to
L2(H ×K) by the following:

(Uξ)(h, k) := δK(k
−1h)1/2ξ(k−1h, h) (ξ ∈ L2(K ×H), k ∈ K, h ∈ H) .

It is easy to check that, for each k ∈ K and h ∈ H , the following equations hold:

Ad(U)(1 ⊗ λH (h)) = λH (h)⊗ λK(h) = (I−1 ⊗ id)∆K(λK(h)) ,

Ad(U)(ρK(h)⊗ ρH (h)) = ρH (h)⊗ 1 ,

Ad(U)(λK(k)⊗ 1) = 1 ⊗ ρK(k) .
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So, for each k ∈ K , h ∈ H and a ∈ A, we have

Ad(U)(L∞(K)⊗ L∞(H)) = L∞(H)⊗ L∞(K) ,

Ad(U ⊗ 1)(1 ⊗ α0(a)) = ᾱ(α(a)) ,

Ad(U ⊗ 1)Ad(ρK(h)⊗ ρH (h)⊗ 1) = Ad(ρH (h)⊗ 1 ⊗ 1) ,

Ad(U ⊗ 1)Ad(λK(k)⊗ 1 ⊗ 1) = Ad(1 ⊗ ρK(k)⊗ 1) .

Hence the map Φ := Ad(U∗ ⊗ 1) ◦ ᾱ is an isometry from K̂ α�A ontoQ which satisfies the
desired condition.

Therefore we complete the proof. �

We note that the above arguments can be applied to almost periodic coactions. Namely,
we get the following:

THEOREM 3.2. Let α be a coaction of a locally compact group K on a von Neumann
algebra A. If α is almost periodic with the discrete spectrum Spd(α), then there exists a

coaction α0 of Γ on A such that the dual action α̂ is induced by α̂0, where Γ is a subgroup
of K generated by Spd (α).

PROOF. Suppose that ϕ is a faithful normal α-invariant state with the GNS-Hilbert
space Hϕ . By [2, Proposition 3.3], there exists a mutually orthogonal family of projections
{Pk}k∈Spd(α) on Hϕ with sum 1 such that VK := ∑

k∈Spd (α)
λK(k) ⊗ PK is the canonical

implementation of α associated to ϕ. Set VΓ := ∑
k∈Spd (α)

λΓ (k) ⊗ Pk . It is easy to check

that VΓ is a unitary on L2(Γ ) ⊗ Hϕ , and α0 : a �→ VΓ (1 ⊗ a)V ∗
Γ is a coaction of Γ on A.

Set VΓ 13 := (σ ⊗ id)(1L2(K) ⊗ VΓ ). We have the following equations:

VΓ 13(1L2(Γ ) ⊗ VK) =
∑

k∈Spd (α)

λΓ (k)⊗ λK(k)⊗ Pk = (1L2(Γ ) ⊗ VK)VΓ 13 ,

VΓ 13(1L2(Γ ) ⊗ VΓ ) = (∆Γ ⊗ id)
∑

k∈Spd (α)

λΓ (k)⊗ Pk = (∆Γ ⊗ id)(VΓ ) .

Hence the range of the map ᾱ := (σ ⊗ id) ◦ (id ⊗ α0) on K̂ α� A is contained in W∗(Γ ) ⊗
K̂ α�A, and ᾱ is a coaction of Γ on K̂ α�A with the canonical implementation VΓ 13. Now

we define a unitary U from L2(K × Γ ) to L2(Γ ×K) by the following:

(Uξ)(γ, k) := δK(k
−1γ )1/2ξ(k−1γ, γ ) (ξ ∈ L2(K × Γ ), k ∈ K, γ ∈ Γ ) .

By using the same arguments as in the proof of Proposition 3.1, the map Ad(U∗ ⊗ 1) ◦ ᾱ is a

∗-isomorphism from {K̂ α� A, α̂} to IndKΓ {Γ̂ α0 � A, α̂0}.
Therefore we get our conclusion. �

COROLLARY 3.3 ([3, Corollary 3.4]). Suppose that M is a type III von Neumann al-
gebra with a faithful normal semifinite almost periodic weight ϕ such that the point spectrum
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of the modular operator∆ϕ generates the discrete subgroup Γ . Let {N1, Γ, β1} giving rise to
M ∼= Γ β1 � N1 be the discrete decomposition of M associated to ϕ, and {N2,R, β2} giving
rise to M ∼= R β2�N2 be the continuous decomposition ofM . Then the action β2 of R on N2

is induced up to R from the action β1 of Γ on N1.

We will next show that the converse of Proposition 3.1 holds when the von Neumann
algebra A is properly infinite. For this, we will show the following:

PROPOSITION 3.4. Let K be a locally compact group andH be a closed subgroup of
K . If an action κ of K is induced from an action of H , then the dual coaction κ̂ is cocycle
conjugate to a coaction which comes from a coaction of H .

PROOF. Suppose that β is an action of H on a von Neumann algebra P . Set {Q, κ} :=
IndKH {P, β}, where

Q := (L∞(K)⊗ P)γ , γh(X)(l) := βh(X(lh)) (X ∈ L∞(K)⊗ P, h ∈ H, l ∈ K) .
By using the duality, the action id ⊗ γ of H on K κ� (L∞(K) ⊗ P) is conjugate to γ ′ on

B(L2(K))⊗P , where γ ′
h := Ad(ρK(h))⊗βh for h ∈ H . Moreover, sinceK κ�(L

∞(K)⊗P)
is equal to (B(L2(K))⊗ L∞(K)⊗ P)κ̃ and κ̃ commutes with id ⊗ γ , we have(

K κ� (L∞(K)⊗ P)
)id⊗γ = (

(B(L2(K))⊗ L∞(K)⊗ P)κ̃
)id⊗γ

= (
(B(L2(K))⊗ L∞(K)⊗ P)id⊗γ )κ̃

= (B(L2(K))⊗Q)κ̃ = K κ�Q.

So the dual coaction κ̂ on K κ�Q is conjugate to κ ′ ⊗ id on (B(L2(K))⊗ P)γ
′
, where κ ′ is

defined by κ ′(X) = Ad(WK)(1 ⊗X) for each X ∈ B(L2(K)). Now, we define two unitaries

V : L2(K) → L2(K/H)⊗ L2(H) and WK,H on L2(K)⊗ L2(K) by the following:

(V ξ)(p, h) := ξ(θ(p)h)ρ(θ(p)h)−1/2 (ξ ∈ L2(K), p ∈ K/H, h ∈ H) ,
(WK,H ζ )(k1, k2) := ζ(θ(πK(k2))k1, k2) (ζ ∈ L2(K ×K), k1, k2 ∈ K) ,

where θ is a Borel cross section for the left projection πK : K → K/H and ρ is the rho-
function on K associated to a quasi-invariant measure on K/H . Set Ψ := Ad(V ⊗ 1) and

κK,H := (id ⊗ Ψ ) ◦ (κ ′ ⊗ id) ◦ Ψ−1. It is easy to check that the map Ψ is an isomorphism

from B(L2(K)) ⊗ P to B(L2(K/H)) ⊗ B(L2(H)) ⊗ P which satisfies the equation Ψ ◦
γ ′
h = (id ⊗ β̃h) ◦ Ψ for each h ∈ H . It follows that (B(L2(K)) ⊗ P)γ

′
is isomorphic to

B(L2(K/H))⊗ (B(L2(H))⊗ P)β̃ = B(L2(K/H))⊗H β� P . So κK,H is a coaction of K

on B(L2(K/H))⊗H β�P . On the other hand, a direct computation shows thatWK,H is a κ ′-
1-cocycle which satisfies the following equation for each ξ ∈ L2(K ×K) and k, k1, k2 ∈ K:

(Ad(WK,H )κ
′(λK(k))ξ)(k1, k2) = ((λK(k)⊗ λK(k))W

∗
K,H ξ)(θ(πK(k2))k1, k2)

= ξ(θ(πK(k
−1k2))

−1k−1θ(πK(k2))k1, k
−1k2) .
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SinceWK,H ⊗1 is inW∗(K)⊗(B(L2(K)⊗P)γ ′
and θ(πK(k−1k2))

−1k−1θ(πK(k2)) is inH
for each k, k2 ∈ K , we conclude that (id ⊗ Ψ )(WK,H ⊗ 1) is a κK,H -1-cocycle such that the

range of a coaction (id ⊗Ψ )(WK,H ⊗ 1)κK,H is contained in I (W∗(H))⊗B(L2(K/H))⊗H β�P .
So our claim has been proven. �

By the above propositions, we get our main theorem.

THEOREM 3.5. Let α be a coaction of a locally compact groupK on a properly infinite
von Neumann algebra A, and H be a closed subgroup of K with the ∗-isomorphism I :
W∗(H) � λH (h) �→ λK(h) ∈ W∗(K). Then the following are equivalent:

(1) There exists an α-1-cocycleR such that the subalgebra {(id⊗ω)Rα(a) : a ∈ A, ω ∈
A∗}′′ is contained in I (W∗(H)).

(2) The dual action α̂ of K on K̂ α� A is induced by some action of H .

(3) There exists an injective ∗-homomorphismΘ from L∞(K/H) to the center of K̂ α�

A such thatΘ◦�k = α̂k◦Θ for each k ∈ K , where �k comes from the left translation
by k on K/H .

Moreover, if one of the above conditions occurs, then there exists a coaction α′ of H on A

such that the system {K̂ α� A, α̂} is induced by the system {Ĥ α′ � A, α̂′}.
PROOF. By the above propositions and the Takesaki duality theorem, the conditions (1)

and (2) are equivalent. The equivalence of (2) and (3) comes from the Imprimitivity Theorem
in [10]. The last assertion follows from Proposition 3.1. �

4. Applications for the coactions which come from 1-cocycles

We conclude this paper with two applications associated to the ranges of 1-cocycles.
We first consider 1-cocycles on the measured (not necessarily discrete) equivalence rela-

tions. Suppose thatR is a measured equivalence relation on a base spaceX with a Haar system

{λx}x∈X. We denote by ν a σ -finite measure on R obtained by {λx}x∈X. Set δ := dν/dν−1.
For each 2-cocycle σ on R, we denote by W∗(R, σ ) the left von Neumann algebra of a left
Hilbert algebra AI which is defined by the following:

AI := {ξ ∈ L2(R, ν) : ξ is δ-bounded and ‖ξ‖I < ∞} ,

(f ∗ g)(γ ) :=
∫
f (γ1)g(γ−1

1 γ )σ(γ1, γ
−1
1 γ )dλr(γ )(γ1) ,

f �(γ ) := σ(γ, γ−1)δ(γ )−1f (γ−1) .

It is known that W∗(R, σ ) has a special abelian subalgebra W∗(X) which is isomorphic to
L∞(X,µ) and called the diagonal subalgebra of W∗(R, σ ). We note that, if R is a discrete
measured equivalence relation, then W∗(X) is a Cartan subalgebra of W∗(R, σ ). For the
details about these matters, refer to [5].

By [1, Theorem 5.8], for each coaction α of a locally compact group K on W ∗(R, σ ),
if α fixes each element of W∗(X), then there exists a (Borel) 1-cocycle c on R of a locally
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compact group K such that α is equal to αc, where

αc(a) := Uc(1 ⊗ a)U∗
c (a ∈ W∗(R, σ )) ,

(Ucξ)(k, γ ) := ξ(c(γ )−1k, γ ) (ξ ∈ L2(K × R), k ∈ K, γ ∈ R) .
By [1, Proposition 5.10], we have that a 1-cocycle c is cohomologous to c′ if and only if there
exists an αc-1-cocycle R such that αc′ is equal to Rαc. Moreover, by using the arguments as
in the proof of [1, Theorem 6.3], we have that the spectrum Sp(αc) is equal to the essential
range of c. Namely, the essential range of c is contained in a closed subgroup H if and only
if the coaction αc comes from a coaction of H . So we get the following:

COROLLARY 4.1 (cf. [1, Theorem 7.2]). Let R be a measured equivalence relation
with a 2-cocycle σ . For a Borel 1-cocycle c from R to a locally compact group K with a
closed subgroup H , the following are equivalent:

(1) The 1-cocycle c is cohomologous to a 1-cocycle c′ such that the essential range of
c′ is contained in H .

(2) There exist a coaction α0 of H on W∗(R, σ ) and an isomorphism Φ from {K̂ αc �

W∗(R, σ ), α̂c} to IndKH {Ĥ α0�W∗(R, σ ), α̂0} which satisfyW∗(X) ⊆ W∗(R, σ )α0

and Φ(C ⊗W∗(X)) = C ⊗ C ⊗W∗(X).

PROOF. Put A := W∗(R, σ ).
(1) ⇒ (2): Set α0 := (I−1 ⊗ id) ◦ αc′ . By Proposition 3.1, there exists an isomorphism

Φ from {K̂ αc′ �A, α̂c′ } to IndKH {Ĥ α0�A, α̂0} which satisfies Φ(1 ⊗ a) = 1 ⊗ 1 ⊗ a for each
a ∈ Aαc′ . Moreover, by [1, Proposition 5.10], there exists an αc-1-cocycle R such that αc′ is
equal to Rαc. So the condition (2) follows.

(2) ⇒ (1): By [1, Theorem 5.8], there exists a Borel 1-cocycle c′ : R → K such that

(I ⊗ id) ◦ α0 is equal to αc0 . By the construction, we have that the essential range of c0

is contained in H . By using the same arguments as in the proof of Proposition 3.1, there

exists an isomorphism Ψ from {K̂ αc0
� A, α̂c0} to IndKH {Ĥ α0 � A, α̂0} such that Ψ (C ⊗

W∗(X)) = C⊗C⊗W∗(X). Hence the map Ψ−1 ◦Φ is an isomorphism from {K̂ αc�A, α̂c}
to {K̂ αc0

�A, α̂c0} which satisfies (Ψ−1 ◦Φ)(C⊗W∗(X)) = C⊗C⊗W∗(X). So there exist

an αc-1-cocycle R and a ∗-isomorphism θ on A which satisfy αc0 = (id ⊗ θ−1) ◦ Rαc ◦ θ and

θ(W∗(X)) = W∗(X). Set α′ := Rαc(= (id ⊗ θ) ◦ αc0 ◦ θ−1). It is easy to check that Aα
′
also

contains W∗(X), and there exists a 1-cocycle c′ : R → K such that α′ is equal to αc′ . By [1,
Proposition 5.10], we have that c′ is cohomologous to c.

Thus our claim has been proven. �

The second application is concerning 1-cocycles on the (smooth) flows of weights.
Let N be a type III factor with the dominant weight ϕ and the flow of weights

(XN,R, FN).
In [11], T. Yamanouchi showed that, if a coaction α of a locally compact group K on N

fixes each element of the centralizerNϕ , then there exists a Borel 1-cocycle c from R×XN to
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K such that α is equal to the extended modular coaction βϕc . We recall that, for the continuous
decomposition N ∼= R θ�Nϕ = ({u(t)}t∈R ∨ Nϕ), βϕc is determined by the following:

βϕc (a) = 1 ⊗ a (a ∈ Nϕ) , βϕc (u(t)) = Qt(1 ⊗ u(t)) (t ∈ R) ,

where Qt ∈ W∗(K) ⊗ L∞(XN) is defined by Qt(ω) := λK(c(−t, ω)) for ω ∈ XN . For
the precise definition of the extended modular coactions, refer to [11, Section 3] (see also
Appendix).

It follows that the range of c is contained in a closed subgroup H if and only if the coac-
tion βϕc comes from a coaction of H . By using [11, Theorem 4.1] and [11, Proposition 3.3]
instead of [1, Theorem 5.8] and [1, Proposition 5.10], we can use the same arguments as in
the proof of Corollary 4.1. Namely, we get the following:

COROLLARY 4.2. Let N be a type III factor with a dominant weight ϕ and c be a
1-cocycle from R ×XN to a locally compact groupK . For any closed subgroup H of K , the
following are equivalent:

(1) The 1-cocycle c is cohomologous to a 1-cocycle c′ such that the range of c′ is con-
tained in H .

(2) There exist a coaction α0 of H on N and an isomorphism Φ from {K̂ β
ϕ
c

� N, β̂
ϕ
c }

to IndKH {Ĥ α0 �N, α̂0} which satisfy Nϕ ⊆ Nα
0

and Φ(C ⊗Nϕ) = C ⊗ C ⊗Nϕ .

Appendix A. A remark on coactions which come from the 1-cocycles on the flow
of weights

Let N be a type III factor with a faithful normal semifinite weight ϕ and the modular

automorphism group {σϕt }t∈R. Set Ñ := R σϕ�N . The smooth flow of weights (XN,R, FN)

of N is given by the restriction of {σ̂ ϕ t }t∈R to Z(Ñ) ∼= L∞(XN, νN). In what follows we

assume that c is in Z1(FN,K), a 1-cocycle from R × XN into a locally compact group K .
Then we have an action of R onK ×XN by the following:

t · (k, ω) := (kc(t, ω), FNt (ω)) (ω ∈ XN, k ∈ K, t ∈ R) .

The action is called the skew product action associated with c and denoted by (K c×XN,R).
The 1-cocycle c is called minimal if the skew product action acts ergodically.

In [6], M. Izumi shows that, if K is compact, then for each minimal 1-cocycle c in

Z1(FN,K), there exists a dual action β of K on a type III factor M such that the fixed-point
algebra Mβ is equal to N , and the flow of weights of M coincides with the skew product
action on K c×XN . It follows that there exists a coaction α of K on N such that the flow of
weights of the fixed-point algebra Nα is given as the skew product action onK c×XN .

On the other hand, in [11], by using a different method, T. Yamanouchi showed that such

a coaction can be constructed for each c ∈ Z1(FN,K)with a locally compact (not necessarily
compact) groupK . The action is called the extended modular coaction and denoted by βϕc .
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In this appendix, we will modify the arguments in [6], and show that Izumi’s arguments
can be extended to the case thatK is not necessarily compact and c is not necessarily minimal.
Moreover, we will show that the coactions obtained by our arguments are cocycle conjugate
to the extended modular coactions.

We denote the skew product action of R on L∞(K c× XN,µ × νN) by {ϑt }t∈R, the
canonical left translation of K on L∞(K c× XN,µ × νN) by {λk}k∈K and the canonical
semifinite operator valued weight from L∞(K c×XN) onto L∞(XN) ∼= L∞(K c×XN)

λ by
T . It is easy to check that the equation T ◦ ϑt = σ̂ ϕ t ◦ T holds for each t ∈ R.

THEOREM A.1 (cf. [6, Lemma 5.8]). Under the above conditions, fix a ∗-isomor-

phism π : Z(Ñ) → L∞(XN). There exists a unique system {M,β} which satisfies the
following:

(1) M is a von Neumann algebra which contains N .
(2) β is a dual action of K on M , and the fixed-point algebraMβ is equal to N .

(3) M̃ := R
σ
ϕ◦Tβ �M is generated by Z(M̃) and Ñ .

(4) M ∩N ′ is equal to the fixed-point algebra of σ̂ ϕ◦Tβ on Z(M̃).
(5) The inclusion of the flows of weights

{Z(M̃) ⊇ Z(Ñ), σ̂ ϕ◦Tβ |Z(M̃), Tβ̃ |Z(M̃),mod(β)}
is conjugate to

{L∞(K c×XN) ⊇ L∞(XN), ϑt , T , λ}
with a ∗-isomorphism ρ : Z(M̃) → L∞(K c× XN) satisfying ρ|Z(Ñ) = π , where

β̃ is the canonical extension of β and mod(β) is the Connes–Takesaki module of β.

PROOF. We first show the uniqueness of {M,β}. Suppose that both {M1, β1} and

{M2, β2} satisfy the desired properties. Then there exists an isomorphism ρ from Z(M̃1)

onto Z(M̃2) such that the equations ρ ◦ ̂
σϕ◦Tβ1 = ̂

σϕ◦Tβ2 ◦ ρ, ρ ◦ mod(β1) = mod(β2) ◦ ρ
and ρ ◦ Tβ̃1

= Tβ̃2
◦ ρ hold on Z(M̃1), and the restriction of ρ to Z(Ñ) is the identity map.

Fix a faithful normal semifinite weight ψ on Ñ . Since M̃i is generated by Z(M̃i) and Ñ , the
subalgebra generated by mψmTβ̃i |Z(M̃i )

is dense in M̃i (i = 1, 2). So ψ ◦ Tβ̃1
(resp. ψ ◦ Tβ̃2

) is

a faithful normal semifinite weight on M̃1 (resp. M̃2). Hence we may and do assume that M̃1

(resp. M̃2) acts on Hψ◦Tβ̃1
(resp. Hψ◦Tβ̃2

). For each a, b ∈ nTβ̃1|
Z(M̃1)

and x, y ∈ nψ , we have

ψ(Tβ̃2
(y∗ρ(b∗)ρ(a)x)) = ψ(y∗Tβ̃2

(ρ(b∗a))x) = ψ(y∗Tβ̃1
(b∗a)x) = ψ(Tβ̃1

(y∗b∗ax)) .

It follows that the map U defined by

U(Λψ◦Tβ̃1
(ax)) = Λψ◦Tβ̃2

(ρ(a)x) (a ∈ nTβ̃1|
Z(M̃1)

, x ∈ nψ)
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is a unitary from Hψ◦Tβ̃1
to Hψ◦Tβ̃2

. A direct computation shows that Ad(U) is an automor-

phism from M̃1 to M̃2 which satisfies the equations Ad(U) ◦ ̂
σϕ◦Tβ1 = ̂

σϕ◦Tβ2 ◦ Ad(U) and
Ad(U) ◦ β̃1 = β̃2 ◦ Ad(U) on M̃1. Hence Ad(U) yields an isomorphism from {M1, β1} to
{M2, β2}. So such a pair {M,β} is unique.

We next show the existence of {M,β}. Suppose that H is the standard Hilbert space

of Ñ . Set A := L∞(K) ⊗ Z(Ñ). We denote by H1 the completion of the algebraic tensor
product nT �

Z(Ñ)
H by a inner product 〈·, ·〉H1 defined by the following:

〈a � ξ, b � η〉H1 := 〈T (b∗a)ξ, η〉H , (a, b ∈ nT , ξ, η ∈ H) .
The von Neumann algebra generated by Ñ and A in B(H1) is denoted by L. By using the
same arguments as in the proof of [6, Lemma 5.8], we have

L =
∫ ⊕

XN

L∞(K)⊗ Ñ(ω)dµN(ω) ,

and L ∩ N ′ = A. Let u(t) be the canonical implementation of σ̂ ϕ t on H. We define a
1-parameter unitary group {U(t)}t∈R on H1 by the following:

U(t)Λ(a � ξ) := Λ(ϑt (a)� u(t)ξ) (ξ ∈ H, a ∈ nT ) .

Then the restriction of Ad(U(t)) to L is an automorphism of L. We denote it by Θt . It is

easy to check that the equation Θt(ax) = ϑt(a)σ̂ ϕt (x) holds for each a ∈ A and x ∈ Ñ . Set
M := LΘ . By the definition, N is contained in M .

We construct the action β of K on M as follows. For each k ∈ K , we define a unitary
V (k) by

V (k)Λ(a � ξ) := Λ(λk(a)� ξ) (a ∈ nT , ξ ∈ H) .
Then {Ad(V (k))}k∈K is a dual action of K on L. We denote it by β ′. By the construction,
β ′ commutes with Θ . So the restriction of β ′ to M = LΘ is an action of K on M . We
denote it by β. Since the equations β ′

k(ax) = λk(a)x and Tβ ′(bx) = T (b)x hold for each

x ∈ Ñ , a ∈ A and b ∈ mT , we have that Lβ
′

is equal to Ñ . Hence we obtain N = (Ñ)Θ =
(Lβ

′
)Θ = (LΘ)β = Mβ . We note that, by the definition of β ′, Tβ ′ satisfies the equation

Tβ ′ ◦Θt = σ̂ ϕ t ◦ Tβ ′ and the map Tβ = Tβ ′ |M is a semifinite operator valued weight fromM

to N .
Since L is generated by A = L∞(K)⊗Z(Ñ) and Ñ , for each faithful normal semifinite

trace τ on Ñ satisfying the equation τ ◦ σ̂ ϕ t = e−t τ , the map τ1 := τ ◦Tβ ′ is a faithful normal
semifinite trace on L which satisfies the equation

τ1 ◦Θt = τ ◦ Tβ ′ ◦Θt = τ ◦ σ̂ ϕ t ◦ Tβ ′ = e−t τ ◦ Tβ ′ = e−t τ1 .

So, by using the same argument as in the proof of [6, Lemma 5.8] again, we conclude that

{L,Θ, β ′} coincides with {M̃, σ̂ ϕ◦Tβ , β̃}. Hence the flow of weights ofM is equal to the skew
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product action (K c×XN,R). Moreover, by using the duality, id⊗β̃ is conjugate to the action

id ⊗ β of K on B(L2(R))⊗M . Since N is properly infinite, we can replace {N ⊆ M,β} by

{B(L2(R))⊗N ⊆ B(L2(R))⊗M, id ⊗ β}. So we may assume that β is dual.

Finally, since M̃∩N ′ is equal to Z(M̃), we haveM∩N ′ = (M̃∩N ′)σ
ϕ̂◦Tβ = Z(M̃)

̂
σ
ϕ◦Tβ

.
Therefore we complete the proof. �

COROLLARY A.2. Under the above setting, there exists a coaction α of K on N such
that the flow of weights of Nα is equal to the skew product action (K c× XN,R). Moreover,
the coaction α is cocycle conjugate to the extended modular coaction βϕc .

PROOF. By Theorem A.1, there exists a coaction α of K on N such that the pair

{M,β} := {K̂ α � N, α̂} satisfies the conditions of the above theorem. Since the flow of
weight of Nα coincides with that of M , α satisfies the desired condition. Moreover, since
such an action β is unique, α and βϕc are cocycle conjugate. So we get our conclusion. �
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