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Abstract. Let f : (R",0) — (RP,0) be aC*> map-germ. We are interested in whether the number modulo
2 of stable singular points of codimensieithat appear near the origin in a generic perturbatiofi &f a topological
invariant. In this paper we concentrate on investigating the problem whe: — 1, where stable singular points
of codimensiom: are only Whitney’s umbrellas, andvg a positive answer to the problem.

1. Introduction

1.1. Main theorem. In this paper we show that the number modulo 2 of Whitney’s
umbrellas that appear in stable perturbations of a ger&ticmap-germf : (R",0) —
(R#*-1 0) is a topological invariant.

A C* map-germf : (R", p) — (R¥'71 ¢) is called Whitney’s umbrella if it is4-
equivalent to the map-germ frotR”, 0) to (R¥*~1, 0) defined by

2
(X1, .., x0) = (X1, ..., X1, Xy X1Xn,y - vy Xp—1Xp) .

Here twoC* map-germsf : (M1, p1) — (N1, q1) andg : (M2, p2) — (N2, g2) are said
to be A-equivalent if there exis€>° diffeomorphism-germ& : (M1, p1) — (M2, p2) and
k: (N1,q1) — (N2,q2) suchthak o f = g o h.

Let f : (R",0) — (RZ~1 0) be a generi@> map-germ and lef : U — R%1
be aC* representive off, U being a small open neighborhood of the origin (Rfr. By
Whitney’s theorem([29], [31])/ can be approximated by a stable mappfhgU — R%*~1
whose singularities are only Whigg’'s umbrellas. We call sucli : U — R%~1 a stable
perturbation off : (R", 0) — (R¥*~1,0).

We are interested in the number of Whitney’s umbrellag of

Let &, be the ring ofC* function-germs of(R",0) into R. Let f : (R",0) —
(R#'-1 0) be aC™ map-germ. LetZ(X1(f)) be the ideal inf, generated by x n mi-
nor determinants of the jacobian matrix ff
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MAIN THEOREM. Let f : (R",0) — (R?'~1 0) be a generiocC™ map-germ such
thatdimg &,/Z(Z1(f)) < +o00. The number of Whitney’s umbrellas that appear in a stable
perturbation off is equal todimg &,/Z(X1(f)) (modulo 2 and it is a topological invariant
of f.

Here we call a map-germ “generic map-germ” in a strong sense. See Definition 2.4 in §2
for the precise definition.

REMARK 1.1. The statement that the number of Whitney’s umbrellas that appear in
the stable perturbation is equal to ¢, /Z(X1(f)) (mod 2 is a consequence of [4], [5],
[19], [21], [22]. Our assertion in the above theorem is that it is a topological invarigfit of

1.2. History of the problem. The problem of counting isolated singular points in
stable perturbations of a degenerated map-germ is old and new.

The case of complex holomorphic functions is rather classicalfLtC”, 0) — (C, 0)
be a holomorphic function-germ which defines an isolated singularity at 0. It is well known
that Milnor numben (/) of f is the number of critical points of a Morse function ngaand
it is a topological invariant of (J. W. Milnor [17]).

In the real case also, it is known that folC&° map-germyf : (R",0) — (R, 0) with
n(f) < 4o0, u(f) modulo 2 is a topological invariant gf (C. T. C. Wall [27]).

The problem in the case of map-germs was investigated first by Fukuda and Ishikawa
[3]. Let f : (R2,0) — (RZ2,0) be a generic> map-germ, let/ be a sufficiently small
neighborhood of the origin and I¢t: U(c R?) — R? be a representive mapping 6f Then
we may suppose that has no degenerate singular points except for the origin. By Whitney’s
theorem [32],f can be approximated by@™ stable mapping : U — R2. The degenerate
singularity of / at the origin ofR? bifurcates into stable singular points ¢f Again by
Whitney’s theorem [32], the singular points pfare.A-equivalent to one of the following two
map-germs frontR2, 0) to (R2, 0):

1) (x,y) > (x,y?, fold
(2 (x,y) > (x,y3+xy), cusp.

Suppose that : (R2,0) — (RZ, 0) is generic and/ is a sufficiently small neighborhood
of the origin so thayf : U — R? has only fold singular points off the origin. The cusp singular
points of f are isolated. Lef; and f> denote the component function germsfof

f=(Af): (R%0) - (R%0).
Let Jf = J(f1, f2) denote the Jacobian determinantfof

Jf(x) = del( ofi (x)) .
axj 1<i,j<2




WHITNEY’'S UMBRELLAS IN STABLE PERTURBATIONS 477

g aIf
J]_f=](]f,f2)=det( dax1 dxo ) ,

Set

f2 df2

dx1 dxp

B . X1 X2
Jof = J(f1, Jf) = det asf g |

9x1 Ox2

Throughout this paper we use the following notations.
(a,b,...); theideal generatedhy, b,... .

THEOREM 1.2 (Fukuda and Ishikawa, [3]).Let f : (R2, 0) — (RZ, 0) be aC*> map-
germ such thatdimg &/(Jf, J1f, Jof) < +oo. Then the following holds for any stable
perturbationf : U(c R%) — R?of f.

(1) The number of cusps of that appear near the origin is less than or equal to
dimr &2/(J f, J1f. J2.f).

(2) The number of cusps off that appear near the origin is equal to
dimg &2/(J f, J1f, J2 f) modulo 2

(3) The numbemodulo 20f cusps off is a topological invariant off .

In the complex case, Gaffney and Mond [8] showed that Theorem 1.2 holds more pre-
cisely. Letf : (C2,0) — (C2, 0) be a holomorphic map-germ, l&t be a sufficiently small
neighborhood of the origin i€ and letf : U(c C?) — C? be a representive mapping pf
Then Whitney’s theorem [32] also hold in the complex case, Ardn be approximated by a
stable holomorphic mapping : U — C2 that has only fold and cusp type singular points.

THEOREM 1.3 (Gaffney and Mond, [8]). Let f : (C?,0) — (C?,0) be an analytic
map-germ such thatimec O2/(J f, J1f, J2f) < +o0o. Then the following holds for any sta-
ble perturbationf : U(c C?) — C2 of f.

(1) The number of cusps off that appear near the origin is equal to
dimec O2/(Jf, J1f, J2f).

(2) The number of cusps ¢fthat appear near the origin is a topological invariant of

I

REMARK 1.4. The conditions that digé2/(Jf, J1f, Jof) < +oo and that
dimc O2/{J f, J1f. J2f) < +oo are generic conditions in a strong sense. That is, the set
of map-germs which do not fulfill this condition is eb-codimension in the set of all map
germs.

Apart from the problem of topological invariance, the study on the number of O-
dimensional singulapoints in generic perturbations af degenerate map-germ is recently
widely developed.
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For ak-tuple of integerd = (i1, i, ...,ix) With i1 > ip > ... > iy > 0, there is a
submanifoldx! of J/(C", CP)(I > k) called Thom-Boadman singularity set with symbol
1. We will not give the definition o2/, see [1] and [20] for the definition. If codi®’ in
JL(C", CP) = n, then for a generic mapping : C" — C” singular points off with type
> appear isolatedly.

D. Mond [19] investigated the number af! type singular points, that is, Whitney’s
umbrellas, for a holomorphic map-geri@?, 0) — (C3, 0).

A generalization of Theorems 1.2, 1.3 and [19] on the number of codifthom-
Boardman singular points was first done by J. Nufio Ballesteros and M. Saia [21], then was
followed by T. Fukui, J. Nufio Ballesteros and M. Saia [4], J. Nufio Ballesteros and M. Saia
[22], T. Fukui, J. Nufio Ballesteros and M. Saia [5], T. Fukui and J. Weyman [6].

For a holomorphic map-gerrfi : (C",0) — (C?, 0), we suppose that' f(0) € >lin
Jlcn, cp). LetZ(x!) denote the defining ideal of the set-geEin (J/(C", CP), j! £ (0)):

I(El) = {Ol S Ojl(C”,CP),jlf(O)I OIIF = 0} C O]’(C",C”),j’f(O)
and we define an idedl( X’ (f)) in O, by
= =G HraEh).

For example, the Thom-Boardman singularity of cusp singul&f®; 0) — (C2, 0) is
»11.0 and we have

21,1,0 — El,l .

And for a holomorphic map-gerryi : (C2,0) — (C2, 0), the idealZ(X11(f)) is the ideal
(Jf, J1f, Jof) appeared in Theorems 1.2 and 1.3.

The Thom-Boardman singularity of Whitney’s umbre{@, 0) — (C2'~1,0) is ¥1.0
and we have

rl0- 31,
And for a holomorphic map-gerri : (C"*, 0) — (C?, 0) with n < p and for
't = {j'g(g) € J'(C", CP)| corank g(q) = i1}

Z(X1(f)) is the ideal generated byt — i1 + 1) x (n — i1 + 1) minor determinants of the
jacobian matrix off and for a map-gernf : (C",0) — (C?*~1, 0), Z(Z1(f)) is the ideal
generated by: x n minor determinants of the jacobian matrix 6f which appeared in our
main theorem.

THEOREM 1.5 (T. Fukui, J. Nufio Ballesteros and M. Saia, [5], [22]Let f : (C", 0)
— (CP,0) be a holomorphic map-germ such thditnc ©,,/Z(X!(f)) < +o0. Then the
following properties hold for any generic perturbatigh: U(c C") — CP of f.

(1) The number of singular points of typE! of f is equal to or less than
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dime O,/Z(Z'(f)).

(2) The number of singular points of tyg@' of f is equal todimc O, /Z(Z'(f)) if
and only if the Zariski closure af’ is Cohen-Macaulay at a point £ (0) € X.

(3) When the length is equal figthe Zariski closure o/ is always Cohen-Macaulay
at j1£(0).

REMARK 1.6. T. Fukui and J. Weyman [6, 7] investigate when the Zariski closure of
> is Cohen-Macaulay and proved that the diefy ideals of the Zariski closure of some
>iJ | for exampleX21((n, p) = (3,2)), £31((n, p) = (4, 2)), are Cohen-Macaulay.

Inthe real case, for@>® map-germyf : (R”, 0) — (R”, 0), the defining ideal (X! (f))
can be defined in the same way as in the plaxcase. From Theorem 1.5, we have

THEOREM 1.7. Let X! have codimension. Let f : (R",0) — (R”,0) be aCc®
map-germ such thadimg &,/Z(X'(f)) < +oo. LetU be an open neighborhood of the
origin 0in R" and let f : U(c R") — RP” be a generic perturbation of. Then the number
of singular points of type! that appear inf is equal todimg &, /Z(X! (f)) modulo 2

As seen in the above, the numbers of singular points that appear in generic perturbations
of map-germs are well investigated. However, strangely enough, the topological invariance
of these numbers is not considered after [3], [8]. Thus, the following natural problem arises.

PROBLEM. LetX! be a Thom-Boardman singularity with codimension

(1) s the number of singular points of tyge! that appear in a generic perturbation
f : U(c C") — CP of a holomorphic map-gernf : (C",0) — (C?,0) a topological
invariant of f ?

(2) Is the numbemodulo 2 of singular points of typeZ! that appear in a generic
perturbation f : U(C R") — R” of aC™ map-germf : (R",0) — (R”, 0) a topological
invariant of /' ?

In this paper, we answer this problem for Whitney’s umbrellas in the real case.

2. A generic property of map-germs

We recall Fukuda's theorem [2] on generic properties (5 map-germs. Let
C*°(R",R?;0,0) denote the set of al> map-germ from(R", 0) to (R”?,0). Letn, :
C*(R",R?;0,0) — J"(R",R?) be the canonical projection defined by(f) = j" f(0).
A subsetX of C*(R", R”;0,0) is said to beco-codimensional inC*®(R", R?; 0, 0), if
for any positive integek, there exist a positive integerand a semi-algebraic subsEy;
in J"(R", R?) with codimensior> & such thaty ¢ 7, 1(Zy).

Since ding £,/Z(Z1(f)) < +ooif and only if Z(Z1(f)) D (x1, ..., x,)* for somek,
we have
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LEMMA 2.1. The set
T* ={f e C®R",R";0,0)| dimg & /Z(Z1(f)) = +00)
is anoco-codimensional subset 6°°(R", R”; 0, 0).

THEOREM 2.2 (Fukuda [2], Theorem 1).Let X be a semi-algebraic submanifold of
the multi-jet space, J¥(R", R?). Then there exists ano-codimensional subsef,, of
C*°(R",R?;0,0) such that anyf € C*(R",R?;0,0) — Y, has aC*™ representative
f : U — RP? that satisfies the following two properties

(1) foranym-tupleS = {x1, ..., x;,} of distinct points of/ — {0}, the multi jet exten-
sion,, j*f : U™ — ,, J*(R", RP) is transversal taX at (x1, ..., xn),

(2) if codimX > mn, then

mi F(U —{0h™)NX =9,
As an easy Corollary of Theorem 2.2, we have

COROLLARY 2.3. There exists anoo-codimensional subsety,, of C*(R”",
R2-1,0,0) such that anyf € C®(R", R?1,0,0) — ¥, has aC*® representivef :
U — R?~1that satisfies the following properties.

(1) f has no singular points except for the origin

(2) if x1,x2,...,x, are distinct points inU — {0} such thatf(x1) = f(x2) =
... = f(xp), then the images of the germs gpfat x1, x2, ..., x,, meet transversally at
y=fx)=fx2) == flxm),

(3) asaconsequence ¢f) and(2), f : U — {0} - RZ1is A-stable.

DEFINITION 2.4. A map-germf : (R*,0) — (R?~1 0) is said to begenericif
dimr &,/Z(Z1(f)) < +o0 and f has a representativé : U — R%~1 that satisfies con-

ditions (1), (2) and (3) in Corollary 2.3. Such a representafiveU — R?~1is called a
proper representivef f.

LEMMA 2.5. Letf : (R",0) - (R¥~1 0) be a generiaC>® map-germ and ley :

U — R2~1 be a proper representative ¢f, U being a sufficiently small neighborhood of
the origin0 € R". LetU’ be an open neighborhood 0fsuch that

0eU' cU cU.
Let f : U — R%~1 be a stable perturbation of sufficiently close tgf. Then the restricted
mappingf|U_ﬁ/ and f'U_U’ are A-equivalent.
PROOF. By Corollary 2.3 (3), we have that|y—_jg : U — {0} — R 1is A-stable.

Thus the restricted mapping|,, ;- is A-stable. Sincef : U — R?'~! approximates/ :

U — RZ~1sufficiently closely with respect to the Whitney topology@® (U, R¥*~1; 0, 0),
f'U_U’ is also sufficiently close tgﬂU_ﬁ/ with respect to the Whitney topology 6f*° (U —
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U',R2-1. 0,0). Since f|,,_ is A-stable,f|,  and f|,,  areA-equivalent from the

definition of stability. O
REMARK 2.1. Evenwherf : U — R%~lapproximates : U — R% 1 sufficiently

closely with respect to the Whitney topology©f° (U, RZ'~1; 0, 0), it is not necessarily that

flu—io) : U — {0} — R?'~1 approximatesf|y (o : U — {0} — R?'~1 sufficiently closely

with respect to the Whitney topology 6P°(U — {0}, RZ"~1: 0, 0). Therefore even i1 -0}

is A-stable, we can not claim tha_uU_{o} andf|U_{0} areA-equivalent.

3. Double points of a mapping

The key of the proof of our main theorem is an observation of double points of a mapping.

DEFINITION 3.1. Adouble pointof a mappingf : X — Y is a pointx for which
there exists a different pointfrom x such thatf (x) = f(y). We denote byD( f) the set of
double points off.

EXAMPLE 3.2. The double point set of Whitney’s umbreffa R” — R%*~1,
f(-xlv A xn) = (-xls LR xnfl: -x;fv xlxns LR xnflxn) k]
is given by
D(f) ={(,...,0,x,)|x, # 0}.

The singular point s€t0, . .., 0)} of Whitney’s umbrellaf is coincident withD (/) — D(f),
whereD(f) is the topological closure adb( f). See Figure 1.

From Corollary 2.3, we have

LEmMMA 3.3. For a proper representativg : U(c R") — R?~1 of a generic map-
germf : (R*,0) — (RZ~1 0), D(f) is a smooth curve and consists of a finite number of
connected components.

DEFINITION 3.4. Letf : (R",0) — (R¥"~1 0) be a generi€> map-germ and let
f : U — R¥"~1 pe a proper representative 6f Then,D(f) consists of an even number of

Singular point

f Z

D)

FIGURE 1. Whitney’s umbrella
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connected smooth curves which we dadlif branches oD (f). For every half brancly of

D(f), there exists a distinct half brangt of D(f) such that for every point of y, there
exists a pointy of y* with f(x) = f(y), which we call thepartner branch ofy. We call the

union of a half branch, its partner branch and the origit, y* U {0}, abranch of D( f).

LEMMA 3.5. Letf, g : (R",00 — (R%1 0) be genericC* map-germs and let
f:U — R 1andj: Vv — R?!pe their proper representive mappings respectively. If
f andg are topological equivalenthat is if there exist homeomorphisms : U — V and
hy : R#~1  RZ-1suychthatioo f = gohy,thenD(f) and D(g) are homeomorphic and
the number of branches @i( /) and the number of branches Df(j) coincide.

4. Proof of the main theorem
From Lemma 3.5, to prove the main theorem, it suffices to prove.

THEOREM 4.1. Let f : (R",0) — (R?"~1,0) be a generiaC® map-germ and let
f : U — R%~1 be a proper representive mapping pf U being a sufficiently small neigh-
borhood of the origir® € R". Then the number of Whitney’s umbrella of a stable perturbation

f:U — R%1of fis equal to the number of branchesmft /) modulo 2

PROOF. The closureD( f) of the set of double point of : U — R%*~1 s the union of
D(f) and the singular point set gf:

D(f) = D(f) U {the singularities off} = D(f) U {Whitney’s umbrella off} .

D(f) consists of connected smooth curves any two of which have no common points. On

the other hand branches pf( f) are not closed curves and they have the origin as a unique
common point. See Figure 2.
Let U’ be an open neighborhood of 0 such that

OeU' cU cU

and thatf|U7ﬁ and f|U7W are A-equivalent. The existence of such a neighborhtidds

guaranteed by Lemma 2.5. Now consider connected componei$/0f There may be
connected components Bf( /) that are closed curves. Takiig wide if necessary, we may

suppose that all the closed curve componeni3(f) are contained i/’ and that the number

of connected components Bf( /) not contained irU’ is equal to the number of branches of
D(f). See Figure 3.
Let C be a connected componentth). There are four cases to consider.
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Case (1); wher€ N (U — U') = ¢ and there exists another connected compogént
of D(f) such that for every point € C there exists a point’ € C’ with f(x) = f(x). See
Figure 4.

In this caseC andC’ contain no singular points of, hence they contain no Whitney's
umbrellas.

Case (2); wher€ N (U — U’) # ¢ and there exists another connected compogént
of D(f) such that for every point of in C there exists a point’ € C’ with f(x) = f(x').
See Figure 5.

In this caseC andC’ contain no singular points of, hence they contain no Whitney’s
umbrellas.

7

o=

-
D(f)

FIGURE 4.
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Case (3); wher&€ N (U — U’) # ¢ and there exist distinct two pointsand y in
C N (U —U’) such thatf (x) = f(y). See Figure 6.

In this case, there is a unique Whitney’s umbrella in the middlearidy in C, as seen
as follows. Sincef meets transversally atandy, there exist neighborhood (x) of x and
V(y) of y such thatf|y( and f|y(,) meet transversally along N V(x) andC N V().
Extending such neighborhood&(x) towardy andV (y) towardx respectively as widely as
possible, we have a unique Whitney’s umbrella in the middle afidy in C.

Case (4); wher€ N (U — U') = ¢ and there exist two distinct pointg € C and
yo € C such thatf(xp) = f(yo). See Figure 7.

In this case, sincé€ is a smooth connected curve containedirand henc€ is a closed
connected curve; — {xg, yo} can be devided into two connected compon€htsCs:

C — {xo0, yo} = C1U C2.
For any pointx; € C; sufficiently close taxg, there exists a point; € C sufficiently
close toyp such thatf(y1) = f(x1). The pointy; corresponding ta; belongs to eithe€;

or Ca.
(4-1); the case wherg € Cy.

FIGURE 5.

f
—

U Fx)=F(y)

FIGURE 6.
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In this case, with the same reason as in the Case (3), there exists a unique Whitney’s
umbrella inCy. In this case, also for any poinp € Cy sufficiently close targ, there exists
a pointyz € Cz such thatf(y2) = f(x2). Then, again with the same reason, there exists a
unique Whitney’s umbrella id2. Thus, we have exactly two Whitney’s umbrellas@nSee
Figure 8.

(4-2); the case wherg € C».

In this case, for every point € C1, there exists a point € C such thatf(y) = f(x)
and there is no Whitney’s umbrellas 6h See Figure 9.

Now, the connected componenisof D(f) of Case (1), (2) do not contribute to the

number of Whitney’s umbrellas of. Since connected components Bf f) of Case (4)
contain either two Whitney’s umbrellas or nozech, they also do not contribute to the number

modulo 2 of Whitney’s umbrellas of. Thus we have

FIGURE 7.

Whitney’s umbrella

~—— C
Whitney’s umbrella

FIGURE 8.
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Y.
Xo Yo
Xa
C

FIGURE 9.

the number of Whitney’s umbrella

= the number of the connected component®¢f) of Case (3)
(modulo 2).

On the other hand connected component®¢f) of Cases (1) and (4) are contained

in U’ and connected componentsBf ) of Cases (2) and (3) are not containedjih The

number of connected components Bt f) of Case (2) is even, since for each connected
component of Case (2), the corresponding componéhts also of Case (2). Thus

the number of Whitney’s umbrella
= the number of connected componentsDc(ff) of Case(3) (modulo 2)
= the number of connected componentsDc(ff) of Cases (2) and3) (modulo 2)

= the number of connected componentsmff) not contained i’

= the number of branches @i( f) .

This completes the proof of Theorem 4.1 and hence of the main theorem. |

5. Someexamples

In this section, we observd-simple map-germgR?, 0) — (RS, 0) classified by D.
Mond [18], and see that Theorem 4.1 holds for them.

THEOREM 5.1 (D. Mond [18]). Each of the germs in the following list i4-simple
and everyA-simple germ of a map from2manifold to a3-manifold is equivalent to one of
the germs on the list.
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Germ A-codimension Name
S, y)=(x,y) 0 Immersion
f&y) = (x, % xy) 2 Cross-cafiSo)
fay) = y2 3 £xktty) k=1 k+2 St
fey) =y Py £y k> 2 k+2 B
F,y) = (x, ¥4 xy3£xky), k>3 k+2 ct
F,y) = (x, y%,x3y + %) 6 Fy
@ y) =@ xy+y* 1 y3 k=2 k+2 Hy

EXAMPLE 5.2. We consider the normal forif : £ : (R%,0) — (R®, 0) given by
fEy) = (. y% 3£y k> 1.

SinceI(El(fki)) is the ideal generated by»2 2 minors of the jacobian matrix

1 0
0 2y
+(k + Dxky 3y2+xkt1

N = (2

of f, we have

and we have
dimg &2/Z(ZHfE) =k + 1.
On the other hand,

DD = (e, I +y2 =0,y #£0},

D(f7) =1{(x, I —y2=0,y#0}.

Thus we see that

, fk+1=1 mod2

the number of branches oSI(f_k*) = { fk+1=0 mod2

1
0

the number of branches dii(f_k‘) = { ’ fk+1=1 mod2

1
2. fk+1=0 mod?2

Hence we have

the number of branches dif(f—ki) =dimgr 52/I(Zl(fki)) (mod 2

as Theorem 4.1 asserts.
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For any integef with 0 < I < k + 1 and with! = k + 1 (mod 2, we have a stable
perturbation off

f&UCRY) >R
such that the number of Whitney’s umbrellas f&f is exactlyl, constructed as follows. Let

- . k+1-—1
1, ..., &g be sufficiently small distinct real numbers. Set= +T and leté, ..., 6

be small positive numbers. Then,
ey =@ y2 ¥ £y —en) - (x — )P+ 81) -+ (x + 8))

is a stable perturbation gf. Whitney’s umbrellas of,fl are the pointge1, 0), ..., (g, 0).

Thus the number of Whitney’s umbrellas ﬁfl is exactlyl. See Figure 10, 11, 12, 13, 14,
15.

EXAMPLE 5.3. Now we consider the normal foré" : f* : (R?,0) — (R3,0)
given by

fEy) = y5 xPy £ y#h k=2
SinceZ(Z1(£)) = (y, x?), we have
dimg &/Z(ZH(f) =2.
On the other hand,
D(fiH) =1, NI x>+ y* =0,y #0} =0,
D(f7) ={x, »Ix*—y* =0,y #0}.

Thus we see that

the number of branches dﬁ(f_,j) =0

FIGURE 10. ST : fiF(x, y) = (x. y2, y3 +x2y), dimg &/Z(Z1(f) = 2.
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FIGURE 12. fih(x,3) = (6,233 + y(x — e1)(x — £2)), D(f1) = {(x,)) €
R2|y2+ (x —e))(x —e2) =0,y #0}.

FIGURE 13. St : fot(x,y) = (x, 2 y3 + x3y), dimg &/Z(Z1 (o)) = 3.



490 MARIKO OHSUMI

FIGURE 14. f51(x,y) = (x.y% y2 + y(x — e)(x? + 1)) D(fy)) = {(x.y) €
R2|y2 + (x — e(x2+381) = 0,y # O}

& &

FIGURE 15. fy3(x,y) = (x,¥2, y3+y(x—e1) (x—s2) (x—£3)), D(fa) = {(x, ) €
R?| )2+ (x —e)(x — £2)(x —£3) = 0.y # 0.

the number of branches dif(f—k‘) =2.

Hence we have

the number of branches dif(f_ki) = dimgr EZ/I(El(fki)) (mod 2

as Theorem 4.1 asserts.
For any integef with 0 < < 2 and with/ = 2 (mod 2, (thatis,/ is 0 or 2), we have a
stable perturbation of

& UCR) >R

such that the number of Whitney’s umbrellasfﬁffil is exactlyl/, constructed as follows. Let
&1, &2 be sufficiently small distinct real numbers. Lgtbe small positive number. Then,

feote, y) = (x, v, £y 4y (6% + 61)

fiate, y) = (. y2 £y 4 y(x — e1)(x — £2))
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are stable perturbations g¢f. fkio has no Whitney’s umbrellas and Whitney’s umbrellas of

f,fz are the pointge1, 0), (e2, 0). Thus the number of Whitney's umbrellas ﬁfo andf,f2
is exactly 0 and 2 respectively. See Figure 16, 17, 18.

[/

FIGURE 17. 5 o(x.y) = (x.y%. =y° + y(® +81), D(f ) = ((x.3) € R?[y* — (? + 1) = 0).

In this way, we have the following table and we see that for Mond’s normal forms

dimg EZ/I(El(fki)) = the number of branches dii(f—ki) (mod 2 as Theorem 4.1 asserts.
dimr &2/Z(Z1(f)) number of branches db( f)

1 fk+1=1 mod?2
+ 9
Sk kil {0, ifk+1=0 mod2
_ 1, fk+1=1 mod?2
Sk kel {2, ifk+1=0 mod2
B 2 0,
B, 2 2,

1 fk=1 mod2
+ )
€ k {2, ifk=0 mod?2
_ 3, fk=1 mod2
Ck k {2, ifk=0 mod2
Fy 3 1,
Hj 2 0.
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FIGURE 18. fy,(x,») = (x,y%, =% + y(x — e1)(x — 62)), D(f ) = {(x,) €
R2|y% — (x —ep)(x —e2) = 0.y #0}.
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