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Abstract. We prove that the monomial curve (117, 119, 125, ;27) is set-theoretic complete intersection.

1. [Introduction

It has been questioned whether every curve in affine space is set-theoretic complete in-
tersection or not. We say that the curve in affine N-space is set-theoretic complete intersec-
tion, if it is defined by N — 1 polynomials, that is, its defining ideal is generated by N — 1
polynomials up to radical. In general, Cowsik and Nori proved that it is true, if the charac-
teristic of the base field is positive ([3]). If the characteristic is zero, the question is open
now. Even the monomial curve case is open in general. A monomial curve is defined as the
curve {(t"t,1"2, ..., t"N) : t € k} where ny, no, ..., ny are natural numbers whose great-
est common divisor is one. There are alot of partial results for this question for monomial
curves. See[l, 2, 4,5, 8,9, 10, 12]. In most of them, it is affirmatively proved by finding
N — 2 binomials (a binomia is the polynomial of the form a monomia minus a monomial)
and one polynomial so that the defining ideal I of amonomial curveis generated by them up
to radical, or finding set-theoretic complete intersection subideal J of 7 and a polynomial f
satisfying I = /7 + (f). Infact, I isgenerated by binomialsanditisprovedin[11] that I is
acomplete intersection if it is generated by N — 1 binomials up to radical. Hence, in general
case, to prove set-theoretic complete intersection for monomial curves, we have to find more
than one polynomials which is not binomials. The case when we only needs one such poly-
nomial isstudiedin [6]. And it also proved that the monomial curve C = (¢17, 119, 1?5, 1?7y is
never defined by two binomials and one polynomial up to radical. In this paper, we prove

THEOREM 1. The monomial curve (+17, 119,125 127) is set-theoretic complete inter-
section.

In fact, we find one binomial and two polynomials which is not binomials so that C is
defined by them, by new and unique method.
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2. Themonomial curve (¢17, £19, 125 127)

Let £k be a field. In this section, we prove that the monomial curve C =
(Y7, 119,125 127y . t € k} in affine 4-space i's set-theoretic complete intersection.

Let V = Ker(17, 19, 25, 27) the submodule in Z# (note that we regard (17, 19, 25, 27)
asthemap fromZ4to Z). Foreachv € V, put F(v) = X* —X"" in A = k[X1, X2, X3, X4]
where vt = 3% | max{o; (v), O)e;, v~ = Y7, max{—o; (v), O}e;, and o; denotes the i-th
entry of v for each i. Then the defining ideal I of C is generated by al F(v) wherev € V
(cf. [8]). In general, for given submodule W in ZV, the ideal in a polynomial ring generated
by al F(v) forv e W iscaled alattice ideal.

The defining ideal 1 of C is weighted homogeneous; i.e. if we put deg X; = 17,
deg X, = 19, deg X3 = 25 and deg X4 = 27, then each F(v) is homogeneous, thus I is
homogeneous. Throughout this paper, the degree means this weighted degree.

-1 -3 6
4 0
Put v1 = 1 , V2 = 1 and vz = _3 . ThenV = Zvy + Zv + Zvs (recall
-1 0 -1
V = Ker(17, 19, 25, 27)). It is certified from the following cal culation of the determinant;
1 4 0
1 -1 -3|=17.

-1 0 -1

Further, I is minimally generated by
F(v1), F(v2), F(v2 — v1), F(v2 — 2v1), F(v2 — 3v1)
F(v3), F(vg+v1), F(vg + 201), F(v3+ 3v0). )
Thisfollows from the following Gastinger’s theorem,;

THEOREM 2 ([7]). Let A =k[X31,..., Xn]beapolynomial ring, I C A thedefining
ideal of a monomial curve defined by natural numbers n1, ..., ny whose greatest common
divisor is1. Andlet J C I beasubideal. ThenJ = I ifand onlyif dim; A/J + (X;) = n;
for somei. (Note that the above conditions are also equivalenttodim; A/J + (X;) = n; for
anyi.)

Indeed, let J betheideal generated by the all binomialsin (x). Since
J 4+ (X1) = (X1.X2X3, X3, X3Xa, X3X5. X3 — XoX3. X3Xa, X5X5. X3X3. X2) .
A/J + (X1) isthe vector space whose basis consists of the images of monomials
1. X2, X5. X3, X3. X5, X3. Xa. X2X4, X5X4, X3X4. X5Xa.

X3, X2X2, X3X3, X3, X2X3,
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henceitsdimension is17. By Theorem 2, we have J = I. Further, we seethat it isaminimal
generating system again by Theorem 2 (if one binomial in J were removed, the dimension of

A/J + (X1) increases).
Now we start to prove that 7 is set-theoretic complete intersection. For each n, we define

the polynomial

n (n '
fa(Zos ..., Zy) = ;(—1) (i>z, .

Put

Moo = X37 Mo = X21x3X, My = X1Px§x?2
Mo = X18X3X5Xa Min = XPPX3X3X3 Moy = X$x3x8X3
Moz = X3x8x3x2 M= X3XSXIx3  Mxn = X3xiX]

Moz = X¥?X5x3 Mz = XSx3x1° My =x¥

G; = f3(Mjo, M;1, M2, M;3) fori =0,1,2and G = f2(Go, G1, G2). Note that the degree
of M;; is459 for each i, j, thusG; € I foreachi and G € 1.

Put w = 50e2 € Z% Then X¥ = X3° and Xxw+6ui—14v2-6us — ¥38 And put 4; =
Y o(=1(®)fori=0,...,20and B, = Y"i_o(—1)(**) for’ = 0, ..., 14. We define the
polynomial H asfollows;

12
H=X"+ Z(Ai _ Bl_il)waivz +(—A1+ Bl)wa3v17v27v3
i=1
11 16
+ Z(_Al_ + Bl_)waivzfv:g + Z(_Ai + Al_+l)Xw712v27(ifll)v3
i=2 i=12
+ (A7 + B]_2)Xw712v276v3 + (A1g — Blz)Xw+3v1713v275v3

+ (—Agg + Byg) X W31 13v2-6us 4 x 38

Clearly, each term in H is indeed a monomial in A and has the same degree 950. Note
Bo = Ap=1and B13 = A19 = —1. Substituting 1 for all X; € H, it becomesO,thusH < I.

Now we prove I = /(F(v1), G, H). Let p be a prime ideal containing the ideal
(F(v1), G, H). If p contains a monomial, then it contains all monomials by the choice of
F(v1), G and H, henceitisamaximal ideal. Assume that p does not contain any monomial.
Weclaim I = p. If it were proved, the assertion follows from this. To prove the claim, it is

enough to proveit in the Laurent ring k[ X3, X371, X34, X771,
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Consider M,-.,'Ml.‘(l.lﬂ) for each i, j. Then each of them is equa to one of

X9x54x32x 71 X8x5 X x4, x3x2x4x, " or x5x5x, 0. And
XIx54x52x, = XX, Xax Y = X3x2x5x, T = x53x]x
mod (F(v1)). Thuswe have
Go= X?"f3(1, X1 °X3X5X 4, (X7 X3X3X4)?, (X1 °X3X5X4)%)
= X3 (1— X{°X3X5X4)°
G1= X2 X3Xa(1— X7°X3X2X0)3 mod (F(vy))
Go = XPX5X2(1 - X7°X3x3X4)® mod (F(vy)).
Hence
G = f(XF, X3 X3X4, XPX5XDH (1 - X7°X3X5X4)3
= X271 - X7 °x3X0)%(1 — X7 X3x2X4)®
= X2/ (1— x7%)2(1 — x*27%)% mod (F(v1)).
Since p contains F(v1) and G, it aso contains F(—wv3) or F(v2 — v3). Thus we have to

consider two cases.
(Casel) Assumethat p contains F(—v3). Then

12
H=X"+) (A = Bi_)X" ™" + (~A1+ B)X"™"
i=1

11 16
+ Y (—A+ BOXYT2 4+ Y (= A+ Ay XV T2
i=2 i=12

+ (—A17 4 Bi) XV 7122 4 (A5 — Bp)x W13

+ (_A18 + Bl3)XLU7l3U2 + wal4l}2

13

= X"+ > (B — Biip) XV 4 x v
i=1
13 /14 _

= X" + Z(—l)’( , >Xw_’”2 4 xw—14v
i=1 !

= X"1 - X"")¥ mod (F(v1), F(v3)).

Hence p contains F (v2) and I, thusp = 1.
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(Case2) Assumethat p contains F(v2 — v3). Then

12
H=X"+) (A= Bi)X" "2 + (A1 + B)X" 2
i=1
11 16
+ Z(_Al_ + Bi)wa(H»l)vg + Z(_Al_ + A,’+1)Xw7(i+1)v2
i=2 i=12

+ (—A17 + B12) XV 7182 1 (Agg — Bpp)x W18

+ (_A18+ Bl3)Xw—19v2 + Xw—20v2

19
=X"+ Z(Ai — A,'_]_)Xw_iv2 + xW—20v2
i=1

19 20
= X" + Z(_l)i< )Xwivz + Xw720v2
i=1

i

=X"1 - X% mod (F(v1), F(vz — v3)).

Hence p contains F(v2) and I, thusp = I. In any case, we havep = I and conclude
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JFw), G H) =1.
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