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Abstract: Under the parity conjecture, an infinite family of elliptic curves of rank 2 with a

torsion subgroup of order 2 or 3 is constructed.
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1. Introduction. There are numerous re-

sults on the construction of an infinite family of

elliptic curves of rank at least r and given torsion

subgroups. For example, Dujella and Peral [DP15]

proved that there are infinitely many elliptic curves

E=Q such that

rankZðEðQÞÞ � 3; EðQÞtor ¼ Z=2Z� Z=6Z;

rankZðEðQÞÞ � 3; EðQÞtor ¼ Z=8Z:

�

For other torsion groups, analogous results are

listed in [Duj].

However, less is known regarding the construc-

tion of an infinite family of elliptic curves over the

rational numbers whose rank is exactly r. The only

known cases are r ¼ 0 and 1. We recall the parity

conjecture for elliptic curves over the rationals: For

any elliptic curve E=Q,

ords¼1Lðs; EÞ � rankZðEðQÞÞ (mod 2Þ:

Byeon and the author [BJ16] constructed an

infinite family of elliptic curves over the rationals

whose Mordell–Weil group is exactly Z� Z. In

this study, we will prove the analogous results

for other torsion subgroups, namely, Z=2Z and

Z=3Z.

Theorem 1.1. Under the parity conjecture,

there are infinitely many elliptic curves E such that

EðQÞ ¼� Z� Z� T for T ¼ Z=2Z, Z=3Z.

For an integer m, we denote by Em the elliptic

curve defined by y2 ¼ x3 �mx, and by Am the

elliptic curve defined by y2 ¼ x3 þm2. Let p and q

represent prime numbers. We will show that there

are infinitely many elliptic curves of the form Epq

and Apq, such that each has root number +1 and

a nontrivial rational point. In other words, we

show that there are infinitely many pairs of prime

numbers ðp; qÞ such that

Z� Z=2Z � EpqðQÞ; wEpq ¼ þ1;

Z� Z=3Z � ApqðQÞ; wApq
¼ þ1:

(
ð1Þ

To do so, we use following lemma:

Lemma 1.2 ([BJ17, Lemma 2.2]). Let

fðxÞ 2 Z½x� be a polynomial of degree k with positive

leading coefficient. Let A;B be relatively prime odd

integers, g be an integer, and i, j be positive integers

with 0 < i; j < g and ði; gÞ ¼ ðj; gÞ ¼ 1. We assume

that there is at least one integer m such that

2fðmÞ � Aiþ Bj (mod gÞ and ðAB; 2fðmÞÞ ¼ 1:

Then, there are infinitely many integers n such that

2fðnÞ ¼ Ap1 þ Bp2;

for some primes p1 � i and p2 � j (mod gÞ.
Subsequently, the upper bound of size of

Selmer groups of Epq and Apq will be calculated.

The size of the Selmer groups of E�p and Ap is

determined by the residue class of p modulo 16

and 9, respectively (see [Sil09, Proposition X.6.2],

and [CP09, Corollary 7.7]). In the case of Epq and

Apq, the Selmer groups are not determined only by

the residue classes of p and q modulo 16 and 9.

However it will be shown that the upper bound of

the size of Selmer groups can be calculated in

certain cases (see Proposition 2.2, 3.4). Combining

these with (1), we have Theorem 1.1.

2. 2-Torsion case. We recall that an ellip-

tic curve Em is defined by the equation y2 ¼
x3 �mx, where m 2 Z. The torsion subgroup of

EmðQÞ is Z=2Z when m 6¼ �4 and m is not square

[Sil09, Proposition X.6.1].

Lemma 2.1. (i) If m is not divisible by any

square of integers, then
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wEm ¼ w1w2;

where w1 ¼ sgnð�mÞ, whereas w2 ¼ �1 if m �
1; 3; 11; 13 (mod 16Þ, and w2 ¼ þ1 otherwise.

(ii) Let a; b be integers satisfying b2ðb2 � a2Þ 6¼ 0.

Then, the elliptic curve Eb2ðb2�a2Þ : y2 ¼ x3 � b2ðb2 �
a2Þx has an integral point ðb2;	ab2Þ.

Proof. (i) It follows from [BS66, (10), (13)],

and (ii) can be verified by a direct calculation. �

We recall the method of descent via two-

isogeny [Sil09, Theorem X.4.9]. Let M 0
K and M1

K be

the set of finite places and infinite places of a

number field K, E0m be an elliptic curve defined by

the equation y2 ¼ x3 þ 4mx, � : Em ! E0m be a 2-

isogeny defined by

�ðx; yÞ �!
y2

x2
;
�yðmþ x2Þ

x2

� �
;

and �0 be its dual isogeny. Then, for S ¼M1
Q [

fv 2M0
Q : v j 2mg, we have

Sel�ðEm=QÞ 
 H1ðQ; Em½��; SÞ;

where H1ðQ; Em½��; SÞ 
 H1ðQ; Em½��Þ is the set of

cocycles unramified outside S. For

QðS; 2Þ :¼ x 2
Q�

ðQ�Þ2
: ordvðxÞ ¼ 0 for all v =2 S

( )
;

there is an isomorphism � : QðS; 2Þ !
H1ðQ; Em½��; SÞ defined by �ðdÞð�Þ :¼ d�=d for all

� 2 GalðQ=QÞ. We note that Em½�� ¼� Z=2Z as a

GQ-module. Let WCðE=QÞ be the Weil–Châtelet

group of the elliptic curve E=Q. Then there is a map

QðS; 2Þ ¼�
�
H1ðQ; Em½��; SÞ !WCðEm=QÞ;

d! Cdðw; zÞ : dw2 ¼ d2 þ 4mz4;

and for d 2 QðS; 2Þ, �ðdÞ 2 Sel�ðEm=QÞ if and only if

the homogeneous space Cd is locally trivial for all

p 2 S. That is,

fd 2 QðS; 2Þ : CdðQpÞ 6¼ ? for all p 2 Sg

¼�
�

Sel�ðEm=QÞ:
We simply write d 2 Sel�ðEm=QÞ for �ðdÞ 2
Sel�ðEm=QÞ, and denote by C0d the homogeneous

space of E0m for d 2 QðS; 2Þ.
Proposition 2.2. Let E ¼ Epq and E0 ¼ E0pq

for some primes p and q.

(i) If pq 6� 	1 (mod 8Þ, then Z=2Z � Sel�ðE=QÞ �
ðZ=2ZÞ2.

(ii) If one of p and q is not equivalent to 1 modulo 4,

then Z=2Z � Sel�0 ðE0=QÞ � ðZ=2ZÞ2.

Proof. (i) By previous arguments, we know

that

QðS; 2Þ ¼ f	1;	2;	p;	q;	2p;	2q;	pq;	2pqg;

and Cd : dw2 ¼ d2 þ 4pqz4. By [Sil09, Proposition

X.4.9], we have pq 2 Sel�ðE=QÞ. The negative d 2
QðS; 2Þ is not in Sel�ðE=QÞ because CdðRÞ is empty.

Let ðW;ZÞ be a Q2-point of C2 : w2 ¼ 2þ
2pqz4. We may assume that W 2 2Z2 and Z 2 Z2.

If pq 6� 	1 (mod 8Þ, then W 2 � 2þ 2pqZ4 (mod 8Þ
does not have a solution. Hence, if pq 6�
	1 (mod 8Þ, then 2 62 Sel�ðE=QÞ. Consequently,

hpqi � Sel�ðE=QÞ � f1; p; q; pq; 2p; 2qg which proves

(i).

(ii) We note that the homogeneous space C0d of

E0 is defined by the equation dw2 ¼ d2 � pqz4. As

in (i), we have �pq 2 Sel�0 ðE0pq=QÞ. We consider

C0�1 : w2 þ 1 ¼ pqz4, and let ðW;ZÞ be a Zp-point of

C0�1. As W 2 þ 1 � 0 (mod pÞ, there is no Qp-point

in C0�1 when p 6� 1 (mod 4Þ. Similarly, if q 6�
1 (mod 4Þ, then C0�1ðQqÞ ¼ ?. Hence, �1 62
Sel�0 ðE0=QÞ if one of p; q is not equivalent to 1

modulo 4.

We consider C0�2 : 2w2 þ 4 ¼ pqz4. We may

assume that a Q2-point ðZ;W Þ of C0�2 satisfies

W 2 Z2 and Z 2 2Z2. As the equation 2W 2 þ 4 �
0 (mod 16Þ does not have a solution, �2 62
Sel�0 ðE0=QÞ. Similarly, C02ðQ2Þ does not have a

solution because 2W 2 � 4 6� 0 (mod 16Þ. Therefore,

2 62 Sel�0 ðE0=QÞ.
Consequently, if one of p and q is not equivalent

to 1 modulo 4,

h�pqi � Sel�0 ðE0=QÞ
� f1;	p;	q;�pq;	2p;	2q;	2pqg:

Let A ¼ f1;	p;	q;�pq;	2p;	2q;	2pqg. Then, all

the possible groups between A and f1;�pqg as sets

have order bounded by 4. �

Theorem 2.3. There are infinitely many

elliptic curves E such that wE ¼ þ1 and

Z� Z=2Z � EðQÞ � Z� Z� Z=2Z:

That is, under the parity conjecture, there are

infinitely many elliptic curves whose Mordell–Weil

groups are exactly Z� Z� Z=2Z.

Proof. There is a natural Q-isomorphism be-

tween Et4s ¼� Es for t; s 2 Q, which is defined by

ðx; yÞ ! ð x
t2
; y
t3
Þ. When b4ðb4 � a2Þ 6¼ 0, Eb4ðb4�a2Þ ¼�

Eðb4�a2Þ has a rational point of infinite order by

Lemma 2.1 (ii). We use Lemma 1.2 with A ¼ B ¼
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1, g ¼ 16, i ¼ 15, j ¼ 3, and fðnÞ ¼ 2n2. As m ¼ 1

satisfies 2m2 � iþ j (mod 16Þ, there are infinitely

many integers b such that 2b2 ¼ pþ q and

p � 15; q � 3 (mod 16Þ. Then for a ¼ p�q
2 ,

b4 � a2 ¼ ðb2 þ aÞðb2 � aÞ ¼ pq:

The torsion subgroup of Epq is Z=2Z. As pq 6�
	1 (mod 8Þ and p; q � 3 (mod 4Þ,

2þ rankZðEpqðQÞÞ
� dimF2

ðSel�ðEpq=QÞÞ þ dimF2
ðSel�0 ðE0pq=QÞÞ

� 4;

by [Sil09, Proposition X.4.2, X.4.7] and Proposition

2.2. Finally wEpq ¼ þ1, by Lemma 2.1 (i). �

3. 3-Torsion case. In this section we con-

sider elliptic curves Am : y2 ¼ x3 þm2. We recall

that if m 6¼ 1 is a cube-free integer, then the torsion

subgroup of AmðQÞ is Z=3Z (see [Sil09, Exercise

10.19]). As in Section 2, we have the following

lemma.

Lemma 3.1. (i) If m is square-free and

prime to 6, then wAm
¼ w3

Q
pjm wp, where

w3 ¼ �1 if m2 � �2 (mod 9Þ;
w3 ¼ þ1 otherwise:

�

wp ¼ �1 if p j m, and p � 2 (mod 3Þ;
wp ¼ þ1 otherwise:

�

(ii) Let a; b be nonzero integers satisfying aða2 �
b2Þ 6¼ 0. Then the elliptic curve Aaða2�b2Þ : y2 ¼ x3 þ
a2ða2 � b2Þ2 has an integral point ð�a2 þ b2;

	ða2b� b3ÞÞ.
Proof. The first part can be easily deduced

from [Liv95, §9, Theorem]. The second part can be

verified by a direct calculation. �

We recall the method of descent via 3-isogeny

[CP09, Definition 1.3]. Let K ¼ Qð
ffiffiffiffiffiffiffi
�3
p

Þ, A0m be

the elliptic curve defined by the equation y2 ¼
x3 � 27m2, � : Am ! A0m be an isogeny defined by

� : ðx; yÞ �! x3 þ 4m2

x2
;
yðx3 � 8m2Þ

x3

� �
;

and �0 be its dual isogeny. There are 3-descent maps

AmðQÞ
�0A0mðQÞ

�!� QðS; 3Þ and
A0mðQÞ
�AmðQÞ

�!�
0
KðS; 3Þ;

where S ¼M1
ð�Þ [ fv 2M0

ð�Þ : v j 6mg for ð�Þ ¼ K or

Q. The map � is defined by

�ðOÞ ¼ 1; �ð0;mÞ ¼
1

2m
; and �ðx; yÞ ¼ y�m:

We note that �0 is defined by �0ðx; yÞ ¼ y� 3m
ffiffiffiffiffiffiffi
�3
p

,

and the images of �0 are in KNðS; 3Þ ¼ fu 2
KðS; 3Þ : NmK=QðuÞ 2 ðQ�Þ3g. By [CP09, Propo-

sition 2.2], we have jim�jjim�0j ¼ 3rankAmðQÞþ1. For

all d 2 QðS; 3Þ, d is in the image of � if and only if

CdðQÞ 6¼ ?, however, we do not calculate homoge-

neous spaces Cd directly. Instead, we will find

cubics C satisfying d 2 im� if and only if CðQÞ 6¼ ?.

After that, we will show that the cubic C does not

have Qp-points in certain cases, which gives an

upper bound of jim�j. Similarly, we will obtain an

upper bound of jim�0j.
Lemma 3.2. Let p; q � 5 be primes, and

Apq : y2 ¼ x3 þ p2q2 be elliptic curves.

(i) For any d 2 QðS; 3Þ, let d be the unique cube-free

representative of d, and d ¼ d2
1d2 be the unique

representation such that di are square-free and

coprime. Then, d is in the image of � if and only if

the cubic

C
d1;d2;

2pq
d1d2

: d1X
3 þ d2Y

3 þ
2pq

d1d2
Z3 ¼ 0;ð2Þ

has a nontrivial rational point. We will denote

C
d1;d2;

2pq
d1d2

by ðd1; d2;
2pq
d1d2
Þ. Moreover, we have im� �

h2; p; qi.
(ii) Let u1; u2; u3 - 3. The cubic C : u1X

3 þ u2Y
3 þ

u3Z
3 ¼ 0, which is denoted by ðu1; u2; u3Þ, has a

Q3-point if and only if ui � 	uj (mod 9Þ for some

i 6¼ j.
Proof. By [CP09, Theorem 3.1.(1)], d 2 im� if

and only if the cubic

dX3 þ
1

d
Y 3 þ 2pqZ3 ¼ 0

has a nontrivial rational solution. Replacing Y by

d1d2Y , this cubic has a nontrivial rational solution

if and only if (2) has. If d 2 im�, then d1d2 should

divide 2pq, by [CP09, Theorem 3.1.(3)]. Hence, (i)

follows, whereas (ii) is exactly [CP09, Lemma

5.9.(1)]. �

Lemma 3.3. Let p; q � 5 be primes, A0pq :

y2 ¼ x3 � 27p2q2 be elliptic curves, and � be a unique

nontrivial element in GalðK=QÞ.
(i) For d 2 KNðS; 3Þ, there is a v ¼ v1 þ v2

ffiffiffiffiffiffiffi
�3
p

such

that vi 2 Q and d ¼ v2�ðvÞ. Then, d 2 im�0 if and

only if the cubic
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2v2X
3 � 6v1Y

3 þ
6pq

v2
1 þ 3v2

2

Z3ð3Þ

þ 6v1X
2Y � 18v2XY

2 ¼ 0;

has a nontrivial rational solution.

(ii) For d 2 im�0, there exists an ideal a; q of OK

such that dOK ¼ a2�ðaÞq3 and NmK=QðaÞ is a cube-

free divisor of 2pq divisible only by primes that are

split in K=Q.

(iii) The cubic defined by (3) has a Q2-point if and

only if the class �ðvÞ=v is a cube in F22 .

Proof. [CP09, Proposition 4.1.(1), Corollary

4.3, Lemma 6.5], respectively. �

Proposition 3.4. Let p; q � 5 be primes, and

Apq : y2 ¼ x3 þ p2q2 be elliptic curves.

(i) If p; q � 	2 (mod 9Þ, then Z=3Z � im� �
ðZ=3ZÞ2.

(ii) If p � 2 (mod 3Þ and q � 1 (mod 3Þ, then 0 �
im�0 � Z=3Z.

Proof. (i) By Lemma 3.2 (i),

im� ¼
�
d 2 QðS; 3Þ : d1d2 j 2pq and d1; d2;

2pq

d1d2

� �

has a nontrivial rational solution

�
:

As im� is a group, the cubic ðd1; d2;
2pq
d1d2
Þ has a

nontrivial rational solution if and only if ðd2; d1;
2pq
d1d2
Þ

is. There are 14 cubics ðd1; d2;
2pq
d1d2
Þ, up to exchange

of d1 and d2. Among them, ð1; 1; 2pqÞ and ð1; 2pq; 1Þ
have a nontrivial rational solution, namely,

½1;�1; 0� and ½1; 0;�1�, respectively. Hence, 1; 2pq 2
im�. There are 4-sets of cubics, namely,

fð2; 1; pqÞ; ð1; pq; 2Þ; ðpq; 2; 1Þg;
fðq; 1; 2pÞ; ð1; 2p; qÞ; ð2p; q; 1Þg;
fðp; 2; qÞ; ð2; q; pÞ; ðq; p; 2Þg;
fðp; 1; 2qÞ; ð1; 2q; pÞ; ð2q; p; 1Þg:

One cubic of the set is in im� if and only if all cubics

in the set are in im�, because 2pq 2 im�. Hence,

it suffices to check the solubility of one cubic for

each set.

By Lemma 3.2 (ii), the cubic ð2; 1; pqÞ has a

Q3-solution if and only if pq � 	1;	2 (mod 9Þ.
Hence, 4 =2 im� if pq 6� 	1;	2 (mod 9Þ. Similarly,

we can show the following, by considering cubics

ðq; 1; 2pÞ, ðp; 2; qÞ, and ðp; 1; 2qÞ:
. q2 does not lie in im� when q 6� 	1, p 6� 	5,

and q 6� 	2p (mod 9Þ,
. 2p2 does not lie in im� when p 6� 	2, q 6� 	2,

and p 6� 	q (mod 9Þ,

. p2 does not lie in im� when p 6� 	1, q 6� 	5,

and p 6� 	2q (mod 9Þ.
If p; q � 	2 (mod 9Þ, then 4; p2; q2 do not lie in im�.

Therefore, Z=3Z � im� � ðZ=3ZÞ2.
(ii) By Lemma 3.3 (ii), if d 2 im�0, then there

exists a such that d ¼ �i3a2�ðaÞ and NmK=QðaÞ j 2pq
is divisible only by primes that split in K=Q. In this

case, NmK=QðaÞ j q. Therefore, im�0 � h�3; q
02q0i,

where q0 is a prime element of K satisfying

NmK=Qðq0Þ ¼ q.
We consider d ¼ �3. For v ¼ �3, we have �3 ¼

v2�ðvÞ and �ðvÞ=v 6¼ 1 in F22 . Therefore, the cubic

(3) for v ¼ �3 does not have a solution in Q2 by

Lemma 3.3 (iii). Consequently, when p � 1 and q �
2 (mod 3Þ, im�0 � Z=3Z. �

Theorem 3.5. There are infinitely many

elliptic curves E such that wE ¼ þ1 and

Z� Z=3Z � EðQÞ � Z� Z� Z=3Z:

That is, under the parity conjecture, there are

infinitely many elliptic curves whose Mordell–Weil

groups are exactly Z� Z� Z=3Z.

Proof. When a3ða6 � b2Þ 6¼ 0, the elliptic curve

Aa3ða6�b2Þ has an integral point of infinite order by

Lemma 3.1. We use Lemma 1.2 with A ¼ 27; B ¼ 1;
i ¼ 2; j ¼ 7, and fðnÞ ¼ 2n3. As 2m3 � 27iþ
j (mod 9Þ has a solution m ¼ �1, there are in-

finitely many integers a such that a3 ¼ 27pþq
2 , and

p � 2, and q � 7 (mod 9Þ. Then for b ¼ 27p�q
2 ,

ða6 � b2Þ ¼ ða3 þ bÞða3 � bÞ ¼ 27pq:

Therefore, there are infinitely many elliptic curves

Aa333pq ¼� Apq whose rank is at least 1, and

ApqðQÞtor ¼ Z=3Z. By Proposition 3.4, jim�j � 32

and jim�0j � 3 since p � 2 and q � 7 (mod 9Þ.
By [CP09, Proposition 2.2], jim�jjim�0j ¼
3rankZ ApqðQÞþ1. Hence, 1 � rankðApqðQÞÞ � 2, and

wApq
¼ þ1 by Lemma 3.1. �
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