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Abstract: We extend the framework of K-stability [Tia], [Don1] to a more general

algebro-geometric setting, such as partial desingularisations of fixed singularities, (not

necessarily flat) families over higher dimensional base and birational geometry of surfaces.

We also observe that ‘‘concavity’’ of the volume function implies decrease of the

(generalised) Donaldson–Futaki invariants along the Minimal Model Program, in our generalised

settings. Several related results on the connection with the MMP theory, some of which are new

even in the original setting of families over curves, are also proved.
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1. Introduction. Working on canonical

(Kähler) metrics via the use of numerical invariants

has its origin in the seminal and pioneering paper

of Futaki [Fut]. Shortly after its introduction,

Mabuchi [Mab] introduced important functionals

over the space of Kähler potentials which are

connected to the Futaki invariant. Those two

fundamental and pioneering works, in turn, after a

decade later, reveal their true faces as shadows of

a version of GIT stability — K-stability introduced

by Tian and Donaldson [Tia], [Don1]. It is also

compatible with Yau’s original insightful expecta-

tion [Yau] that some ‘‘stability’’ should be equiv-

alent to the existence of canonical metrics.

This paper aims at clarifying and generalising

those invariants in a more general algebro-geo-

metric setting than families over a curve, such as

(partial) desingularisations of singularities, families

over higherdimensional base or classical (absolute)

birational geometry of surfaces. We also add results

which are new even in the original setting of families

over curves. The author also hopes that this would

serve as a supplementary introduction for algebraic

geometers to the subject.

2. Generalised setting. Throughout the

paper, we work over an algebraically closed field

of characteristic 0. However, the arguments which

do not depend on the resolution of singularities or

the Minimal Model Program (MMP), work also

over positive characteristics fields.

We fix a normal Q-Gorenstein projective

variety B as a base. We also fix a base point p 2
B and a projective morphism �o: ðX o;LoÞ� B n fpg
where Lo is �o-ample and X 0 is a normal Q-Goren-

stein projective variety of dimension n. Much of our

theory extends naturally also to non-normal vari-

eties which are reduced, equidimensional algebraic

schemes, Q-Gorenstein, Gorenstein in codimension

1, and satisfying Serre’s condition S2.

We consider all the completions of ðXo;LoÞ to

ðX ;LÞ over B i.e. projective morphisms �: ðX ;LÞ�
B with �-nef L such that ��1ðB n fpgÞ ¼ ðXo;LoÞ. In

other words, we consider birational modifications

along ��1ðpÞ.
Original setting after Mumford, Futaki, Tian,

Donaldson is that ðX0;LoÞ ¼ ðX;LÞ � ðB n fpgÞ
with B ¼ P1 (or A1 originally), ðX;LÞ is a polarized

variety, and ðX ;LÞ is a ‘‘test configuration’’ [Don1].

Hence, our main point of the extension is that we

allow all kinds of projective morphism, for example,

� can be non-flat or even birational.

To our general �: ðX ;LÞ� B, we assign the

two invariants DF and V whose Kähler analogues

appeared in [Fut, Tia, Don1] and [Aub, Mab].

2.1. Normalised volume functional. The

first invariant we introduce is the following V. It

will become clear only later why this simple but

somehow modified version of volume function is

important for us.
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Definition 2.1. VðX ;LÞ :¼ ðLnÞ

ðLojdimðF Þ
F

Þ
n�1

dimðF Þ
,

where F is the generic fiber of �0, which people often

denote by X �. If dimðF Þ ¼ 0, i.e. �0 is generically

finite, then we interpret the denominator of the

above as 1. The meaning of the somewhat compli-

cated denominator as a normalizing factor, which

indeed only depends on the original Lo, will be clear

in the proof of Theorem 4.1.

We call the above the normalized volume

functional. For the case with dimðBÞ ¼ 1, this may

be able to be seen as a functional of non-Archime-

dian smooth semipositive metrics from the perspec-

tive of [BFJ1], which is concave (cf. next proposi-

tion 2.2 (iii)). Prof. S. Boucksom kindly pointed out

to the author that the dimðBÞ ¼ 1 case of the above

essentially coincides with the non-Archimedian

analogue of the Aubin–Mabuchi functional (also

called ‘‘Monge-Ampére energy’’) they discussed

in [BFJ2]. Please note it is different from the so-

called K-energy of [Mab].

Proposition 2.2 (Basic properties of V). Re-

garding the above normalised volume functional V,

we have the following basic properties:

(i) If f :X 0 ! X is a birational morphism, then we

have

VðX 0; f�LÞ ¼ VðX ;LÞ:

(ii) If dimðF Þ > 0, then the functional is homoge-

neous of degree 1 i.e., for any a 2 Z>0,

VðX ;L�aÞ ¼ a � VðX ;LÞ:

(iii) For any Cartier divisor E supported on a fiber,

@2

@E2
VðX ;LÞ � 0;

that is, this functional V is concave along the

space of divisors supported on ��1ðpÞ.
(iii) could be regarded as algebraic version of

the convexity of (differential geometric) Aubin–

Mabuchi functional.

Proof. (i), (ii) are straightforward to see.

We prove that (iii) essentially follows from the

Hodge index theorem. Also, here is the place we use

the assumption that birational modifications are all

along fibres over finite points of B. Let us take an

arbitrary ample divisor H on B.

Consider variation of L to LðtDÞ where D is a

Cartier divisor supported on ��1ðpÞ. What we need

to prove is

@2

@D2
ðLnÞ ¼ nðn� 1ÞðLn�2:D2Þ � 0:

The above follows from the Hodge index

theorem since

ðLn�2:D:��HÞ ¼ 0;

because �ðSuppðDÞÞ is zero-dimensional. An impor-

tant note is that our (iii) above is an analogue of

the concavity of the Aubin–Mabuchi functional

(cf., e.g. [BBGZ]). �

We note that via (ii) of the above proposition,

for dimðBÞ ¼ 1 case, we can regard V as a functional

over a space of all R-line bundles up to pull back

(‘‘infinite dimensional nef cone’’). In other words,

the space consists of smooth non-Archimedian

semipositive metrics on the analytification Lan of

Xan from the viewpoint of [BFJ1] (cf. also [KT]).

I would like to thank Prof. S. Boucksom for

teaching me about the non-Archimedian metrics

they use.

2.2. Generalising Futaki’s invariants fur-

ther. Now we introduce our second invariant — an

extension of the Futaki invariants, generalising the

Donaldson’s extension of the Futaki invariant

[Don1] further.

The point is, by the intersection number

formula [Wan] and [Od2], that the Donaldson–

Futaki invariant [Don1] is the ‘‘derivative’’ along

the direction of the (relative) canonical divisor,

which is exactly encoding the infinitesimal behav-

iour along the Minimal Model Program with

scaling [BCHM] (or its analytic counterpart, i.e.

unnormalised Kähler-Ricci flow cf., e.g., [CL],

[ST]).

Proposition 2.3 ([Wan], [Od2]). If ðX ;LÞ is

a test configuration of a polarised projective variety

ðX;LÞ, we have

@

@KX=B
VðLÞ ¼

DFðX ;LÞ
ðLn�1Þ2

;

where the DFðX ;LÞ is the Donaldson–Futaki

invariant [Don1]. In general, if B is a curve, then

the above equation holds once we replace the

Donaldson–Futaki number by degð�CM ðX ;LÞÞ,
where the �CM is the CM line bundle introduced by

Paul-Tian [PT] (also see [FR]).

Given the above, we define our further general-

isation of the Donaldson–Futaki invariants similar-

ly as follows:
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Definition 2.4. For our extended frame-

work of the previous section, we define our (gener-

alised) Donaldson–Futaki invariant as

DFðX ;LÞ :¼ @

@KX=B
VðLÞ

 !
� ðLojdimðF Þ

F Þ
2ðn�1Þ
dimðF Þ :

More explicitly, we can write DFðX ;LÞ as

follows:

nðLn�1:KX=BÞðLjdimðF Þ
F Þ

n�1
dimðF Þ

� ðn� 1ÞðLnÞðLjdimðF Þ�1
F :KF ÞðLjdimðF Þ

F Þ
dimðBÞ�1

dimðF Þ :

Note that the last term ðLjdimðF Þ
F Þ

dimðBÞ�1
dimðF Þ did not

appear in the original setting of dimðBÞ ¼ 1 since

the exponent was 0 in that case.

The following basic property says that

Donaldson–Futaki invariant is a functional of the

space of polarisations (up to pull backs).

Proposition 2.5. Consider the pull back of

L on X by a birational morphism f :X 0 ! X . Then

we have

DFðX 0; f�LÞ ¼ DF ðX ;LÞ:

The proof follows straightforwardly from the

above description of our (generalised) Donaldson–

Futaki invariants via intersection numbers. After

this proposition, we often write the above general-

isation simply as DFðLÞ and call it the DF invariant

or DF (of the polarisations) from now on in this

paper.

Note that the above (2.5) would be an inequal-

ity � in general if X is non-normal, whose difference

in turn reflects the presence of conductor of normal-

isation. This extends the old result of Ross-

Thomas [RT, (5.1), (5.2)] and again also matches

to the non-Archimedian framework of [BFJ1].

We can extend our Futaki invariant further to

log setting by using Shokurov’s ‘‘b-divisors’’ [Sho],

which are roughly speaking infinite linear combina-

tion of divisors above X . Indeed, fKX=BgX also

forms a Weil b-divisor and it is enough to replace

it by fKX=BgX þD where D is some other Weil b-

divisor. Accordingly, all the contents of our theory

extend in a straightforward manner but we omit

them. The extension includes the usual log K-

stability [Don2], [OS].

3. Extending K-semistability. We ex-

tend the idea of K-stability [Don1] to our general-

ised framework. More precisely, we extend K-semi-

stability and study its properties as follows:

Definition 3.1. We follow the notation of

the previous section. We say that �: ðX ;LÞ� B

is generically K-semistable if the set of all the

Donaldson–Futaki invariants of all possible bira-

tional transforms along �-preimages of finite points

are bounded below.

Note that if � is a test configuration, the above

implies the K-semistability of general fibers. How-

ever, in general, our definition is not the same as

K-semistability of the generic fiber as we will see

soon in Proposition 3.2. The above is a little

analogous to the fact that original K-semistability

for [Tia] and [Don1] corresponds to lower bounded-

ness of Mabuchi functional. It also indicates that

the (Donaldson–)Futaki invariant itself shares some

features of the Mabuchi functional (K-energy)

[Mab], as the author learnt from S. Boucksom.

Proposition 3.2. If X o ! B n fpg is an iso-

morphism, so that any completion of �o is birational,

then it is generically K-semistable if and only if B

has only canonical singularities. Moreover, all the

non-trivial Donaldson–Futaki invariants are posi-

tive if and only if B has only terminal singularities.

Proof of Proposition 3.2. Suppose B has non-

canonical singularity at p 2 B. Then we take a

relative canonical model X can over B by [BCHM].

By the negativity lemma [KM, 3.39], it follows that

KX can=B is anti-effective (and non-zero). We take

Lcan :¼ KX can=B which is �-ample from our construc-

tion. Thus, the Donaldson–Futaki invariant

DFðX can;LcanÞ, which is ððLcanÞn�1:KX can=BÞ up to

a positive constant multiple, is negative. Thus we

end the proof of the first half of the assertions.

If B is strictly canonical at p, i.e. canonical but

not terminal, take a terminalisation Xmin of B again

using [BCHM]. Then since we know KXmin=B ¼ 0, for

an arbitrary �-nef line bundle L on Xmin, the corres-

ponding Donaldson–Futaki invariants vanish. �

For the general fibration case, we also see that

Proposition 3.3. If KF ¼ aLjF with a � 0,

and X n ��1ðpÞ has only canonical singularities with

dimðBÞ ¼ 1, then ðX ;LÞ is generically K-semistable.

Proof. We give a case by case proof depending

on the Fujita–Kawamata type semipositivity (cf.,

e.g., [Kol], [Fuj]).

If a ¼ 0, this is a Calabi-Yau fibration. From

the semipositivity theorem, we can take KX=B as an

effective vertical divisor. Therefore, the correspond-

ing Donaldson–Futaki invariant ðLn�1:KX=BÞ, mul-

tiplied by some positive constant, is non-negative.
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If a > 0, here we only prove the case when

KX=B is relatively ample and X is canonical, i.e. the

relative canonical model over B and leave the rest

to Proposition 4.2. In that case, the corresponding

Donaldson–Futaki invariant is simply ðKn
X=BÞ up to

a positive constant multiple. Then it is the leading

coefficient of degBðdetð��OX ðmKX=BÞÞÞ, thanks to

the Grothendieck–Riemann–Roch theorem. The

semipositivity theorem [Kol], [Fuj] implies that

the above quantity is all non-negative for sufficient-

ly divisible m 2 Z>0, so the assertion holds for the

relative canonical model case. For general case,

from Proposition 4.2 shows that birational modifi-

cations of this relative canonical model have bigger

or equal Donaldson–Futaki invariants so that the

assertion holds. �

Motivated by the above, the next section 4,

and the relation of CM line bundles with the

Weil-Petersson metrics, we naturally conjecture as

follows:

Conjecture 3.4. If dimðBÞ ¼ 1, the generic

K-semistability of ðX ;LÞ is equivalent to that

generic fiber ðF;LjF Þ of � is K-semistable in the

original sense [Don1].

A similar question was asked before by X.

Wang during my visit to Hong Kong in spring of

2010.

4. To minimise the DF by the MMP.

4.1. Decrease of the DF along MMP.

Recall that [Od1] observes, very vaguely speaking,

that birationally ‘‘small’’ models in the MMP theo-

ry have ‘‘small’’ Donaldson–Futaki invariants. A

while after [Od1], the continuous decrease of the

Donaldson–Futaki invariants along the MMP was

first proved in [LX] for families of Fano varieties

over curves. As a Kähler analogue, this should

corresponds to decrease of K-energy along the

normalised Kähler-Ricci flow.

We generalise the phenomenon to our much

extended framework as follows:

Theorem 4.1. Suppose KF ¼ aLjF and let

us consider the KX=B-MMP with ‘‘scaling L’’

(precisely speaking, the scaling divisor is 1
l D where

D corresponds to a general section of ðL� ��MÞ�l
with sufficiently ample M on B and l	 0.

Along that MMP with scaling, which we see as

the linear and continuous change of polarisations Lt
to the relative canonical divisor, the Donaldson–

Futaki invariants DFðLtÞt�0 monotonously decrease

when t increases.

Proof. We have Lt ¼ tE þ L where E :¼
KX=B � aL. Thus what we need to show is in the

direction of E, the Donaldson–Futaki invariant

decreases i.e., @
@E ðDFðLÞÞ < 0. It follows from the

properties of Mabuchi functional V (2.2). Indeed,

after some simple calculation using (2.2(ii)), this

derivative can be rewritten via V as @2

@E2 V which is

negative by the convexity of V (2.2(iii)). �

It is known that Kähler-Ricci flow is compat-

ible with (K-)MMP with ample scaling ([CL], [ST]

etc.). This compatibility can be also seen when we

transfer the Kähler-Ricci flow into the non-Archi-

median setting. It would be interesting to see the

above phenomenon from a differential geometric

Ricci flow point of view.

4.2. Minimisation —semistable case—. In

our algebraic setting, the observations below show

that minimisation (critical points) of our general-

ised Donaldson–Futaki invariants give ‘‘canonical

limits’’ of ‘‘semistable’’ objects, which we see as an

analogue of the fact that critical points of the K-

energy [Mab] are those with constant scalar curva-

ture (e.g. Kähler-Einstein metrics).

These phenomena are motivated by [Od1]

and [LX]. Indeed the method of [Od1] to get small

(in that case, negative) Futaki invariants, taking

some ‘‘canonical model’’ in the MMP theory, can

be interpreted as a phenomenon that ‘‘canonical

limits (made by the MMP) give small Futaki

invariants’’. Furthermore, [LX] later proved the

decrease of Futaki invariants of Fano varieties case

directly, which we generalise (4.1).

Proposition 4.2. If ðX ;LÞ minimises the

Donaldson–Futaki invariants among other (bira-

tional) completions of ðXo;LoÞ� Bo, it satisfies the

following basic properties.

(i) X has only canonical singularities (we assume

X is Q-Gorenstein) if ðLdimðF Þ:KF Þ � 0 (e.g. if

�KF is nef ).

(ii) If KF ¼ aLjF , then for an open neighborhood

U of p in B, KX=Bj��1ðUÞ ¼ aLj��1ðUÞ.
Proof. (i): Suppose the contrary and take the

relative canonical model of X as f :X can ! X
by [BCHM] again. Putting E :¼ �KX can=B, we know

that E is effective and non-zero by the negativity

lemma again [KM, 3.39]. Then, we have
1

nðn� 1Þ
d

dt
jt¼0DFðX can; f�L� tEÞ

¼ �ðf�Ln�2:E:f�KX=B � EÞðLjdimðF Þ
F Þ

n�1
dimðF Þ
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þ ðf�Ln�1:EÞðLjdimðF Þ
F Þ

dimðBÞ�1
dimðF Þ ðLjdimðF Þ�1

F :KF Þ:
The first term is negative from the Hodge index

theorem and the second is also non-positive due to

our assumption. Thus we get a contradiction.

(ii): It simply follows from Theorem 4.1. �

Concerning the case over a curve, are basically

similar to the author’s older works. The essential

difference with the above general case is that we

allow base change and consider ‘‘normalised Futaki’’

invariants involving the degree of base change.

Our modified setting is as follows: We fix

ðXo;LoÞ� Bo (:¼ B n fpg where B is a smooth

curve) as before, and consider all finite morphisms

�: ~B! B and the normal Q-Gorenstein comple-

tions of ðXo;LoÞ �B ~B! ~B n ff�1ðpÞg to ð ~X ; ~LÞ !
~B, where we assume X is normal and Q-Gorenstein.

For this model, we set

nDFð ~X ; ~LÞ :¼
DFð ~X ; ~LÞ

degð�Þ ;

as in [LX]. We call ð ~X ; ~LÞ is nDF-minimising if

nDFð ~X ; ~LÞ � nDFð ~X 0; ~L0Þ for all other possible

ð ~X 0; ~L0Þ (we allow all base changes �).

Theorem 4.3 (dimðBÞ ¼ 1 case). In the

above setting, suppose ðX ;LÞ is nDF-minimising.

Then it holds that

(i) any fibre is reduced and semi-log-canonical.

(ii) if F is a klt Q-Fano variety, then all fibers are

klt Q-Fano varieties.

(iii) if KF ¼ aLjF with a � 0, the normalised DF

invariant of ðX 0;L0Þ ! B0 is minimum of all the

models if and only if any fibre G is reduced slc

with KG ¼ aLjG.

Proof. (i): If the fiber over p 2 B is not

reduced, then we take base change of B ramifying

at p with sufficiently divisible ramifying degree, and

take its normalization. Then it is nontrivial along

that preimage of non-reduced component so that

the (normalized) DF decreases (recall our remark

after Proposition 2.5, and also [RT, 5.1, 5.2]).

So we can and do suppose X0 is reduced. The

relative lc model of ðX ;X 0Þ over X exists as [OX]

shows, which we denote as f:X lc ! X .

Let us consider the polarised varieties of

ðX lc; f�Lð�tEÞÞ where E :¼ KX lc � f�KX þ ExcðfÞ
and ExcðfÞ denotes the total reduced exceptional

divisor. Then the corresponding Donaldson–Futaki

invariants decrease when t increases by an argu-

ment very similar to that in [Od1, section 3].

(ii): Supposing X 0 is not klt, then we take the

relative log canonical model of ðX ; ð1� �ÞX 0Þ by

[BCHM]. The rest follows from [Od1, section 6].

(iii): The ‘‘If’’ direction was proved earlier

in [Od3] (also [WX] for the a > 0 case). The

converse holds as well, since if L� aKX=B is not

0, then by (4.1), we have DFðLþ �EÞ < DFðLÞ. �
For the Calabi-Yau case, a non-rigorous com-

ment is that the reduced slc CY fibers of p 2 B or its

preimages by base changes form infinite ordered set

which we expect to ‘‘converges to tropical varieties’’

which is homeomorphic to the dual complexes, as

in [KS]. Regarding the Fano case (ii) we note that,

by applying [Kal], it easily follows that the set of

all the completed Q-Fano fibrations of relative

Picard rank 1 form a tree (as a graph) via Sarkisov

links [Kal]. That is, there is no loop of Sarkisov

links among Q-Fano-Mori fibrations. We thank

Prof. A.-S. Kaloghiros for answering our question

regarding this.

Optimal destabilization. Finally we pro-

pose a problem regarding ‘‘maximal destablisation’’.

We still keep the notation in section 2.

Problem 4.4. For fixed �o, formulate the

‘‘norms’’ jjLjj of polarisations L and show the ex-

istence of ðX ;LÞ (‘‘maximally destabilising’’) which

minimises the DF divided by the norm DFðLÞ=jjLjj
among all birational models �: ðX ;LÞ� B.

We expect that relative canonical model X :¼
Bcan ! B (cf. [BCHM], also recall the proof of (3.2))

will be the maximally destabilising model of non-

(semi-)lc singularities in the case where X o ’ Bo (so

that � are birational). We also note that then the

corresponding DF invariant is ðKX=BÞn and its

log version also exists. Indeed, take the relative

log canonical model of a non-log-canonical base B

by [OX] as X :¼ Blc ! B. Then the corresponding

log DF invariant is ðKBlc=B þ EÞn with reduced total

exceptional divisor E on Blc, which coincides with

the ‘‘local volume’’ of [BdFF], [Ful] (for the proof of

the coincidence, please see [Zha]).
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