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A note on the relative class number of the cyclotomic Z,-extension

of Q(/=P)
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Abstract:

Let p be a prime number with p =3 mod 4 and ¢ = (p — 1)/2. Let k = Q(,/=p)

and ks /k be the cyclotomic Zj-extension. Denote by h, the relative class number of the n-th
layer k,. Let £ be a prime number with £ # p. We show that, for any n > 1, £ does not divide
h., /h, ; (vesp. hy /hy ) if £ is a primitive root modulo p? (resp. p) and £ > g — 2 (resp. £ > q — 6).
Further, we show with the help of computer that when p < 10000 and n < 100, ¢ does not divide
h., /h, ; (resp. hi /hy) for any prime ¢ which is a primitive root modulo p* (resp. p).

Key words:

1. Introduction. Let p be a prime number
with p =3 mod 4. Let k= Q(,/=p), and ky/k be
the cyclotomic Z,-extension. Let k, be the n-th
layer of k.. /k with ky = k. Denote by h, the relative
class number of k,. Let £ be a prime number with
£ # p. By a well known theorem of Washington [7], ¢
does not divide the ratio h, /h, , for sufficiently
large n. By Horie [4, Theorem 2], £t h, /h, ;| for all
n > 1 if ¢ is a primitive root modulo p?> and /¢ is
larger than an explicit but complicated constant
depending on p. In this note, we show the following
assertion. We put ¢ = (p — 1)/2.

Proposition 1. The setting is the same as
above.

(I) If¢ > q— 2 and { is a primitive root modulo p?,

then £t h, /h, | for allm > 1.

(I1) If¢ > q—6 and ¢ is a primitive root modulo p,

then £+ hi /hy .

Proposition 1(I) generalizes [6, Proposition 2]
which treats the case £ > ¢ — 1. Our method for
proof of Proposition 1 is a modification of the
argument in [6] and effective use of the classical
class number formula for & = Q(y/=p). When p = 3,
the assertion of Proposition 1(I) is contained in
Horie [3, Proposition 3].

When p and ¢ are small and ¢ is a primitive root
modulo p? (or p when n=1), we can effectively
decide, by using Lemma 4 in §3, whether h_ /h, _, is
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divisible by ¢. With the help of computer, we show
the following result.

Proposition 2. Let p < 10000 be a prime
number with p =3 mod 4 and ¢ a prime number.
Then ¢ does not divide h,, /h,_, for any n <100 if ¢
is a primitive root modulo p?>. Further, { does not
dwide hy [hy if € is a primitive root modulo p.

2. Preliminaries. In this section we define
integers Z,pa, Ynpo and give some properties of
them. They will be used in the following sections
for proving Propositions 1 and 2.

Let p, g, k, and h; be as in §1. Let 1, be the
group of g-th roots of unity in the ring Z, of p-adic
integers. For each integer b with 0 < b <p—1 and
each p-adic integer o € Z, with o = 1 mod p, we put

Tnpa = Z sp(ea(1 4 bp™)),
€€y

where s, (z) is the unique integer satisfying s, (z) =
2 mod p"*! and 0 < s,(x) < p"*. When p = 3, we
easily have

(1) Tpp1 =1+ b3"

for any n > 1 and b. When p > 7, we have ¢ > 1 and

hence ZEGM e = 0 holds. Therefore, we easily see
that ;4 is a multiple of p"*! when p > 7. So, when
p>T7, we put

1
(2) Ynba = W Tnb,a-

When o =1, we simply write

Tnb = Tnb,1 and Ynb = Ynb,1-
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Since 0 < s, (ea(1l + bp™)) < p™, inequalities

(3) 1 S Ynp,a S q— 1

hold for any n, b, .
The following two results are important for our
purpose.
Lemma 1.
n > 1, we have

Assume p>T7. For any o and

p—1

Z Ynba = Yn—1,0,a T q2-
b=0

Proof. For € € g, let
cx=ayg+ap+- - +ap"+---

be the p-adic expansion of ea where a; is an integer
with 0 < a; < p—1. We see that

sp(ea(l +bp")) = sp_1(ea) + so(a, + agh)p”

Further, since p t ag, we have

{so(an+apb) [0<b<p—1}={0,1, -, p—1}.
Therefore, it follows that
p—1
Z sn(ea(1 4 bp")) = ps,_1(ea) + gp™ .
b=0

Hence, we see that

p—1 p—1
DR ol SRCHIRR)
b=0 €€y \ b=0
=D Z Sn—1 (EO[ + qun+l
€€ /g
2 n+1

= PTpn—1,0, +qp
from which the assertion follows immediately. O

Lemma 2. Assumep > 7. Foranyn > 1 and
o, we have Ynpo # Yno,a for some b.

Proof. Assume that the values y,;, are the
same for all b=0,---,p—1. Then, Lemma 1
shows yn—10a = —¢® mod p. This implies Yn—10,0 =
(3¢+1)/2 mod p, since —¢®=-plg+1)/2+
(3¢ +1)/2 (note that ¢ is an odd integer). But this
contradicts (3) because ¢—1< (3¢+1)/2<p=
2g+1. U

3. Proof of Proposition 1. We are going to
prove Proposition 1, making use of the analytic
class number formula. Throughout the section, §
denotes the odd character of conductor p and
order 2, and for n > 0, v, denotes a character of
conductor p"*! and order p”. Note that, when n = 0,
1y is the trivial character.
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For these characters é and 1, let

1 o1
By sy, = o Z a- 6y (a)
a=1

be the generalized Bernoulli number. Then, Bj sy,
belongs to the field F,, = Q(({y»). When « € Z,, with
a =1 mod p is given, we define

(1) X = T, (1 w(a*)Bl,w,),

2
where Tr,; denotes the trace map from F, to F}
(n>1). We can express X in terms of z, ;o defined
in §2.

Lemma 3. Put {, =¢,(1+p"), which is a
primitive p-th root of unity. Then, for n>1, we
have

1 P~
(5) X = _an,b.ag;'
P’
Proof. Let p,—1 be the group of (p—1)-st
roots of unity in Z,. Replacing ala with a, we
have

1 pn,+1_1
W(a™")Bisy, = o > sulac) - 6 (a)
a=1
1 =
= > sulea(l +bp))é(e)in(1 + bp).
€€pp—1 b=0

Since p=3 mod 4, we have p, 1 = 13U (—py).
Further, §(¢) = 1,6(—¢) = —1 and s,(—¢) = p"*! —
sy (€) hold for any € € p,. Hence we obtain

1
5 P(a)Busy,

pr—1

= ZZS" ea(1 + bp)), (1 + bp).

n+1
D €€y b=0

For a p"-th root ¢ of unity, we have Tr,;(¢) =
p" !¢ or 0 according as ¢? = 1 or not. This fact and

(1 + bp") = Cb give

X = QZan ca(l+bp")¢,

€€ty b=0

Z Tn bucpv

pbO

which proves (5). O

Here we apply the analytic class number
formula (cf. Washington [8, Theorem 4.17]) to the
field k,. First, for n > 1, the class number formula
implies
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1
(6) h’!_L/h’r_lfl =P H <— 5 Bl,&un> ,
Pn

where v, runs over the Dirichlet characters of
conductor p"*!' and order p". (Note that the
unit index of k, equals 1; see e.g. Conner and
Hurrelbrink [1, Lemma 13.5].) Next, for n =0 and
p > 7, we obtain

1
hy =2 X <— §Bl,6> = —Big,

and an easy calculation using 6(+e) = £1 gives
(7) hy = =2yo0 + ¢

The following is our key lemma.

Lemma 4. Assume that ¢ divides h, /h,_,
and that { is a primitive root modulo p* (resp.
modulo p) when n>2 (resp. n=1). Further,
assume that an element o € Z,, with o« =1 mod p
is given. Then we have

(8) Tnpa = Tpoa mod £
forallb=0,1,---,p—1, and when p > 7 we have
9) Ynba = Yn0,0 mod £
forallb=0,1,---,p—1.

Proof. Put F, = Q({,») as before. Then, the
assumption of Lemma 4 means that the prime ¢ does
not decompose in F,. Namely, there is a unique
prime ideal £ of F,, lying over £. If £ divides h /h, |,

then, by (6), there exists a character v, satisfying

1
— B sy, =0 mod L.

(10) 5

Multiplying 1(a~!) to (10) and taking trace from F),
to F1, we obtain

X =0 mod L,

where X is defined by (4) and £, = LN F; which

is the unique prime ideal of F; over ¢. (In this

argument, we rely on the fact that £ is the only

prime ideal over ¢.) Therefore, we have from (5)
p—1

meb’acg =0 mod L4,
b=0

(11)

noting that p is prime to ¢. Since £ is a primitive

root modulo p, the only linear relation among (ﬁ’s
p—1

over Fis > Cz = 0, where F is the finite field with

b=0
¢ elements. Therefore, from (11) we see that (8)
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must hold for all b. Finally, (9) is derived directly
from (8) when p > 7 (cf. (2)). O

Proof of Proposition 1. When p=3, (1)
shows x,11 — Zpno1 = 3", which implies that (8)
does not hold for any ¢ # 3. Hence, by Lemma 4,
Proposition 1 holds for p = 3. Hereafter we assume
p>T.

First, we consider the case £ >q—1. If ¢
divides h,, /h,_,, then, by Lemma 4, (9) holds for
all b. (Here we fix an arbitrary «, e.g. a = 1.) Then,
we obtain Y, pa = Yno.« from (9), thanks to (3). This
contradicts Lemma 2, which proves Proposition 1
in this case. (This argument is the same as in
[6, Proposition 2].)

In dealing with the case £ < g — 2, we need the
result of Gut [2] which asserts

(12)

__pr=3
hy < ——
0=
in our situation. Now assume ¢ =g — 2. Then it
follows from (3)

(13) 1 S Yn,b,o S 14 + 1.

If ¢ divides h; /h;,

1, then we see from Lemma 2
that, for any b, ¥, must be equal to 1 or £+ 1,
because both (9) and (13) hold. Hence,

(14) Ynba =1 mod ¢

for all a and b. Then, from Lemma 1 we obtain
Yn—1,0,a =p—¢=20+5— (€—|—2)2 =1 mod ¢

for any a. This congruence and an easily verified
equation

Yn—1,0,a(1+bpr=1) = Yn—1ba
show that

(15) Yn—1pa = 1 mod ¢

holds for any a and b. Thus we derived (15) from
(14). Repeating this process, we finally reach the
congruence Yy = 1 mod ¢, which gives

(16) hy =—-2+44+2=0 mod ¢

by virtue of (7). But (16) contradicts (12) because
we have (p—3)/4= (¢ +1)/2 < ¢. This completes
the proof of Proposition 1 (I) and the case ¢ > g — 2
of Proposition 1 (II).

In the rest of this section, we deal with the case
n=1,¢g—6</¢<qg—3. Since ¢ is odd, £ =q— 3,
q — 5 occurs only when ¢ = 2. In the case 2 = ¢ — 3,



No. 1]

we have p =11, and an easy computation shows
Y11 — Y10 = 1. Hence, in this case, hy/hy is not
divisible by ¢ = 2 by Lemma 4. The case 2=¢—5
does not occur because p = 2¢g + 1 = 15 is not prime.
Next, assume {=gq—4, namely ¢g=/{+4,
p=2¢+9. All possible values of ¢ < 41 and p for
which £ is a primitive root modulo p are listed in
Table I. In each case of Table I, we can find a b for
which 15 —y10 is prime to ¢, which shows that
£t hi/hy by Lemma 4. Our choice of b is shown
in Table I. So we assume ¢ > 41 in the following
argument. If ¢ divides hy/h;, then Lemma 4,
Lemma 2 and (3) show that, for some ¢ =1,2,3,

(17) b=0,1,---,p—1)

holds (note that ¢ —1 = ¢+ 3 in this case). Then
Lemma 1 gives

Y1 =% mod £

Yoo =ip — ¢ = 9 — 16 mod ¥,

which implies
(18) hy =—2(9¢ —16) +4 =36 — 18i
=18,¢,£/ — 18 mod /¢

by (7). The estimate (12) is hy < (¢ + 3)/2 in this
case, and ({4 3)/2<{¢—18 for ¢>41. Hence
the second and third congruences in (18) are
impossible. The first congruence in (18) implies
hy =18 for £>41. But this is also impossible,
because, as is well known, h; is odd (this fact is
also derived from (7)). Thus all possibilities have
been excluded, showing ¢ 1 hy /h, in this case.

Finally, we assume ¢ = q— 6, for which ¢=
£+ 6,p =20+ 13. Our argument proceeds in a way
similar to the case £ =g —4. First, we settle the
cases when ¢ < 113 and ¢ is a primitive root modulo
p, which are listed in Table II. In all these cases,
we found that y11 — y10 is prime to ¢, as shown in
Table II. Hence £t hy /hy holds by Lemma 4. Next
we assume ¢ > 113. If ¢ divides hy/hy, then the
same argument as above shows that, for some ¢
with 1 <7 <5, y15, =4 mod ¢ for all b. Then yy =
137 — 36 by Lemma 1, and hence

(19)  hy =52,26,4, — 26,0 — 52 mod £

by (7). The estimate (12) is hy < (¢ +5)/2 in this
case, and hence the last three congruences in (19)
are impossible, because £ —52> ({+5)/2 for
¢>113. The other cases h; =26,52 are also
impossible because h, is odd. Thus we have /1
hi /hy in this case, too.

Cyclotomic Z,-extension of Q(,/=p) 19

Table I. f=q—4<41

4 7 11 19 31

» 23 31 47 71

b 1 1 1 2
Yib — Y10 -3 -1 2 -2

Table II. /=¢q—6< 113

4 3 5 23 89 107

P 19 23 59 191 227
Y11 — Y10 2 -3 -1 1 1

This completes the proof of Proposition 1. [

Remark. In the process of our proof dealing
with the case ¢ = ¢ — 2, it is essential that, if /¢
divides h,, /h.,_,, the values y,; , modulo ¢ would be
independent of b and « (cf. (14)). This independence
is no longer true for ¢ < gq—4. For example, if
¢ =q—4and ¢ divides h, /h,_,, then, for a given «,
Ynpa can be ¢ or ¢4 £ for all b with ¢ =1, 2 or 3.
Because of these three possibilities, the argument
for the case £ = g — 2 does not work for £ = q — 4.

Exceptionally, we can cope with this difficulty
when mn =1, as shown in the proof of
Proposition 1(II) for {=¢—4 and {=¢q—6. It
would be possible to obtain an assertion similar
to Proposition 1(II) for smaller ¢ with a similar
method.

4. Proof of Proposition 2. In this section
we explain how we verified Proposition 2 with a
computer. We adopt the notation of previous
sections and assume p > 7 because the case p =3
is already settled in Proposition 1. Lemma 4 is the
basic tool for proving Proposition 2. Namely, for a
given p, n and ¢, if we can find some b and « which
do not satisfy the congruence (9), then we can
conclude that ¢ does not divide h;, /h, ;. As aresult
of our search for appropriate b and «, it turned out
that the value o = 1 is sufficient for our purpose. So,
we always take a = 1 in this section. To sum up, our
task is finding a b for which y,,, — yn0 is prime to £.

What we actually did is as follows. When a
prime number p with p =3 mod 4 and n > 1 are
given, we put

d(B) = ng {yn,b — Yno | 1<bh< B}

for a natural number B < p — 1. We run a program
which computes d(B) for B=1,2,--- until d(B) =1
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is attained. Our computation was carried out by
using Maple 15 (cf. [5]) on Apple’s Mac Pro
computer with two 2.4 GHz quad-core Intel Xeon
processor and 16GB memory. As a result, we could
find a B with d(B) =1 for all p and n treated in
Proposition 2. If d(B) = 1 holds for some B, then,
for any prime ¢, the congruence (9) in Lemma 4 can
not be satisfied for all b. Therefore, our computation
certainly verifies Proposition 2.

We observe that the first value of B with
d(B) =1, say By, is not so large. The largest By
in the range of our computation is 17 attained
when p = 6043,n = 19. For reference, we prepared
Table III which shows a state of distribution of Bj.
In Table III, N is the number of pairs (p,n) in the
range of Proposition 2 for which the first value of B
with d(B) = 1is B = By, and “ratio” is (N /61800) x
100, where 61800 is the total number of pairs (p,n)
we treated.

Table III. Distribution of By
By 1 2 3 4 >5
N 3671 34298 13627 5539 4665

ratio (%) 5.9 55.5 22.0 9.0 7.6

[1]
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