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Abstract: Let p be a prime number with p � 3 mod 4 and q ¼ ðp� 1Þ=2. Let k ¼ Qð ffiffiffiffiffiffiffi�pp Þ
and k1=k be the cyclotomic Zp-extension. Denote by h�n the relative class number of the n-th

layer kn. Let ‘ be a prime number with ‘ 6¼ p. We show that, for any n � 1, ‘ does not divide

h�n =h
�
n�1 (resp. h�1 =h

�
0 ) if ‘ is a primitive root modulo p2 (resp. p) and ‘ � q � 2 (resp. ‘ � q � 6).

Further, we show with the help of computer that when p < 10000 and n � 100, ‘ does not divide

h�n =h
�
n�1 (resp. h�1 =h

�
0 ) for any prime ‘ which is a primitive root modulo p2 (resp. p).
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1. Introduction. Let p be a prime number

with p � 3 mod 4. Let k ¼ Qð ffiffiffiffiffiffiffi�pp Þ, and k1=k be

the cyclotomic Zp-extension. Let kn be the n-th

layer of k1=k with k0 ¼ k. Denote by h�n the relative

class number of kn. Let ‘ be a prime number with

‘ 6¼ p. By a well known theorem of Washington [7], ‘

does not divide the ratio h�n =h
�
n�1 for sufficiently

large n. By Horie [4, Theorem 2], ‘ - h�n =h
�
n�1 for all

n � 1 if ‘ is a primitive root modulo p2 and ‘ is

larger than an explicit but complicated constant

depending on p. In this note, we show the following

assertion. We put q ¼ ðp� 1Þ=2.

Proposition 1. The setting is the same as

above.

(I) If ‘ � q � 2 and ‘ is a primitive root modulo p2,

then ‘ - h�n =h
�
n�1 for all n � 1.

(II) If ‘ � q � 6 and ‘ is a primitive root modulo p,

then ‘ - h�1 =h
�
0 .

Proposition 1(I) generalizes [6, Proposition 2]

which treats the case ‘ � q � 1. Our method for

proof of Proposition 1 is a modification of the

argument in [6] and effective use of the classical

class number formula for k ¼ Qð ffiffiffiffiffiffiffi�pp Þ. When p ¼ 3,

the assertion of Proposition 1(I) is contained in

Horie [3, Proposition 3].

When p and ‘ are small and ‘ is a primitive root

modulo p2 (or p when n ¼ 1), we can effectively

decide, by using Lemma 4 in §3, whether h�n =h
�
n�1 is

divisible by ‘. With the help of computer, we show

the following result.

Proposition 2. Let p < 10000 be a prime

number with p � 3 mod 4 and ‘ a prime number.

Then ‘ does not divide h�n =h
�
n�1 for any n � 100 if ‘

is a primitive root modulo p2. Further, ‘ does not

divide h�1 =h
�
0 if ‘ is a primitive root modulo p.

2. Preliminaries. In this section we define

integers xn;b;�, yn;b;� and give some properties of

them. They will be used in the following sections

for proving Propositions 1 and 2.

Let p, q, kn and h�n be as in §1. Let �q be the

group of q-th roots of unity in the ring Zp of p-adic

integers. For each integer b with 0 � b � p� 1 and

each p-adic integer � 2 Zp with � � 1 mod p, we put

xn;b;� ¼
X
�2�q

snð��ð1þ bpnÞÞ;

where snðxÞ is the unique integer satisfying snðxÞ �
x mod pnþ1 and 0 � snðxÞ < pnþ1. When p ¼ 3, we

easily have

xn;b;1 ¼ 1þ b3nð1Þ

for any n � 1 and b. When p � 7, we have q > 1 and

hence
P

�2�q � ¼ 0 holds. Therefore, we easily see

that xn;b;� is a multiple of pnþ1 when p � 7. So, when

p � 7, we put

yn;b;� ¼
1

pnþ1
xn;b;�:ð2Þ

When � ¼ 1, we simply write

xn;b ¼ xn;b;1 and yn;b ¼ yn;b;1:
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Since 0 < snð��ð1þ bpnÞÞ < pnþ1, inequalities

1 � yn;b;� � q � 1ð3Þ

hold for any n; b; �.

The following two results are important for our

purpose.

Lemma 1. Assume p � 7. For any � and

n � 1, we have

Xp�1

b¼0

yn;b;� ¼ yn�1;0;� þ q2:

Proof. For � 2 �q, let

�� ¼ a0 þ a1pþ � � � þ anpn þ � � �

be the p-adic expansion of �� where ai is an integer

with 0 � ai � p� 1. We see that

snð��ð1þ bpnÞÞ ¼ sn�1ð��Þ þ s0ðan þ a0bÞpn:

Further, since p - a0, we have

fs0ðan þ a0bÞ j 0 � b � p� 1g ¼ f0; 1; � � � ; p� 1g:

Therefore, it follows that

Xp�1

b¼0

snð��ð1þ bpnÞÞ ¼ psn�1ð��Þ þ qpnþ1:

Hence, we see that

Xp�1

b¼0

xn;b;� ¼
X
�2�q

Xp�1

b¼0

snð��ð1þ bpnÞÞ
 !

¼ p
X
�2�q

sn�1ð��Þ þ q2pnþ1

¼ pxn�1;0;� þ q2pnþ1;

from which the assertion follows immediately. �

Lemma 2. Assume p � 7. For any n � 1 and

�, we have yn;b;� 6¼ yn;0;� for some b.

Proof. Assume that the values yn;b;� are the

same for all b ¼ 0; � � � ; p� 1. Then, Lemma 1

shows yn�1;0;� � �q2 mod p. This implies yn�1;0;� �
ð3q þ 1Þ=2 mod p, since �q2 ¼ �pðq þ 1Þ=2þ
ð3q þ 1Þ=2 (note that q is an odd integer). But this

contradicts (3) because q � 1 < ð3q þ 1Þ=2 < p ¼
2q þ 1. �

3. Proof of Proposition 1. We are going to

prove Proposition 1, making use of the analytic

class number formula. Throughout the section, �

denotes the odd character of conductor p and

order 2, and for n � 0,  n denotes a character of

conductor pnþ1 and order pn. Note that, when n ¼ 0,

 0 is the trivial character.

For these characters � and  n, let

B1;� n ¼
1

pnþ1

Xpnþ1�1

a¼1

a � � nðaÞ

be the generalized Bernoulli number. Then, B1;� n

belongs to the field Fn ¼ Qð�pnÞ. When � 2 Zp with

� � 1 mod p is given, we define

X ¼ Trn;1
1

2
 ð��1ÞB1;� n

� �
;ð4Þ

where Trn;1 denotes the trace map from Fn to F1

(n � 1). We can express X in terms of xn;b;� defined

in §2.

Lemma 3. Put �p ¼  nð1þ pnÞ, which is a

primitive p-th root of unity. Then, for n � 1, we

have

X ¼
1

p2

Xp�1

b¼0

xn;b;��
b
p:ð5Þ

Proof. Let �p�1 be the group of ðp� 1Þ-st
roots of unity in Zp. Replacing ��1a with a, we

have

 ð��1ÞB1;� n ¼
1

pnþ1

Xpnþ1�1

a¼1

snða�Þ � � nðaÞ

¼
1

pnþ1

X
�2�p�1

Xpn�1

b¼0

snð��ð1þ bpÞÞ�ð�Þ nð1þ bpÞ:

Since p � 3 mod 4, we have �p�1 ¼ �q [ ð��qÞ.
Further, �ð�Þ ¼ 1; �ð��Þ ¼ �1 and snð��Þ ¼ pnþ1 �
snð�Þ hold for any � 2 �q. Hence we obtain

1

2
 ð��1ÞB1;� n

¼
1

pnþ1

X
�2�q

Xpn�1

b¼0

snð��ð1þ bpÞÞ nð1þ bpÞ:

For a pn-th root � of unity, we have Trn;1ð�Þ ¼
pn�1� or 0 according as �p ¼ 1 or not. This fact and

 nð1þ bpnÞ ¼ �bp give

X ¼
1

p2

X
�2�q

Xp�1

b¼0

snð��ð1þ bpnÞÞ�bp

¼
1

p2

Xp�1

b¼0

xn;b;��
b
p;

which proves (5). �

Here we apply the analytic class number

formula (cf. Washington [8, Theorem 4.17]) to the

field kn. First, for n � 1, the class number formula

implies
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h�n =h
�
n�1 ¼ p

Y
 n

�
1

2
B1;� n

� �
;ð6Þ

where  n runs over the Dirichlet characters of

conductor pnþ1 and order pn. (Note that the

unit index of kn equals 1; see e.g. Conner and

Hurrelbrink [1, Lemma 13.5].) Next, for n ¼ 0 and

p � 7, we obtain

h�0 ¼ 2� �
1

2
B1;�

� �
¼ �B1;�;

and an easy calculation using �ð	�Þ ¼ 	1 gives

h�0 ¼ �2y0;0 þ q:ð7Þ

The following is our key lemma.

Lemma 4. Assume that ‘ divides h�n =h
�
n�1

and that ‘ is a primitive root modulo p2 (resp.

modulo p) when n � 2 (resp. n ¼ 1). Further,

assume that an element � 2 Zp with � � 1 mod p

is given. Then we have

xn;b;� � xn;0;� mod ‘ð8Þ

for all b ¼ 0; 1; � � � ; p� 1, and when p � 7 we have

yn;b;� � yn;0;� mod ‘ð9Þ

for all b ¼ 0; 1; � � � ; p� 1.

Proof. Put Fn ¼ Qð�pnÞ as before. Then, the

assumption of Lemma 4 means that the prime ‘ does

not decompose in Fn. Namely, there is a unique

prime ideal L of Fn lying over ‘. If ‘ divides h�n =h
�
n�1,

then, by (6), there exists a character  n satisfying

1

2
B1;� n � 0 mod L:ð10Þ

Multiplying  ð��1Þ to (10) and taking trace from Fn
to F1, we obtain

X � 0 mod L1;

where X is defined by (4) and L1 ¼ L \ F1 which

is the unique prime ideal of F1 over ‘. (In this

argument, we rely on the fact that L is the only

prime ideal over ‘.) Therefore, we have from (5)

Xp�1

b¼0

xn;b;��
b
p � 0 mod L1;ð11Þ

noting that p is prime to ‘. Since ‘ is a primitive

root modulo p, the only linear relation among �bp’s

over F‘ is
Pp�1

b¼0

�bp ¼ 0, where F‘ is the finite field with

‘ elements. Therefore, from (11) we see that (8)

must hold for all b. Finally, (9) is derived directly

from (8) when p � 7 (cf. (2)). �

Proof of Proposition 1. When p ¼ 3, (1)

shows xn;1;1 � xn;0;1 ¼ 3n, which implies that (8)

does not hold for any ‘ 6¼ 3. Hence, by Lemma 4,

Proposition 1 holds for p ¼ 3. Hereafter we assume

p � 7.

First, we consider the case ‘ � q � 1. If ‘

divides h�n =h
�
n�1, then, by Lemma 4, (9) holds for

all b. (Here we fix an arbitrary �, e.g. � ¼ 1.) Then,

we obtain yn;b;� ¼ yn;0;� from (9), thanks to (3). This

contradicts Lemma 2, which proves Proposition 1

in this case. (This argument is the same as in

[6, Proposition 2].)

In dealing with the case ‘ � q � 2, we need the

result of Gut [2] which asserts

h�0 �
p� 3

4
ð12Þ

in our situation. Now assume ‘ ¼ q � 2. Then it

follows from (3)

1 � yn;b;� � ‘þ 1:ð13Þ

If ‘ divides h�n =h
�
n�1, then we see from Lemma 2

that, for any b, yn;b;� must be equal to 1 or ‘þ 1,

because both (9) and (13) hold. Hence,

yn;b;� � 1 mod ‘ð14Þ

for all � and b. Then, from Lemma 1 we obtain

yn�1;0;� � p� q2 � 2‘þ 5� ð‘þ 2Þ2 � 1 mod ‘

for any �. This congruence and an easily verified

equation

yn�1;0;�ð1þbpn�1Þ ¼ yn�1;b;�

show that

yn�1;b;� � 1 mod ‘ð15Þ

holds for any � and b. Thus we derived (15) from

(14). Repeating this process, we finally reach the

congruence y0;0 � 1 mod ‘, which gives

h�0 � �2þ ‘þ 2 � 0 mod ‘ð16Þ

by virtue of (7). But (16) contradicts (12) because

we have ðp� 3Þ=4 ¼ ð‘þ 1Þ=2 < ‘. This completes

the proof of Proposition 1 (I) and the case ‘ � q � 2
of Proposition 1 (II).

In the rest of this section, we deal with the case

n ¼ 1; q � 6 � ‘ � q � 3. Since q is odd, ‘ ¼ q � 3;
q � 5 occurs only when ‘ ¼ 2. In the case 2 ¼ q � 3,
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we have p ¼ 11, and an easy computation shows

y1;1 � y1;0 ¼ 1. Hence, in this case, h�1 =h
�
0 is not

divisible by ‘ ¼ 2 by Lemma 4. The case 2 ¼ q � 5

does not occur because p ¼ 2q þ 1 ¼ 15 is not prime.

Next, assume ‘ ¼ q � 4, namely q ¼ ‘þ 4;
p ¼ 2‘þ 9. All possible values of ‘ < 41 and p for

which ‘ is a primitive root modulo p are listed in

Table I. In each case of Table I, we can find a b for

which y1;b � y1;0 is prime to ‘, which shows that

‘ - h�1 =h
�
0 by Lemma 4. Our choice of b is shown

in Table I. So we assume ‘ � 41 in the following

argument. If ‘ divides h�1 =h
�
0 , then Lemma 4,

Lemma 2 and (3) show that, for some i ¼ 1; 2; 3,

y1;b � i mod ‘ ðb ¼ 0; 1; � � � ; p� 1Þð17Þ

holds (note that q � 1 ¼ ‘þ 3 in this case). Then

Lemma 1 gives

y0;0 � ip� q2 � 9i� 16 mod ‘;

which implies

h�0 � �2ð9i� 16Þ þ 4 � 36� 18ið18Þ
� 18; ‘; ‘� 18 mod ‘

by (7). The estimate (12) is h�0 � ð‘þ 3Þ=2 in this

case, and ð‘þ 3Þ=2 < ‘� 18 for ‘ � 41. Hence

the second and third congruences in (18) are

impossible. The first congruence in (18) implies

h�0 ¼ 18 for ‘ � 41. But this is also impossible,

because, as is well known, h�0 is odd (this fact is

also derived from (7)). Thus all possibilities have

been excluded, showing ‘ - h�1 =h
�
0 in this case.

Finally, we assume ‘ ¼ q � 6, for which q ¼
‘þ 6; p ¼ 2‘þ 13. Our argument proceeds in a way

similar to the case ‘ ¼ q � 4. First, we settle the

cases when ‘ < 113 and ‘ is a primitive root modulo

p, which are listed in Table II. In all these cases,

we found that y1;1 � y1;0 is prime to ‘, as shown in

Table II. Hence ‘ - h�1 =h
�
0 holds by Lemma 4. Next

we assume ‘ � 113. If ‘ divides h�1 =h
�
0 , then the

same argument as above shows that, for some i

with 1 � i � 5, y1;b � i mod ‘ for all b. Then y0;0 �
13i� 36 by Lemma 1, and hence

h�0 � 52; 26; ‘; ‘� 26; ‘� 52 mod ‘ð19Þ

by (7). The estimate (12) is h�0 � ð‘þ 5Þ=2 in this

case, and hence the last three congruences in (19)

are impossible, because ‘� 52 > ð‘þ 5Þ=2 for

‘ � 113. The other cases h�0 ¼ 26; 52 are also

impossible because h�0 is odd. Thus we have ‘ -
h�1 =h

�
0 in this case, too.

This completes the proof of Proposition 1. �

Remark. In the process of our proof dealing

with the case ‘ ¼ q � 2, it is essential that, if ‘

divides h�n =h
�
n�1, the values yn;b;� modulo ‘ would be

independent of b and � (cf. (14)). This independence

is no longer true for ‘ � q � 4. For example, if

‘ ¼ q � 4 and ‘ divides h�n =h
�
n�1, then, for a given �,

yn;b;� can be i or iþ ‘ for all b with i ¼ 1, 2 or 3.

Because of these three possibilities, the argument

for the case ‘ ¼ q � 2 does not work for ‘ ¼ q � 4.

Exceptionally, we can cope with this difficulty

when n ¼ 1, as shown in the proof of

Proposition 1(II) for ‘ ¼ q � 4 and ‘ ¼ q � 6. It

would be possible to obtain an assertion similar

to Proposition 1(II) for smaller ‘ with a similar

method.

4. Proof of Proposition 2. In this section

we explain how we verified Proposition 2 with a

computer. We adopt the notation of previous

sections and assume p � 7 because the case p ¼ 3
is already settled in Proposition 1. Lemma 4 is the

basic tool for proving Proposition 2. Namely, for a

given p, n and ‘, if we can find some b and � which

do not satisfy the congruence (9), then we can

conclude that ‘ does not divide h�n =h
�
n�1. As a result

of our search for appropriate b and �, it turned out

that the value � ¼ 1 is sufficient for our purpose. So,

we always take � ¼ 1 in this section. To sum up, our

task is finding a b for which yn;b � yn;0 is prime to ‘.

What we actually did is as follows. When a

prime number p with p � 3 mod 4 and n � 1 are

given, we put

dðBÞ ¼ gcd fyn;b � yn;0 j 1 � b � Bg

for a natural number B � p� 1. We run a program

which computes dðBÞ for B ¼ 1; 2; � � � until dðBÞ ¼ 1

Table I. ‘ ¼ q � 4 < 41

‘ 7 11 19 31

p 23 31 47 71

b 1 1 1 2

y1;b � y1;0 �3 �1 2 �2

Table II. ‘ ¼ q � 6 < 113

‘ 3 5 23 89 107

p 19 23 59 191 227

y1;1 � y1;0 2 �3 �1 1 1
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is attained. Our computation was carried out by

using Maple 15 (cf. [5]) on Apple’s Mac Pro

computer with two 2.4 GHz quad-core Intel Xeon

processor and 16GB memory. As a result, we could

find a B with dðBÞ ¼ 1 for all p and n treated in

Proposition 2. If dðBÞ ¼ 1 holds for some B, then,

for any prime ‘, the congruence (9) in Lemma 4 can

not be satisfied for all b. Therefore, our computation

certainly verifies Proposition 2.

We observe that the first value of B with

dðBÞ ¼ 1, say B0, is not so large. The largest B0

in the range of our computation is 17 attained

when p ¼ 6043; n ¼ 19. For reference, we prepared

Table III which shows a state of distribution of B0.

In Table III, N is the number of pairs ðp; nÞ in the

range of Proposition 2 for which the first value of B

with dðBÞ ¼ 1 is B ¼ B0, and ‘‘ratio’’ is ðN=61800Þ �
100, where 61800 is the total number of pairs ðp; nÞ
we treated.
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