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Solvability of primitive equations for the ocean with vertical mixing
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Abstract:

Small time existence of a strong solution to the free surface problem of

primitive equations for the ocean with the variable turbulent viscosity terms is shown in this
paper. The turbulent viscosity coefficients, which include the Richardson number depending on
the unknown variables, are formulated explicitly. We consider the problem in the 3-dimensional
stripe-like region, and construct the strong local-in-time solution in Sobolev-Slobodetskii spaces.
The details of the proofs will be provided in another full paper.
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1. Introduction. In the present paper, we
investigate a free surface problem of primitive
equations taking the vertical mixing into account,
and show the unique existence of a strong local-in-
time solution, which is a new result developed from
our earlier result [3]. We adopt practical boundary
conditions subject to Bryan [1], Cox [2] and
Killworth [4]. Another feature of the present work
is taking the parametrization of the vertical mixing
into account. All of the existing results in mathe-
matics ([5], for instance) regarded the turbulent
viscosity coefficients to be positive constants,
while in the parametrization of oceanography, they
often depend on the horizontal velocity and the
temperature. This leads to the difficulty in the
estimate of the principal terms. Furthermore, for
the equation of state, we adopt a general form g =
o(p, 0, 5) here.

2. Formulation of the problem. Our
problem is formulated in the 3-dimensional strip-
like region. By x = (x1,22,23), we denote an or-
thogonal Cartesian coordinate system with x3 being
the vertical direction. Let the unknown free surface
and the known bottom of the ocean be represented
by x3=F(2,t) and xz3=>0b(2) (2 = (21,22)),
respectively. The initial value Fy(a') of F(a/,t) is
assumed to satisfy Fy(z') — b(z') > ¢y with a posi-
tive constant ¢y for any 2’ € R?. Then the domain
Q(t) of the ocean at time t is represented as
{(z',x3)|2" € R?,b(z') < x3 < F(«',t)}. Making use
of the Boussinesq approximation, the equations
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that we consider in the present paper are as
follows:

% - {MAV + m%} + AV = —iw
g_i:—gg, V-v+g—:3=07
(2.1) DD_f _ [M3A9+/~‘4%} =0,
%f - [M5AS+ MG%;} =0,
o=0(p,6,5) ze€Qt), t>0.
Here, fAv is a Coriolis force with A = < (1) _01 >

and the Coriolis parameter f is a positive constant
due to the f-approximation; V and A are 2-dimen-
sional gradient and Laplacian, respectively. The
horizontal and vertical components of the velocity
are represented by v w, respectively; p, the
pressure; o, the density; gy, a positive constant;
g, the gravity force (a positive constant); 6, the
temperature; S, the salinity; (u1, p2), coefficients of
the turbulent viscosity; (us, 1a) and (s, ue), scaled
sums of turbulent and molecular diffusivities,
respectively, u; (i =1,3,5) are positive constants.
In addition, we assume ([1], [4], [7])

D

(2.2) Di (x3 — F(2',t)) =0,
where B = g +v-V+ wi is an operator
Dt — ot 913 P

known as the material derivative. Following [6]
and [7],
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o _<8v 89)
Hi = [ p) 5,9731.5

ov o \\ "
= Miq ]- 7R a Y5 by
u,(+oz (593933)) o

ov do L Oo |ov ™
R=R|—
(8$3 o ox: ) QQ 8x3 C(){EJ

where 7; = 2 for ¢ =2, and n; = 1 for i = 4,6, uiq,,
wip (1 =2,4,6) are positive constants, and R is
the Richardson number. Conditions on the free

)

surface T'(t) = {x € R*|z3 = d(z/,t)} and T} =
{2’ b(z')|2" € R?} are:
ov 00
T =T
23) MZ@IIF 1, M48 np 2,
' S
—=qS. p= T'(t), t > 0.
g =918, p=p T€ (t), t>
ov 00 09S 0
(24) MZ@H[, B M(’) 11} — e 81’11, -
v-Vb+w=0, xe€ly,t>0.

Here np = (nl,ng,ng)T is the unit normal vector
to T'(t) at time ¢t pointing to the ocean region,
n%:(nl,ng)T; 71, the wind shear due to the
movement of the atmosphere over the ocean
surface; 7o, the heat flux on the ocean surface;
po(x,t), the atmospheric pressure at the ocean
surface; gi(x,t), a given function representing the
difference of the precipitation and evaporation
rate; and n;, the unit outer normal to I'y. Initial
conditions on = Q(0) and R? are

(2 5) { (V,Q, S)|t:0 = (VO’QOaSO)(x)v S Q7
. F(2',0) = Fy(2)), 2’ € R?,
where vy = (v, ’UoQ)T. We apply the transform
(I)F : (Jf,t) — (y7 t*)
y/ — .CL'I, t* — t,
x3 — F(2',1)
2. o = (b(2)) — Fr(z))————— 77
26)  { = b))y s

+F[)($l).
Hereafter we use notations Qr = Q x (0,7), Ty =
Iy x (0,7), Ty =T x (0,T), respectively, where

Q= {(, )l € R% b(y) < ys < Fo(y/)},
Ly ={(y,y3)|y € R*, y3 =0b(y)},

r= {(y,ay3)|y/ € RZ) Ys = Fo(y,)}
In the following, we denote the inverse of the
transposed matrix of the Jacobian matrix of ®p by

/g = (@) = (@I(F)) (i,j=1,2,3),
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and use the notations fF)(y,t) = f(®5 (y,1)),

(Vi Vig)'= (J[(x/ynT)—l(vy/, %)

A=W W) O,

’ ot b(y)—F(y,t) ot
where V,, is the derivative with respect to /. For a
function defined in the whole space R?, we use the
same notation to the one restricted on Q(t) at each
t and then transfomed into the new coordinate
system.

3. Function spaces. Let G be a domain in

R" (n=2,3). By WL{G) we mean a space of
functions wu(z), x € G, equipped with the norm
2 o 2
lulliw e 2|: ID*ullZ, ) + lulliys ), where
a<
lullfre = Y IDull?, ) if Lis an integer,
) la|=l

dzdy

|| ||2 _ |D(Y D" ( )‘
Ullwia) = ‘ ‘ y‘n-&-Q{l}
(&%

l= []+{l}, 0<{l}<1.
For [ < 0, we define W}(R") as follows [3]:
W,(R")

= {u Il = [ 0+ I de < .
We also define the following function spaces:

W7(6) = {uta)

iflis a non—lnteger,

& = swplu(@)P
zeG
< oo}

1L 0L
W, (Gr) = Wy (Gr) N W, *(Gr)
(Gr =G x (0,T)), whose norms are defined by

)+ Z 1D w1

lal=1
(n=2,3, m € R). Next we introduce [3]

+ el

(R = ullZ, oy + Il ||

,%<GT) 2 (W, 2(0 7))

~1L
We also define function WZI’Q(GT):

spaces

{uEW (Gr) ’—EW (GT)},andform>2

m

m 2 2
;% (Gr) = {uu,t) \ [l 5, = sup u(e. 1)
2 T

+ sup |lu(-,t

| ©
te(0,7) 2
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ou|?

ot

D DA \

lol=1

e 2

?(Gr)

+ sup [Ju(z, )2 w <oo}.
ze@ w, 2 (0,T)

2

The n times product of a function space W is
denoted by W". Norms of the vector and the
product spaces are defined by the standard vector
norm and the sum of the norms of each space,

respectively.
4. Main result. Now, introduce notations
U= (u,d, S)T, Uy = (uO,QO,So)T, and denote

(v,w,0,S) after the coordinate transform by
(w,u3,0,5). Extend Uy(y) = (ug, b, So)(y) into the
half space t > 0 preserving the regularity, which is
denoted by Uy(y, t) = (uo,HO,So)(y, t). Introduce a
notation U’ = (u',8',5)" =U —U,. We consider:

ou'

E - ‘CM FZ/[/ gl,?l,g,Fu/ + EZ,{_’FU()
o, -
_—0 in QT,
(4.1) ot i
Bl(vF,3u7 4(:)7 vF,?)é)ul = g27FZ/[/ on FT7
BZ(VF,3ua §7 VF,3@)Z/{, = g37Ful on be’

Z/{/‘tfo = (0 0 O)T7
where o = o(p"), 8, S), and
Lyl = [Liyr(a— ), Logr(6 — 50)7

Ly (S — 5:'0)]T7
Bi(Vrsu, g, Vrso)U

= [wVed -np, Vel -ng, 1VeS ngl,
By(Vrsu, g, Virso)U

= [1Vrd -ny, Vel -1y, gVeS )’

9\2
Liyr = poi1 Ve + pio; <a33(F) —) (i=1,2,3),
ys

Ju
G p(u,uz) = -4, F (u-Vr)u-— fAu
Y3
ou 1 _
g (F) o~ V")
Yys Qo
) D
GQ’F(u, ’U,3) = —A1 - — (u : VF) — usa (F) -,
83/3 6y3
glﬂlr:hFul = [GLF’ GQ-,F(ua u3)67 GQ,F(uv u3)S]T7
gQ,Ful = [7:1(F) + ‘UQVFﬁO . 1’1F77~'2(F) + ,U4VF0~0 ‘np,

A0S + 16V Sy - npl”,

[Vol. 88(A),
Gy rl' = 16V S0 - )7,
Ly rUy = [L1y, plo, LQUF%, L3LIFSO] )

pi = pi(Vegu, 0, Vezp) (i = 2,4,6).
The problem for us is deduced from (2.1) and (2.4):

8’(1,3

(Vg - 1y, M4VF90 n;,

33 0
a =—-Vpr-u in Qp,
ug = —u-Vb on fb.
For F' = F — F,, taking the horizontal divergence
of (4.1)9, and adding it with (2.2) yields:
OF' ,
8t - £4,L{,FF = £4,Z,{,FFO —u-VF

2.0

a®(F ou;
+uz + Z )y

4.3 I Y
(4.3) i | /q +|VEF] Oys
-V F)| in R2,
F'l,_y=0 on RQ,
where

2 -~ ~
Visu, 0,V
LoyurEF = ZM( F3W,0, VE30)

=1\ /1+|VFP

X (Vui +a’ 8%) -V (‘3F.
Oys dyi

Now, define p,(z) by
pu(x) = po(2, Fy(2),0)

T3
+g/ Q((plue()vS())(x/wz'&vo)) ng,
F(](Z/)

We also define g, = o(py, 6o, So) and

The following is the main result:
Theorem 4.1. Letle (1/2,1), and T be an
arbitrary positive number. Assume that

(i) (vo,bo,50) € (WQH(RS) ﬂW;'(R3))x
(W (R W3 (R)) x
(W2+I(R3) N W32 (R?)) for some s; <0 (i =
1,2,3).

(1 + OéjRO) %

(i) 0<ec, < P

(i = 2747 6)7

54
R e W2T(R2), 6, <6(z) <oo, and 0<
Sy < So(z) < oo with positive constants c,, 6,
and S, respectively;
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(ifi) be iR and Fy(a) —b(&) > co >0 on

R? with a posztwe constant cy;

i 12 24,2
V) o e WS T (R, g e WiV (RE),
——3+,3H 3+l 3
po €Wy, "2 (R}), and the matriz Ay, =

Ovy;
(_m) 1s positive definite;
O ij=1,2

(v) For 1/2<B<1+1/2, 0€C*P(G) on G
{z € R®|zy > c1,20 > 0y, 23 > Sy}, mf g( )

AV

c1 > 0 and sup |[D%o(z)| < M for |o g 4.
zeG

Moreover, compatibility conditions up to the order 1
are satisfied. Then, there exists T € (0,T] such
that (4.1)—(4.3) has a unique solution (U',ug, F') €

o2+
W/(T*) x W;H’ ( XWQH 4+2(RQT*) satisfying

)
0< ‘“ < 0 and 0 < —7 < S on Qp., where W(T*) =
3+l
7 (@)

(W,

5. Auxiliary lemmas. We introduce some
lemmas used in the proof of Theorem 4.1, whose
proofs will be provided in a full paper published
later. Hereafter, C’s stand for positive constants

dependin on F 5 and
pending on bl g VOl
lpoll s 20 ., and gb()s for increasing positive
W Ry
functions of their arguments which include con-

stants depending on the same amounts as C’s. We
assume the following assumption:
A number T > 0 and a function F; satisfy F, €

W2+l +2 (RT)

F.(y,0) = Fyo(y). We shall call this assumtion as
assumption (Af ). The transform (2.6) is executed
with F' replaced by F,, and by Qp, we denote
the region mapped from [J Q(¢) x {t} with this

—%+Z 2 >0 %+l 9 ,
transform. b€ W3 (R*), Fy e Wi (R?), Fy(y) —

b(y) > ¢p. Hereafter, D* stands for the usual
multi-index of the derivative. In addition, we use
notations

Ly, t) = b(y') > ¢ for t € [0,T] and

9
D}, =
ik Ox;0x;0x),
B(ft) =
Fo(y) ,
S (10wl + [0 ) s ).
la|=y b(y')

for simplicity.
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Lemma 5.1. ForT > 0 and F satisfying the
assumption (Ag,), let us assume the same conditions
as in Theorem 4.1. In addition let us define

M. = (6..8.) € Wa(T) = (W25 @)%,
(8., 8|, = (60, S0) € (W3 (R))?,
N, = (M., F), V. = (5, M,), where

~(F, ~( L) g

P (y,t) = (v, Fy(y), )JFW

Y3 - .
X/ Q((ﬁ(F*>70*aS*)(yl7z37t)) d23
Fo ()

Then, we have:

10754V, )] < SNl )

{ZD po(y, t |+‘ngk 0(y)

la=2]
R, .
+/ : D;ij‘kM*(y,,Zg,t)’ dzg +1
by '

c{rren(c(14 170, gy, )}

+D3JkM (yv ) (7’ J?k_12) V(y,

where

+ D[N, (y, 1)

6 ﬁT?
3+1 (Qt)) W2+/ 4+2(R?).
Next, assume (~4 S(i Fy)) (i = 1,2) satisfy
8y St Fi)li—o = (Bo(®), So(w), Fo(y)),
(e(i)vs )= (00750) ( l(i)v‘gzi)%

Wi (t) = (W,

satisfies
~(Fiy)

N i) /
Py, t) =py (W, ) ) + e
® 0 a3 (Fp) (Y1)

Fo(y') . -
x / (B 8oy, Si)) (o 23, 8)) dzs (i = 1,2),
Y3

( ) (’L =1, 2),
(p,é S).
Lemma 5.2. Let T >0 satisfy Fy(y,t) —
() > ¢ (1 =1,2) fort € [0,T]. For this T, under
the same assumptions as in Lemma 5.1, the follow-
ing estimates hold for t € (0,T):

and i’(i)

Introducing notations Vi) = (P

we then estimate V = Vio) — V(
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D3V .t |<¢<ZIN e >

x ZD”N Y )+C|Wllw

Fy(y )|+ |D“Fuy(y/ )|)+1}

o= s
+| D} My, Ol (3, =1,2). ¥y, t) € Or,
with Wy (T) = (W25 (@) x w3 (R2),

6. Proof of Theorem 4.1. First, we con-
struct the following successive approximation of the

nonlinear problem for U{,, ) with m > 0:
au/'an
ot - ‘C (m)+Fm) u/erl
— 5‘7/{0
= gLF(m) (m) Jr ‘Cu(m) Fim uU at
=£"™ in QT,
(61) Bl (vF(m) 311(7" VF("] ))u,(m"'l)
= g2,F(m)u’ = S(m) on T'r,
B2(VE,) 3Wm)s 0(m)s V Fy 30(m) WU 1 11)

= G35, Ul = 5;(3"1) on Ty,

ul(m+1)|t:0 =(0,0,0) on .

For m = 0, we define

( /(m) u3(m)a F(m) (m)) = (07 07 07 Oa Oa Q(i)Ua 0~Ua 5'0))7

(u(7rz)aF('rn)) = (uUa E)) = (ﬁo,éo, 507E])7
~ - aé(m) 8fl0 -
Rm) = 9(0(m a®(F ! a
m) = 9L2ema™(F0)) =5 =5

and let us p (m) and O(m) = Q((p(m e(m S m))( t)) =
o(V(m)) satisfy for m >0

o33 Ip( 9P(m)
(m) ay?)

i)(m) |LU3:F0(Z//) = ﬁo(yla Fo(y/)a t)

where a?ﬁL )= a*(Fi,n)). We also consider:

= _gé(m) in ﬁTv

on FbT7

53 OUs(m+) _
(m) a s - Flm)

-Vb on FbT,

“ U, in Q ,
(6.2) ) !

U3(m+1) = m+1

[Vol. 88(A),

/
81?5%“ L2t Foy Fln1)
= L)y Fo — W) - Fon) + Usmr1)
(6.3) n =0 Wy H2im) O
— Jy; \/m y3
) g gy R
m+1 o =10 on R2

Here H2(m) = H2 (VF(m>,3u(7rL)a O(m) 7VF(,").,3£~7(m))' The
unique solvability of (6.1)-(6.3) is guaranteed by
the result of the linear problem. Making use of the
interpolation and Young’s inequalities and the esti-
mate of the solution to the linear problem, we show
the well-definedness of the successive sequence.

R
Hereafter Ry, = ga%g)) 85;? 8;;:) (m>1).
We also introduce following function spaces:
wi(r) = (7 F @),
Wy(T) = (W Fp))?
Wi(T) = (W55 ()
Lemma 6.1. Assume Fy € W§+Z(R2), Uy =
(0,60, S0) € Wo = W3*(@) x T, (@) x W, (@),
(14 a;Ryp) g— >c¢, >0 (i=2,4,6) and there

exists Tgo > 0 satisfying Fi,(y',t) —b(y) > co >0
aU(m) .
and (14 & Rgy) B >c, >0 (1=1,2,3) for
Y3

t € (0,Ts0]. Then, following estimates hold for ar-
bitrary small € > 0 and t € (0, Tgo):

2
gim <(e+C)(1 .
;H iy < (e+Ca)(1+ HngW;H_le(R?)

¢( ||F(m) ||VV2%+L%+'L

*(RY)

)

) ||u/(m) ||W’(f)

2
+ 2 2412 + Z/l ?
3l s g+ Wl
- (m)
3 1E by < e+ QO+ Pl g

Wy by + ol + 1ol .
2

R?)

where C, is a positive constant depending on €.
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This lemma is proved with the aid of Lemma
5.1. Introduce notations E (t) = U, Iy and

m

E,(t) = ||(ul(m)vu3(m)’F(m))||W(t)'
Take Tg; such that Fi,,)(y/,t) — b(y/) > ¢ and

alI(m)
Y3

(1+ OziR(m))‘ >c, >0

hold for ¢ € (0, Tg1]. The estimate of the solution to
the linear problem and Lemma 6.1 yields:
E{1)(t) < Cl(e+ Cet) {61 (Em) (1))
+ ¢62(E(7n) (t))EEm) (t)} + 1}7

llt3(ma1) HWSH#@) + | F ms1) ||Wg+:,g+g(

2

R})
'
< {ouFmll gt ) )

()

Here ¢;(-) (i =1,2,3,4) are homogeneous polyno-
mials. From these, we arrive at:

E(m-‘rl)(t) < C(t)[(é + CFt){¢61 (E(m) (T))
+ b2 (B (T)) Ef,, (T)

with some C(t) > 0 depending on ¢ monotonically
and increasingly. From this, we obtain E,41)(Ts1) <
M from the assumption E,(Ts1) < M by taking
e and Tg; small enough. With the aid of the follow-

ing lemma, it is shown that Ty does not depend
on m.

X ||u(/m,+1)||”/;+t,% -

Lemma 6.2. Let M >0 be provided as
above. Then, there exists a constant Cgy > 0 in-
dependent of E,,) such that

ou, Cu .
(1 + aiR(m) (ya t)) ) (y7 t) > = (7’ = 2a 4a 6)
8y3 2

Cu
hold fort — .
old fort € (0, 060M>

Next, we prove the convergence of the se-
quence. Subtract (6.1)—(6.3) with m replaced by
m — 1 from itself. Denoting

M/(m) = ul(m+1) - u,(m)y ﬁ(m) = U(mt1) — u(m)a

ﬂ’3(m) = Ug(m+1) — U(m)> F(/m) = Fl(m-H) - /(m)’

we consider the similar problem for these variables.

Lemma 6.3. Under the same assumptions as
in Lemma 6.1, following estimate holds for e, t > 0:
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3
m m—1
S = £
i=1

m m—1
+ €5 — 7|

1.1
1+

Wit R2)
< (e+ Cet)aﬁ( Z Ez-<t)> En(1),
i=m—1

where C, is a potisive constant depending on €.
This proved with the aid of
Lemma 5.2. From Lemma 6.3, we obtain

E(m+1)(t) < TE(m)(t)v re (07 1)7

lemma is

where E,,(t) = ||(Ijl'<m),ﬁ3<m>,ﬁ(’m))|\w(t). Then we
can verify that {(Zjl?m),dg(m),ﬁ'(’m)}f::() is a Cauchy
sequence in W(Tgz). Therefore the limit

U i, F') = Yim (U, i), Flyy)

m—0o0
exists in W(Ts2), which is our desired solution.
Finally we shall show that 0 < 6,/2 < 8(y,t) < oo
and 0 < S,/2 < S(y,t) < co hold by taking the time
interval small enough again. This is achieved in the
similar manner as in [3]. Uniqueness of the solution
can be proved by virtue of an analogous inequality to
(6.4). This completes the proof of the main theorem.
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