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of weakly holomorphic modular forms of weight 2
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Abstract:

We observe properties of coefficients of certain basis elements for the space of

weakly holomorphic modular forms of weight 2 for SLs(Z). Moreover we show that these
coefficients are often highly divisible by the primes 2, 3, 5, 7, 11.
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1. Introduction. Let k be any even integer.
A weakly holomorphic modular form of weight k for
SLy(Z) is a holomorphic function on the upper half
plane H, but may have poles at the cusp oo which
satisfies the modular transformation

f(y2) = (cz+ d)* f(2) for any

v = (Z Z) € SLy(Z).

Since SLy(Z) has only one cusp, for each even integer
k there is a canonical basis for the space M], of weakly
holomorphic modular forms of weight k, indexed by
the order of the pole at co. To be more precise, write
k=121+k with ¥ €{0,4,6,8,10,14}. Then for
each integer m > —I, Duke and Jenkins [3] showed
that there exists a unique weakly holomorphic
modular form f,, of weight k& with a g-expansion
of the form

fk,m,(z) = qim + O(qu)'

Throughout this paper ¢ = ¢?™?. Since for all non-
zero f € M,'f we have orda (f) <, the functions fin,
form a basis for Mi Indeed, they constructed the
basis elements f;,, from the classical discriminant
function A, the modular invariant j and the
Eisenstein series Ej (we let Ey=1) as follows:
We recall
Alz) =q]J =" =D 1(n)g",

n>1 n>1

2r &
E.(2)=1- B Z or-1(n)q"
" n=1
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and

J(2) = Ea(2)*/A(z) = ) e(n)d",

n>—1

where B, is the r-th Bernoulli number and o,_;
stands for the usual divisor sum. We have that
S :A(z)lEk/. Now for each m > 1, we obtain
fr~14n by multiplying fi_1+n—1 by j and then
substracting off multiples of fi. ;.4 in order to kill
successively the coefficients of ql_d' for 0<d<
n — 1. This construction shows that

frm = A'EyFip(49),

where Fj, p(z) is a monic polynomial in z of degree
D = j+ m with integer coefficients. Motivated by
work of Zagier, the forms f, o play an important role
in the study of singular moduli and the polynomials
Fi.p(z) are a generalization of the classical Faber
polynomials Fy,, ().

Throughout this paper we define the Fourier
coefficients ay(m, n) of these basis elements f,, by

fk,m(z) = qu + Z ak’(ma n)qn.

n>l

Here we note that the coefficients ai(m,n) are
integral.

Noticing fio-1=A and fy;1 =j—"744 we
know that Ramanujan [8] showed aj2(—1,2n)
0 (mod2), aja(—1,3n) =0 (mod3),an(—1,5n)
0 (mod5) and Lehner [6,7] showed

ap(1,2%3°5°7%11n) = 0 (mod 230+8320+35¢+17d1 1),

Recently Duke and Jenkins [3] studied congru-
ence properties of the basis elements f;,,. In
particular they showed the following
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Theorem 1.1 [3, Corollary 1].
integer k and any integers m, n we have that

For any even

ak(mv TL) = _a27k(na m)

Theorem 1.2 [3, Lemma 1]. Let p ba a
prime and k € {4,6,8,10,14}. Then for m,n,s € Z,
with n,m,s > 0 we have that

ag(m,np*) = p"*~Va(mp*,n) — ap(mp*~',n/p))
+ ag(m/p,np* ).

By using Theorem 1.1 and Theorem 1.2, Doud
and Jenkins [2, Theorem 1.3] proved that the
coefficients ap(m,n) are often highly divisible by
the primes 2, 3, 5 when k € {4,6,8,10,14}. In this
paper we observe divisibility properties of the
coefficients as(m, n).

For each prime p, the Hecke operator T, for
weight 2 weakly holomorphic modular forms to

weight 2 weakly holomorphic modular forms is
defined by

el 1)(2) = 32 antm, )+ poa (2 ) )

n

where as(m,%) =0 if p does not divide n. Since
there is no holomorphic modular form of weight 2
for SLy(Z) and the functions f,, form a basis for
Mj, following the argument in [3] we obtain

(1) as(m,np) = P<a2<mp’”) — (m’ %))

m
+a2<—,n).
p

By (1) and the same arguments in [3] we obtain
the following proposition.

Proposition 1.3. For each prime p and any
positive integers n, m, s we have that

s—1 n

az(m,np®) = p° <a2(mps7 n) — as (mp , _))

p
m
+ as <_ ’ np51> .
p

Applying induction to this proposition, we
obtain the following

Corollary 1.4. Let(m,p)=(n,p)=1,r>0
and s > 1. Then for 0 <t < min(r,s — 1), we have
that

r—t—1

,np*~"71)

az(mp",np®) = az(mp
t

+ Zp(sfj) ag(mpHS*Qj, n)
=0
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Proposition 1.3 also implies the following
corollary.

Corollary 1.5. If p'|n and ptm then
p'lag(m,n). In particular, if (m,n) =1, we have
nlas(m,n).

In this paper by combining ideas of Doud
and Jenkins [2] with ideas of Lehner [6,7] we
prove the following theorems making above
divisibility results more explicit. For each integer
N, let v,(N) be the largest integer s such that
PIN.

Theorem 1.6. We have the following in-
equalities: For all positive integers m, n,

(i)

if va(m) > va(n)
if va(n) > vo(m).

if vs(m) > v3(n)
if vs(n) > v3(m).

if vs(m) > vs(n)
if vs(n) > vz(m).

if vr(m) > vz(n)
2(v7(n) —vr(m)) if vr(n) > vz(m).

(v)

v11(az(m,n))
N { 1 Zf vll(m) > ’U]l(n)
o vu(n) — ’Uu(m) +1 Zf ’UH(’I’L) > vu(m).

Remark 1.7. By the duality ao(n,m)=
—ag(m,n) (Theorem 1.1), The Theorem 1.6 also
gives the corresponding results for ay(n,m).

2. Preliminaries. Let p be a prime, and
Ty(p) be the subgroup of SLs(Z) consisting of
*
0
holomorphic modular form f of weight & for SLy(Z)
we introduce the linear operator

Upf<z>=;j2_;f(z“).

p

elements v with v = : ) (mod p). For a weakly
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It is well known [1, Theorem 4.5] [4, Propersition 2.22]
that U,f is a weakly holomorphic modular form of
weight k for I‘O( ) and if f(z) = > ., a,q" then

L=Upf = Y g

n>[s/p|

We denote U,(U;f) by U;}“f for each positive
integer a, where U;f =U,f.

Lemma 2.1. [2, Corollay 4.2] Let f ba a
weakly holomorphic modular form of weight k for

SLy(Z). Then
p(p2) " fo(=1/(p2)) = = f(2) + pfy(p2) + P (72).

Further, p(pz)fkfp(fl/(pz)) is a weakly holomor-
phic modular form of weight k on To(p).

Since the subgroups T'y(p) are of genus zero
for the primes p € {2,3,5,7}, they have univalent
functions, which may [6,7] be taken as

B(z) = B,,(2) = (”(pz)y gt

n(2)
with
L n
n(z) =g [[(1-¢"),
n>1
and

r(p—1) = 24.

Let j,(2) =1/®,,(2). Then we have that j, is
holomorphic on the upper half plane H, has a
simple pole at the cusp oo and

(2) Gp(=1/(p2)) = P2y, (2).

For (2) see [5, (8.83)]. Indeed by the transformation
law of n we can easily show (2). Moreover j, and ®
have integral Fourier coefficients.

From now on, for each positive integer m we
let

1

f(Z) = fO,m(Z) = qim + O(Q)

and assume that the prime p does not divide m.
Then f, is holomorphic on H and at the cusp oco.
Moreover from Lemma 2.1 we have

pfo(=1/(p2)) = = f(2) + pfo(p2) + f(072),

which is a weakly holomorphic modular form of
weight 0 for I'y(p), holomorphic at the cusp 0 and
meromorphic at the cusp co having integral Fourier
coefficients in the g-expansion at oo. Thus for each
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prime p € {2,3,5,7}, there exist integers A;, such

that
Z Ay p]p

t>0

pfp(=1/(p2))

Replacing z by —1/(pz), we obtain the following
theorem.
Theorem 2.2.

there exist integers Dy

fp(2) = Do, + Z Dy ,p" 10 (2)".

t>1

Foreachprimep € {2,3,5,7},
= Dy, such that

3. Proofs of Theorems. In this section we
use the same notations and assumptions in Section
2. We first prove Theorem 1.6(i).

Proof. Let p=2. Then r =24 and we can
rewrite fy in Theorem 2.2 as

(3) fo=DBy+2" ZBtzs“*Uqﬂ

t>1

= By + 2R,

where R is a polynomial of the form

R=Y d2% o'

t>1

with integers d;. R will denote a polynomial of this
type, not necessarily the same one at each appear-
ance. Applying the operator U, to both sides in (3)
we obtain

(4 Usf=By+2" > B2 0! =

t>1

By + 2" U, R.

In the above equations Bjs are integers.
Proposition 3. 1 For each positive integer
h, we have that 28"~ DU,®" = 23R,
Proof. See [7,(3.4)] O
This proposition implies that for each positive
integer a,
Usf = Ag+2"2°" VR = 4y (mod 2%*%),
which says
(5)  ax(2°n,m) = —ag(m,2°n) = 0 (mod 2°*).

Now in Corollary 1.4 if » > s then take t =s— 1.
Thus for (m,2) = (n,2)=1, r >0 and s > 1, from
(5) we have that

ag(mQT n2°%) = as(m2"°,n)

+Z2”

morts— 25 n) =0 (mOdQST e)+8)
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If r < s then take t =r in Corollary 1.4. Thus for
(m,2)=(n,2)=1, r>0 and s>1, from (5) we

have that
=320
7=0

=0 (mod 2(="+8)
which implies the assertion. (Il
We prove Theorem 1.6(ii).
Proof. Let p=3. Then r =12 and we can
rewrite f3 in Theorem 2.2 as
(6) fs=By+3) B3 Vol

t>1

as(m2”,n2%) m2 7% )

Proposition 3.2. For each positive integer
h, we have that 3*"DU,®" = 32T, where T is a
polynomial of the form T =3,.,d:3""Vd! with
integers dy. -

Proof. See [7,(3.24)] O

This proposition implies that for each positive
integer a,

Usf=A+ 323 = Ay (mod 323,
which says
(7) as (3’1717 m) = —aqp <m7 3”%) =0 (I’Ilod 32(z+3)-

Now in Corollary 1.4 if r > s then take t =s— 1.
Thus for (m,3) =(n,3) =1, r >0 and s > 1, from
(7) we have that
az(m3",n3%) = ag(m3"~*,n)
s—1
+ 23(577)(12 (m3™7% n) = 0 (mod 3203,

=0

If r < s then take t = r. Thus for (m,3) =
r>0and s > 1, from (5) we have that

(n,3)=1

2(m3",n3%) 23 D ag(m3 % n)
=0 (Il’lOd 33 s— 'r)+3)
which implies the assertion. [l

We prove Theorem 1.6(iii).
Proof. Let p=>5. Then r=6 and we can
rewrite f; in Theorem 2.2 as

®)  f=Bo+» B5'0 =

t>1

By + 5°Q,

where @) is a polynomial of the form Q =0, +
> 2o bH' @ with integers by.

[Vol. 88(A),

Proposition 3.3. For each positive integer
h > 1, we have that Us® = 5Q and 5"Us®" = 5Q,
where @Q is a polynomial of the form @Q =b® +
Yoo 15D with integers by.
~ Proof. See [6,(5.13), (5.14)] 0
This proposition implies that for each positive
integer a,

USf = Ay +5"Q = Ay (mod 5°11),
which says
(9)  ax(5"n,m) = —ap(m,5n) = 0 (mod 5*™).

Now similar method in the proof of Theorem 1.6(i)
show the assertion. ]
We prove Theorem 1.6(iv).
Proof. Let p=7. Then r=4 and we can
rewrite f7 in Theorem 2.2 as

(10)  fr=Bo+»_ B7"'®

t>1

:BO+Q7

where @) is a polynomial of the form Q =0b;P +
Yoo bi7'®! with integers by.
Proposition 3.4. For each positive integer
h > 1, we have that U;® =7Q and 7T"U;®" = 7Q,
where @Q is a polynomial of the form @Q =0bP +
> e b TP with integers by.
~ Proof. See [6, Section 6] O
This proposition implies that for each positive
integer a,

Ulf=A40+7Q= Ay (mod 7%),
which says
(11) a7 (7*n,m) = ap(m, 7*n) = 0 (mod 7).

Now similar method in the proof of Theorem 1.6(i)
show the assertion. d
Lastly we prove Theorem 1.6(v). Since the
genus of I'g(11) is not zero, we face a new situation.
We need another modular form instead of j, as
follows: Following the notation in [5] we have
modular functions for I'y(11) which are holomorphic
on H and have integral Fourier coeflicients
[5,(4.51), (6.44), (6.46) and Lemma 3] as follows:

A(z) = A<E

Cz)=q+5¢+ -,

wo( ) =142y
11z) ¢ ¢ '

1
>:—+6+17q+46q2+-~-,
q
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Letting

we come up with

-1 .
() = 3 Puatrace?

for some integers D,,. Now replacing z by —1/11z
we obtain that

—1\* -1\’
11 z) = Dya| — —
ful2) agééo ’ (112) B(llz)
= 3 Dl AR,
=050
which implies that fi1(2) = Ap (mod 11) for some
integer Ay and hence ay(11n,m) = —ag(m,11n) =
AO (rnod 11)

Now in Corollary 1.4 if r > s then take t =
s — 1 and if r < s then take ¢ = r. Then by the same
argument in the above case we have the assertion.
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