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Abstract: The main purpose of this article is to establish the CKN-type inequalities for all

� 2 R and to study the relating matters systematically. Roughly speaking, we shall discuss about

the characterizations of the CKN-type inequalities for all � 2 R as the variational problems, the

existence and nonexistence of the extremal solutions to these variational problems in proper

spaces, the exact values and the assymptotic behaviors of the best constants Sðp; q; �Þ and

Cðp; qÞ.
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1. Introduction. We shall establish the

CKN-type inequalities for all � 2 R and study the

relating matters systematically.

In the noncritical case ð� 6¼ 1� n
pÞ the CKN-

type inequalities with best constants Sðp; q; �Þ are

represented byZ
Rn
jrujpjxj�p dxð1:1Þ

� Sðp; q; �Þ
Z

Rn
jujqjxj�q dx

� �p=q
for any u 2W 1;p

�;0ðRnÞ with ru ¼ ð @u@x1
; @u@x2

; . . . ; @u@xnÞ.
Here n � 1, 1 � p < þ1 and q; �; � are real num-

bers satisfying the noncritical relation (NCR) given

by Definition 2.6. On the other hand in the critical

case ð� ¼ 1� n
pÞ, the CKN-type inequalities with

best constants Cðp; qÞ becomeZ
B1

jrujpjxjp�n dxð1:2Þ

� Cðp; qÞ
Z
B1

jujq

jxjnA1ðjxjÞqþ1�qp
dx

 !p=q

for any u 2 W 1;p
�;0ðB1Þ. Here B1 is a unit ball having

its center at the origin, A1ðtÞ ¼ log R
t for R > 1 if

n � 2, and A1ðtÞ ¼ log 1
t if n ¼ 1, and the parame-

ters should obey the critical relation (CR) given by

Definition 2.7. Roughly speaking, we shall discuss

about the characterizations of the CKN-type in-

equalities for all � 2 R as the variational problems,

the existence and nonexistence of the extremal

solutions to these variational problems in proper

spaces, the exact values and the assymptotic

behaviors of the best constants Sðp; q; �Þ and

Cðp; qÞ, and so on. When p ¼ 2 and � > 1� n
2 , these

topics were already treated by F. Catrina and Z.

Wang in [6] and they obtained interesting results

(See also [10], [7], [1] and [8]). In these problems,

the presence of weight functions in the both sides

prevents us from employing effectively the so-called

spherically symmetric rearrangement, and the in-

variance of Rn by the group of dilatations creates

some possible loss of compactness. Instead of the

full proofs, the important remarks in the proofs are

given just after each theorems. The full proofs will

be given in the coming paper [11].

Before we go further into our main results on

the CKN-type inequalities involving critical and

supercritical cases, we give a brief historical review

here. The inequality (1.1) for � > 1� n
p is often

called the Caffarelli-Kohn-Nirenberg type (the

CKN-type inequalities). In fact in [5] they estab-

lished general multiplicative inequalities including

these types. In [9] we have also studied these

inequalities among more general imbedding theo-

rems on the weighted Sobolev spaces, where the

weights are powers of distance from a given closed

set F .

It was also very interesting for us to study

further the properties of the imbedding operators
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obtained there. But for a general F it seemed not

easy to study these problems in a detailed way. By

this reason, in [10] we restricted ourselves on the

simplest case that F consists of a single point,

namely, the origin. In this particular case we have

studied the relating problems in a various aspect

and obtained interesting results such as the exact

values of the best constant S ¼ Sðp; q; �Þ in certain

cases, the existence and nonexistence of the ex-

tremals and so on.

Recently we have revisited the weighted

Hardy-Sobolev inequality in [4] and [3]. It is easy

to see that the classical CKN-type inequality

coincides with the weighted Hardy-Sobolev inequal-

ity if � ¼ �� 1, or equivalently p ¼ q. To our

surprise it was shown that the weighted Hardy-

Sobolev inequalities themselves hold for all � 2 R

with some modifications. In fact, even if � ¼ 1� n
p

holds, the sharp inequality of the Hardy type

remains valid as long as the whole space Rn is

replaced by a bounded domain containing the origin

and the weight functions in the right hand side are

replaced by the logarismic ones. Moreover we have

successfully improved those weighted Hardy-

Sobolev inequalities by finding out sharp missing

terms, as a result they turned out to be very useful

in many aspects. For the complete argument and

the related applications see [4].

On the other hand, the counterpart in the

CKN-type inequalities to the weighted Hardy-

Sobolev inequalities in [4] seems to be unknown so

far. But it seems reasonable for us to expect that the

CKN-type inequalities should remain valid for all

� 2 R with a similar modification as was performed

in the weighted Hardy-Sobolev inequalities. In this

spirit we shall establish the CKN type inequalities

for all � 2 R, and as the application we shall further

study the relating topics to the CKN type inequal-

ities for all � 2 R systematically in the present

paper.

2. Function spaces and related properties.

Definition 2.1. Let � be a domain of Rn.

For a nonnegative measurable function ! on �, let

Lpð�; !Þ denote the space of Lebesgue measurable

functions defined on �, for which

kukLpð�;!Þ ¼
Z

�

jujp! dx
� �1=p

< þ1:ð2:1Þ

Definition 2.2. Let p and � satisfy 1 �
p < þ1 and � 6¼ 1� n

p . Let � be a domain of Rn

such that 0 2 �. Then, by W 1;p
�;0ð�Þ we denote the

completion of C10 ð� n f0gÞ with respect to a norm

defined by

kukW 1;p
�;0
ð�Þ ¼ k jruj kLpð�;jxjp�Þ þ kukLpð�;jxjpð��1ÞÞ:ð2:2Þ

Definition 2.3. Let p and � satisfy 1 �
p < þ1 and � ¼ 1� n

p . Let � be a bounded domain

of Rn such that 0 2 � and let R be a positive

number such that R > supx2� jxj. Then, by W 1;p
�;0ð�Þ

we denote the completion of C10 ð�Þ with respect to

a norm defined by

kukW 1;p
�;0
ð�Þð2:3Þ

¼ k jruj kLpð�;jxjp�Þ þ kukLpð�;jxj�nA1ðjxjÞ�pÞ:

Here A1ðtÞ ¼ log R
t . When n ¼ 1, we also treat the

space W 1;p
�;0ð�Þ with R � supx2� jxj.

Definition 2.4 (Definition of �ðp; q; �Þ). For

any p; q � 1, � 2 R and n � 1 we set

�ðp; q; �Þ ¼ n
1

p
�

1

q

� �
þ �� 1:ð2:4Þ

We shall classify the CKN-type inequalities

according to the range of the parameter � into the

three cases. Namely

Definition 2.5. The parameter � is said to

be subcritical, critical and supercritical if � satisfies

� > 1� n
p , � ¼ 1� n

p and � < 1� n
p respectively.

In the next we define the noncritical (i.e.

subcritical or supercritical) and the critical rela-

tions.

Definition 2.6 (The noncritical relation

(NCR)). The parameters p, q, n, � and � are said

to satisfy the noncritical relation (NCR) if they

satisfy

� 6¼ 1�
n

p
;

� ¼ �ðp; q; �Þ;
q < þ1
�� 1 � � � �:

8>>>>><
>>>>>:

ð2:5Þ

Definition 2.7 (The critical relation (CR)).

The parameters p, q, n, � and � are said to satisfy

the critical relation (CR) if they satisfy

� ¼ 1�
n

p
;

� ¼ � n
q

¼ � p; q; 1� n
p

� �� �
;

q < þ1
�� 1 � � � �

8>>>>>>><
>>>>>>>:

ð2:6Þ
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For given p and n, q is the only living parameter in

the critical case. Further from the remaining

conditions we see that

� n
p
� � � 1� n

p
; p � q � np

n� p
if 1 � p < n;

� n
p
� � < 0; p � q < þ1;

if p � n:

8>>>>><
>>>>>:

ð2:7Þ

It is helpful for us to know in advance the existence

of the continuous imbedding operators among our

spaces. Namely from Theorem 4.1 and Theorem 5.1

we have the following proposition that is very

fundamental in the present work.

Proposition 2.1. Let p satisfy 1 � p < þ1
and let n satisfy n � 1.

1. Assume that the parameters p, q, n, � and �

satisfy the noncritical relation (NCR). Then we

have

W 1;p
�;0ðRnÞ � LqðRn; jxj�qÞ:

In addition C10 ðRn n f0gÞ is densely contained

in W 1;p
�;0ðRnÞ.

2. Assume that � ¼ 1� n
p (the critical case). Then

it holds that

W 1;p
�;0ðB1Þ � LpðB1; jxj�nA1ðjxjÞ�pÞ;

where B1 is a unit ball with a center being the

origin. A1ðtÞ ¼ log R
t for R > 1 if n � 2, and

A1ðtÞ ¼ log 1
t if n ¼ 1.

In addition, both C10 ðB1Þ and C10 ðB1 n f0gÞ are

densely contained in W 1;p
�;0ðB1Þ.

Lastly we define a Banach space of radial functions.

Definition 2.8. For a unit ball B1 ¼
fx 2 Rn : jxj < 1g, we set

W 1;p
�;0ðB1Þrad

¼ fu 2 W 1;p
�;0ðB1Þ : u is a radial functiong;

kukW 1;p
�;0
ðB1Þrad

¼ kukW 1;p
�;0
ðB1Þ:

8>><
>>:ð2:8Þ

3. Variational problems and some nota-

tions.

Definition 3.1. For the noncritical case

(� 6¼ 1� n
p) we set for � ¼ �ðp; q; �Þ

Ep;q;�ðuÞ ¼
R

Rn jrujpjxjp� dx�R
Rn jujqjxj�q dx

�p=q :ð3:1Þ

ðu 2W 1;p
�;0ðRnÞ n f0gÞ

For the critical case ð� ¼ 1� n
pÞ we set

Fp;qðuÞ ¼
R
B1
jrujpjxjp�n dx�R

B1

jujq jxj�n

A1ðjxjÞqþ1�qp
dx
�p=q :ð3:2Þ

ðu 2W 1;p
�;0ðB1Þ n f0gÞ

Here A1ðtÞ ¼ log R
t for R > 1 if n � 2, and A1ðtÞ ¼

log 1
t if n ¼ 1.

Definition 3.2. Under the condition (NCR)

we set

Sðp; q; �Þ ¼ inf
u2W 1;p

�;0
ðRnÞnf0g

Ep;q;�ðuÞ ðP Þ

Sradðp; q; �Þ ¼ inf
u2W 1;p

�;0
ðRnÞradnf0g

Ep;q;�ðuÞ ðPradÞ

Secondly we consider the critical case.

Definition 3.3. Under the condition (CR)

we set

Cðp; qÞ ¼ inf
u2W 1;p

�;0
ðB1Þnf0g

Fp;qðuÞ: ðPcÞ

Cradðp; qÞ ¼ inf
u2W 1;p

�;0
ðB1Þradnf0g

Fp;qðuÞ: ðPc
radÞ

We prepare the following notations.

Definition 3.4. For ð�; �Þ with � ¼
�ðp; q; �Þ, let us set

� ¼ 2� ��
2n

p
;

� ¼ �� �
2n

q
:

8>><
>>:ð3:3Þ

Under these notation we see that

� ¼ �ðp; q; �Þ:ð3:4Þ

Further we see immediately that ð�; �Þ is symmetric

to ð�; �Þ with respect to a point ð1� n
p ;�nq Þ in R2,

and that 1� �þ � ¼ 1� �þ � is satisfied.

Definition 3.5. Let p satisfy 1 � p. For any

subset A � R and Q � ½p;þ1Þ, considering the

subset of R2

G ¼ fð�; �Þ : � ¼ �ðp; q; �Þ; � 2 A; q 2 Qg;

we set

G} ¼ fð�; �Þ : � ¼ �ðp; q; �Þ; � 2 A; q 2 Qg;ð3:5Þ

where ð�; �Þ is given by (3.3).

4. Main results in the noncritical case.

In this subsection we consider the noncritical case

(� 6¼ 1� n
p). For the sake of self-containedness, we

shall state our results combining with some relating

known results.

No. 1] The CKN-type inequalities 3



Theorem 4.1 (The imbedding results). Let

p satisfy 1 < p < þ1 and let n satisfy n � 1. Assume

that the parameters p, q, n, � and � satisfy the non-

critical relation (NCR). Then we have Sðp; q; �Þ > 0,

namely it holds that for any u 2W 1;p
�;0ðRnÞ,Z

Rn
jrujpjxj�p dxð4:1Þ

� Sðp; q; �Þ
Z

Rn
jujqjxj�p dx

� �p=q
:

Proof.

1. In the subcritical case the imbeding inequal-

ities are known as the classical CKN-type

inequalities. (See also the author’s paper [10].)

2. In the supercritical case we employ the iso-

metric transformation T from the spaces

W 1;p
�;0ðRnÞ and LqðRn; jxj�qÞÞ to the spaces

W 1;p
�;0ðR

nÞ and LqðRn; jxj�qÞÞ respectively with

� ¼ 2� �� 2n
p and � ¼ �� � 2n

q .

3. When p ¼ 1 and � > �� 1, these inequalities

remain valid, which are often called ‘‘the

weighted isoperimetric inequality’’. �

Theorem 4.2 (The imbedding results in the

radial function space). Let p satisfy 1 < p < þ1
and let n satisfy n � 1. Assume that the parameters

p, q, �, � and n satisfy the noncritical relation

(NCR) and �� 1 < � � �. Then the best constant

Sradðp; q; �Þ in the radial function space is achieved.

Proof. When � ¼ � ¼ 0, this was initially

shown in [15]. In the subcritical case, this was

already established in [10], and in the super-

critical case we employ again the isometric trans-

formation T . �

Theorem 4.3 (The continuity of the best

constant). Let p satisfy 1 < p < þ1 and let n

satisfy n � 1. Assume that the parameters p, q, n, �

and � satisfy the noncritical relation (NCR). Then

we have the followings:

1. It holds that

Sðp; q; �Þ ¼ Sðp; q; �Þ:ð4:2Þ

2. Sðp; q; �Þ is continuous on q; �. In particular we

have

lim
q!pþ0

Sðp; q; �Þ ¼ �p;�:ð4:3Þ

Here �p;� ¼ j n�pþ�pp jp is the best constant for

the weighted Hardy-Sobolev inequality.

In the next we see that the best constant

Sðp; q; �Þ is attained by some elements in W 1;p
�;0ðRnÞ

provided that �� 1 < � ¼ �ðp; q; �Þ < � is satisfied.

Theorem 4.4 (Existence and Nonexistence of

extremals). Let p satisfy 1 < p < þ1 and let n

satisfy n � 1. Assume that the parameters p, q, n, �

and � satisfy the noncritical relation (NCR). Then

we have the followings:

1. Assume that �� 1 < � < �. Then the best

constant Sðp; q; �Þ is achieved by some u 2
W 1;p

�;0ðRnÞ.
2. For � ¼ �� 1 or equivalently p ¼ q,

Sðp; p; �Þ ¼ �p;� holds, and Sðp; p; �Þ is not

achieved.

3. Assume that p ¼ 2 and n > 2. If either � > 0 or

� < 2ð1� n
pÞ, then Sð2; 2�; �Þ ¼ Sð2; 2�; 0Þ holds

and Sð2; 2�; �Þ is not achieved. Here 2� ¼ 2n
n�2,

�ð2; 2�; �Þ ¼ � and �ð2; 2�; 0Þ ¼ 0.

Proof.

1. When p ¼ 2 and � > 1� n
2 , these topics were

already treated by F. Catrina and Z. Wang

in [6]. They studied the CKN-type inequality

with p ¼ 2 and � > 1� n
2 intensively and

obtained interesting results (See also [10], [7]

and [8]).

2. In the study of the existence and nonexistence

of extremals of the CKN-type inequalities, as

in the study of the Sobolev inequality, the

most of difficulty come from the lack of the

compactness of the imbedding operators. How-

ever, our aim is accomplished by using the

multiplicative inequality, the sophisticated

compactness lemma, the sharp Fatou’s lemma

and a modified concentration-compactness

lemma essentially due to P.L. Lions [14] (see

also [12,13]). When p ¼ 2, in the present paper

the proof becomes rather simple without the

concentration-compactness argument.

3. In the assertion 3, it follows from Theorem 4.2

and Theorem 4.6 that Sð2; 2�; �Þ is achieved

if and only if 2ð1� n
pÞ � � � 0 with � 6¼ 1� n

p .

�

Theorem 4.5 (The asymptotic behavior of

the best constant). Let p satisfy 1 < p < n and

let n satisfy n � 1. Assume that the parameters p, q,

n, � and � satisfy the noncritical relation (NCR)

and assume that either � � 0 or � � 2ð1� n
pÞ. Then

we have the followings:

1. For � ¼ �, we have

lðp; �; nÞS p; p�; 0ð Þ � S p; p�; �ð Þð4:4Þ
� S p; p�; 0ð Þ:

Here p� ¼ np
n�p and
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lðp; �; nÞ ¼
jn� pþ �pj

jn� pþ �pj þ j�jp

� �p
> 0ð4:5Þ

2. There is a positive number mðp; �; nÞ such

that we have for any � and � satifying j�j �
mðp; �; nÞ and �� 1 < � ¼ �ðp; q; �Þ � �,

Sðp; q; �Þ � �p;�

� �pð���Þ
Sðp; p�; �Þ1��þ�ð4:6Þ

Proof.

1. By Sðp; p�; 0Þ we denote the usual Sobolev

best constant without weights. Here note that

�ðp; p�; 0Þ ¼ 0.

2. We note that limj�j!1 lðp; �; nÞ ¼ 1
2p . �

Theorem 4.6 (The symmetricity of the ex-

tremals). Let p satisfy 1 < p < þ1 and let n

satisfy n � 1.

1. Assume that p < n and n � 2. Let A be the

subset of R2 given by�
ð�; �Þ 2 R2;�

¼ �ðp; q; �Þ; 1�
n

p
< � � 0; p � q � p�

	
;

where p� ¼ np
n�p. Then we have for any

ðp; q; �; �; nÞ satisfying (NCR) with ð�; �Þ 2
A [ A}, Sðp; q; �Þ ¼ Sradðp; q; �Þ.

2. Assume that n � 2. Let B be the subset of R2

given by�
ð�; �Þ 2 R2;� ¼ �ðp; q; �Þ;max 0; 1�

n

p

� �

< � � 1�
1

p
; p � q �

p

p� 1
�
np� n� p�
n� pþ p�

	

Then we have for any ðp; q; �; �; nÞ satisfying

(NCR) with ð�; �Þ 2 B [ B}, Sðp; q; �Þ ¼
Sradðp; q; �Þ.
Proof.

1. In the assertion 2, the condition � � 1� 1
p

is needed to have a nonempty set B. Moreover

the condition on q is equivalent to the con-

dition

�� 1 � �ðp; q; �Þ �
�ðn� pþ �pÞ
nþ �p� np :

2. The proof of this assertion will be established

by the aid of the rearrangement argument

involving weight functions. �

5. Main results in the critical case. In

the critical case, no imbedding inequality of Sobolev

type holds in the whole domain Rn. But we will

have the following imbedding inequalities in a

ball B1.

Theorem 5.1 (The imbedding results). Let

p satisfy 1 < p < þ1. Assume the critical relation

(CR). Then we have the followings.

1. If n � 2, then there exist R0 > 1 and a positive

number Cðp; qÞ such that we have for any

u 2W 1;p
�;0ðB1Þ,Z
B1

jrujpjxjp�n dxð5:1Þ

� Cðp; qÞ
Z
B1

jujq

jxjnA1ðjxjÞqþ1�qp
dx

 !p=q

:

Here A1ðtÞ ¼ log R
t for R � R0 > 1 if n � 2.

Moreover the weight function of the term in the

right-hand side is sharp.

2. If n ¼ 1, there exists a positive number Cðp; qÞ
such that we have for any u 2 W 1;p

�;0ðB1Þ,Z
B1

jrujpjxjp�n dxð5:2Þ

� Cðp; qÞ
Z
B1

jujq

jxjnðlog 1
jxjÞ

qþ1�qp
dx

0
@

1
A
p=q

:

Moreover the weight function of the term in the

right-hand side is sharp.

Proof.

1. When n � 2 and p 6¼ q, we can not replace

R > 1 by 1.

2. When p � n, we shall essentially exploit the

decreasing rearrangement method with respect

to a positive measure. By the techinical reason

we need to assume R � R0 for some R0 > 1
provided that n > 1. On the other hand, we

shall employ the nonlinear potential theory in

[2] when 1 < p < n, and R can be any number

> 1 in this case.

3. If B1 is replaced by the whole domain Rn, then

the inequality does not hold. This fact is seen

by the capacitary argument.

4. If the unit ball B1 is replaced by any bounded

domain � containing the origin, then the

inequality remains valid with some R > 1,

and the proof is done in a similar way. �

Theorem 5.2 (The imbedding results in the

radial function space). Let p satisfy 1 < p < þ1
and let n satisfy n � 1. Assume the critical relation

(CR). Then Cradðp; qÞ is determined. Moreover

Cradðp; qÞ is achieved only if n ¼ 1.

No. 1] The CKN-type inequalities 5



Proof. The exact value of Crad:ðp; qÞ is known.

�

Theorem 5.3 (The continuity of the best

constant). Let p satisfy 1 � p < þ1. Assume the

critical relation (CR). When p > 1, assume that R �
R0 > 1 if n � 2 and R ¼ 1 if n ¼ 1, where R0 is the

same constant given in Theorem 5.1.

1. For p > 1, Cðp; qÞ is positive and continuous

on q for �n
q 2 ½�n

p ; 1� n
p � if 1 < p < n, and

on q for � n
q 2 ½� n

p ; 0Þ if p � n. In particular we

have

lim
q!pþ0

Cðp; qÞ ¼
p� 1

p

� �p
:ð5:3Þ

2. If p ¼ 1, then Cðp; qÞ ¼ 0 for any R � 1.

References

[ 1 ] B. Abdellaoui, E. Colorado and I. Peral, Some
improved Caffarelli-Kohn-Nirenberg inequali-
ties, Calc. Var. Partial Differential Equations
23 (2005), no. 3, 327–345.

[ 2 ] D. R. Adams, Weighted nonlinear potential theo-
ry, Trans. Amer. Math. Soc. 297 (1986), no. 1,
73–94.

[ 3 ] H. Ando and T. Horiuchi, Weighted Hardy
inequalities with finitely many sharp missing
terms. (in preparation).

[ 4 ] H. Ando and T. Horiuchi, Missing terms in the
weighted Hardy-Sobolev inequalities and its
application. (to appear in J. Math. Kyoto
Univ.).

[ 5 ] L. Caffarelli, R. Kohn and L. Nirenberg, First
order interpolation inequalities with weights,
Compositio Math. 53 (1984), no. 3, 259–275.

[ 6 ] F. Catrina and Z.-Q. Wang, On the Caffarelli-
Kohn-Nirenberg inequalities: sharp constants,
existence (and nonexistence), and symmetry of
extremal functions, Comm. Pure Appl. Math.
54 (2001), no. 2, 229–258.

[ 7 ] F. Catrina and Z.-Q. Wang, Positive bound states
having prescribed symmetry for a class of
nonlinear elliptic equations in RN , Ann. Inst.
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