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Abstract:

In this note, we will prove two congruences involving broken 3-diamond

partitions and broken 5-diamond partitions. The two congruences were conjectured by Peter

Paule and Silviu Radu in 2009.
Key words:

1. Introduction. In 2007 George E. Andrews
and Peter Paule [1] introduced a new class of combi-
natorial objects called broken k-diamond partitions.
Let Ag(n) denote the number of broken k-diamond
partitions of n, they showed that
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In 2008 Song Heng Chan [3] proved an infinite
family of congruences when k= 2. In 2009 Peter
Paule and Silviu Radu [10] gave two non-standard
infinite families of broken 2-diamond congruences.
Moreover they stated four conjectures related to
broken 3-diamond partitions and 5-diamond parti-
tions. In this note we show that their first con-
jecture and the third conjecture are true:
Theorem 1.1 (Conjecture 3.1 of [10]).
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Theorem 1.2 (Conjecture 3.3 of [10]).
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The techniques in [7,8] are adapted here to
prove Theorem 1.1 and Theorem 1.2.

2. Preliminaries. Let H denote the upper
half of the complex plane, for a positive integer
N, the congruence subgroup I'o(N) of SLy(Z) is
defined by
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o= {(2 )

v= (’(l 3) € SLy(Z) acts on the upper half of the

ad —bc=1,c=0 (mod N)}

complex plane by the linear fractional trans-
formation 7z:= % If f(z) is a function on H,
which satisfies f(vz) = x(d)(cz + d)*f(z), where y
is a Dirichlet character modulo N, and f(z) is
holomorphic on H and meromorphic at all the cusps
of T'y(NN), then we call f(z) a weakly holomorphic
modular form of weight k with respect to I'g(N) and
character x. Moreover, if f(z) is holomorphic on
H and at all cusps of T'y(N), then we call f(z) a
holomorphic modular form of weight k£ with respect
to T'o(N) and character x. The set of all holomor-
phic modular forms of weight k with respect to
I'y(N) and character x is denoted by My(To(N), x).
. Dedekind’s eta function is defined by n(z) :=
@02, (1 —q"), where ¢ = e*™* and Im(z) > 0. A
function f(z) is called an eta-product if it can be
written in the form of f(2) = [[syn"(6z), where
N and 6 are natural numbers and rs is an integer.
The following Proposition 2.1 obtained by Gordon-
Hughes [4] and Newman [11] is useful to verify
whether an eta-product is a weakly holomorphic
modular form.
Proposition 2.1 ([9], p.18 Thm 1.64). If
f(z) =Tlgnn"(62) is an eta-product with k:=
%ZW\’ rs € Z satisfying the conditions:

N
E 6rs =0 (mod 24), E —7rs =0 (mod 24),
SN 8
IN SN

then f(z) is a weakly holomorphic modular form of
weight k with respect to To(N) with the character x,
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here x is defined by x(d) = ((fj)ks) and s is defined by
s:=J[gn 0"

The following Proposition obtained by
Ligozat [6] gives the analytic order of an eta-
product at a cusp of I'g(V).

Proposition 2.2 ([9], p.18 Thm 1.65). Let
¢,d and N be positive integers with d|N and
(c,d)=1. If f(2) is an eta-product satisfying the
conditions in Proposition 2.1 for N, then the order
of vanishing of f(z) at the cusp § is

N (d,8)*rs
Mw( Myds

Let p be a prime, and f(q) => 2, a(n)q"
be a formal power series, we define f(¢)|U, =
S o €)1 F(2) € My(To(N), x), then f(2)
has an expansion at the point ico of the form f(z) =
Yo, a(n)q" where ¢ = ¢*™* and Tm(z) > 0. We call
this expansion the Fourier series of f(z). Moreover
we define f(z)|U, to be the result of applying U, to
the Fourier series of f(z). When U, acts on spaces of
modular forms and p|N, we have

Uy : Mi(To(N), x) — My(To(N), x).

The U, operator has the property that

Kiam)qm) S bn)g
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In [12] Sturm proved the following criterion to
determine whether two modular forms are congru-
ent, this reduces the proof of a conjectured con-
gruence to a finite calculation. In order to state his
theorem, we introduce the notion of the M-adic
order of a formal power series. Let M be a positive
integer and f=>" .ya(n)¢" be a formal power
series in the variable ¢ with rational integer
coefficients. The M-adic order of f is defined by

Ordy(f) = inf{n | a(n) £ 0 mod M}.
Proposition 2.3 ([9], p.40 Thm 2.58). Sup-
pose thatf(2) and g(2) is in My(To(N), x) (1 2Z[[q]

and M is prime. If
kN 1
) - >14+— 14—
Ord ()~ 2 1+ [ (1)

where the product is over all prime divisors p of N.
Then f(z) = g(z) (mod M).
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Proposition 2.4 ([9], p.19 Theorem 1.67).

n'%(z) | s1'°(22)
1 (22) (z)
where Ey(z) is the Fisenstein series of weight 4 for
the full modular group.

3. Proof of Theorem 1.1.
fine an eta-product

Proof. We de-
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setting N =56, we find that F(z) satisfies the
conditions of Proposition 2.1 and F(z) is holomor-
phic at all cusps of I'y(56) by using Proposition 2.2,
so F(2) is in M3(Io(56), x), where x(d) = (5}) is a
Dirichlet character modulo 56. We note that
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Applying U7 operator on F( ) we find that
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We define another eta-product

1°(22)*(72)

7?(z)
by Proposition 2.1 and Proposition 2.2, we find that
G is also in M3(Lo(56), x), where x(d) = () is a
Dirichlet character modulo 56. Moreover, we have

$(22)n* (72 2(7 5
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= 92(2)*(22) (mod 7)

= o [J0 )21 - ) (mod 7).

n=1

Where we used the elementary fact

(7 > (1 —¢™
77151 ) = H% =1 (mod 7).
n (Z) n=1 (1 - q )
We note that our Theorem 1.1 is equivalent to the
congruence:

qu—q 12

= GqZA3(7n +5)¢" H(l —¢"® (mod 7),
n=1

n>0

2n)6

G(2) = 6F(2)|Ux (mod 7).

Using Sturm’s theorem 2.3, it suffices to verify the
congruence above holds for the first - [SLy(Z) :
I'y(56)] +1 = 25 terms, which is easily completed
by using Mathematica 6.0. (]

4. Proof of Theorem 1.2. The proof of
Theorem 1.2 is similar. The difference is that we
need to construct two eta-products to represent the
left hand side of the equation in Theorem 1.2 up to a
factor by using Proposition 2.4.

Proof. Define
22)n'3(11
() o ME012),

17’ (2)n(222)
setting N =88, we find that H(z) satisfies the
conditions of Proposition 2.1 and H(z) is holomor-
phic at all cusps of T')(88) by Proposition 2.2, so
H(z) is in M5(T(88),x), where x(d) = (3}) is a
Dirichlet character modulo 88. We note that
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As before, applying Uy; operator on H(z), we find that
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We define another two eta-products by

(112) B n'6(42)n*(11z)
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Setting N = 88, it is easy to verify that both L(z)
and Lo(z) satisfy the conditions in Proposition 2.1
and both are holomorphic at all the cusps of T'y(88)
by using Proposition 2.2, hence both L;(z) and
Ly(z) are in M;5(I'(88),x), where x(d) = (3}) is a
Dirichlet character modulo 88. So L(z) := Ly(z) +
28Ly(z) is in M5(T9(88), x). On the other hand,

1(22) PRI (112)
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22) 17%(2)
= E4(22) - n*(2)n*(22) (mod 11)

= Ei(q*) - (Iﬁ(l - ¢ (1—g")*.
n=1

We find that Theorem 1.2 is equivalent to the
following congruence of modular forms by using the
expressions (3) and (4):

L(z) =8H(2)|U;; (mod 11).

4)  L(z) =

= Ei(22) -1 (2)n

Using Sturm’s criterion i.e Proposition 2.3, it
suffices to verify the congruence above holds for
the first 5 - [SLy(Z) : To(88)] + 1 = 61 terms, which
is easily completed by using Mathematica 6.0. [
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