On a minimal counterexample to the Alperin-McKay conjecture

By Masafumi Murai

2-27, Meiji-machi, Izumi, Toki-shi, Gifu 509-5146, Japan

(Communicated by Masaki Kashiwara, M.J.A., Nov. 14, 2011)

Abstract: We show for a minimal counterexample (G, B) to the Alperin-McKay conjecture, the Fitting subgroup of G is central and G has a unique G-conjugacy class of components.

Key word: Alperin-McKay conjecture.

1. Introduction. Let G be a finite group and p a prime. Let (K, R, k) be a p-modular system ([NT, p.230]); that is, R is a complete discrete valuation ring with quotient field \mathcal{K} of characteristic 0 and k is the residue field of R of characteristic p. We assume that K contains a primitive |G|-th root of unity and that k is algebraically closed. Let B be a block of G. This means that B is a block ideal of RG. Let D be a defect group of B. Let \hat{B} be the Brauer correspondent of B with respect to D in $N_G(D)$. Let $k_0(B)$ be the number of irreducible characters of height 0 in B. The Alperin-McKay conjecture [Al] (AM-conjecture, for short) states that $k_0(B) = k_0(B)$. In a previous paper [Mu], we have studied reduction of this conjecture. In this note, using a result in [Mu], we give further restrictions on a minimal counterexample (G, B)to the AM-conjecture. Here we say (G, B) is a minimal counterexample to the AM-conjecture, if Bis a counterexample to the AM-conjecture and G is chosen so that |G:Z(G)| is as small as possible. We prove the following

Theorem. For a minimal counterexample (G, B) to the AM-conjecture, the following holds.

- (i) $O_p(G)$ and $O_{p'}(G)$ are both central in G. In particular, the Fitting subgroup of G is a central subgroup of G.
- (ii) G has a unique G-conjugacy class of components.

It is known that the AM-conjecture is a consequence of Dade's projective conjecture [Da]. Eaton-Robinson [ER, Theorem 1 and Remarks] and Robinson [Ro, Theorem 1] have obtained restrictions similar to Theorem on a minimal counter-example to Dade's projective conjecture.

2010 Mathematics Subject Classification. Primary 20C20.

For the McKay conjecture, the prototype of the AM-conjecture, Isaacs, Malle and Navarro [IMN] have obtained a reduction theorem. Using this paper as a starting point, Späth [Sp] has recently obtained a reduction theorem for the AM-conjecture. Her approach is different from ours.

2. Proof of Theorem. For a block B of a group G, let e_B be the block idempotent of B. Let $F^*(G)$ (resp. F(G)) be the generalized Fitting (resp. Fitting) subgroup of G. We have proved the following, see [Mu, Proposition 9].

Lemma. Let (G,B) be a minimal counterexample to the AM-conjecture. Let D be a defect group of B. Then the following holds.

- (i) For any non-central normal subgroup K of G, $G = N_G(D)K$.
- (ii) For any normal subgroup K of G, B covers a G-invariant block of K.
 - (iii) $G = N_G(D)F^*(G)$.

For the other notation and terminology, see the books [NT,Th].

Proof of Theorem. (i) Assume $O_p(G)$ is not central in G. By Lemma (i), $G = N_G(D)O_p(G) = N_G(D)$, a contradiction. Thus $O_p(G)$ is central in G.

Assume $K := O_{p'}(G)$ is not central in G. By Lemma (i), $G = N_G(D)K$. Put $H = C_G(D)DK$. Then $H \triangleleft G$. By Lemma (ii) B covers a G-invariant block b of H. Then D is a defect group of b. Let Q be a subgroup of D. Then $N_H(Q) = C_G(D)N_{DK}(Q)$ and $C_H(Q) = C_G(D)C_{DK}(Q)$. So $N_H(Q)/C_H(Q) \simeq N_{DK}(Q)/C_{DK}(Q)$, which is a p-group, since DK is p-nilpotent. Thus b is nilpotent. Further, since $C_G(D) \leq H$ for the defect group D of b, B is a unique block of G covering b. Let \tilde{B} (resp. \tilde{b}) be the Brauer correspondent of B (resp. b) with respect to D in $N_G(D)$ (resp. $N_H(D)$). By the Harris-Knörr theorem [HK, Theorem], \tilde{B} is a unique block of

 $N_G(D)$ covering b. Let β be a block of $C_H(D)$ covered by \tilde{b} . Then \tilde{B} is a unique block of $N_G(D)$ covering β . Let B_1 be the Fong-Reynolds correspondent of \tilde{B} over β in $N_G(D)_{\beta}$, where $N_G(D)_{\beta}$ is the inertial group of β in $N_G(D)$. Then B_1 is a unique block of $N_G(D)_{\beta}$ covering β by the Fong-Reynolds theorem. Let D_{δ} be the defect pointed group of the pointed group $H_{\{e_b\}}$ on RH associated with the subpair $(D, \overline{e_{\beta}})$, where $\overline{e_{\beta}}$ denotes the natural image of e_{β} in $kC_H(D)$. Then $N_G(D_{\delta}) =$ $N_G(D)_{\beta}$, cf. [Th, Proposition 40.13(b)]. Therefore, by [KP, 1.20.3], B and B_1 are isomorphic to full matrix algebras over the same R-algebra. Then $k_0(B) = k_0(B_1)$ by the Morita equivalence between B and B_1 . By the Fong-Reynolds theorem, $k_0(B_1) =$ $k_0(\tilde{B})$. Hence $k_0(B) = k_0(\tilde{B})$, a contradiction. Thus $O_{n'}(G)$ is central in G.

(ii) Let n be the number of G-conjugacy classes of components of G. If n = 0, then, by (i) and Lemma (iii), $G = N_G(D)F^*(G) = N_G(D)F(G) =$ $N_G(D)$, a contradiction. If $n \geq 2$, let N_1 be the product of all components in a G-conjugacy class and let N_2 be the product of the remaining components. Since N_1 and N_2 are non-central normal subgroups of G, DN_1 and DN_2 are normal subgroups of G by Lemma (i). Clearly $(DN_1 \cap$ $DN_2/(N_1 \cap N_2)$ is a p-group. Since $N_1 \cap N_2 \leq$ $Z(N_1N_2) \leq F(G)$, $N_1 \cap N_2$ is central in G by (i). Hence $DN_1 \cap DN_2$ is a direct product of a p-group and a p'-group. Then $D \leq O_p(DN_1 \cap DN_2)$. Since $O_p(DN_1 \cap DN_2) \triangleleft G$, we have $O_p(DN_1 \cap DN_2) \leq D$. So $D = O_p(DN_1 \cap DN_2) \triangleleft G$, a contradiction. Thus n = 1, as required.

Acknowledgement. The author would like to express his sincere gratitude to the referee for his helpful comments.

References

- [Al] J. L. Alperin, The main problem of block theory, in *Proceedings of the Conference on Finite* Groups (Univ. Utah, Park City, Utah, 1975), 341–356, Academic Press, New York, 1976.
- [Da] E. C. Dade, Counting characters in blocks, II, J. Reine Angew. Math. 448 (1994), 97–190.
- [ER] C. W. Eaton and G. R. Robinson, On a minimal counterexample to Dade's projective conjecture, J. Algebra **249** (2002), no. 2, 453–462.
- [HK] M. E. Harris and R. Knörr, Brauer correspondence for covering blocks of finite groups, Comm. Algebra 13 (1985), no. 5, 1213–1218.
- [IMN] I. M. Isaacs, G. Malle and G. Navarro, A reduction theorem for the McKay conjecture, Invent. Math. 170 (2007), no. 1, 33–101.
- [KP] B. Külshammer and L. Puig, Extensions of nilpotent blocks, Invent. Math. 102 (1990), no. 1, 17–71.
- [Mu] M. Murai, A remark on the Alperin-McKay conjecture, J. Math. Kyoto Univ. 44 (2004), no. 2, 245–254.
- [NT] H. Nagao and Y. Tsushima, Representations of finite groups, Academic Press, New York, 1989.
- [Ro] G. R. Robinson, Dade's projective conjecture for p-solvable groups, J. Algebra **229** (2000), no. 1, 234–248.
- [Sp] B. Späth, A reduction theorem for the Alperin-McKay conjecture, to appear in J. Reine Angew. Math.
- [Th] J. Thévenaz, G-algebras and modular representation theory, Oxford Mathematical Monographs, Oxford Univ. Press, New York, 1995.