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Abstract: Let LaðxÞ be Lebesgue’s singular function with a real parameter a

(0 < a < 1; a 6¼ 1=2). As is well known, LaðxÞ is strictly increasing and has a derivative equal

to zero almost everywhere. However, what sets of x 2 ½0; 1� actually have L0aðxÞ ¼ 0 or þ1? We

give a partial characterization of these sets in terms of the binary expansion of x. As an

application, we consider the differentiability of the composition of Takagi’s nowhere differ-

entiable function and the inverse of Lebesgue’s singular function.
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1. Introduction. Imagine flipping an unfair

coin with probability a 2 ð0; 1Þ of heads and prob-

ability 1� a of tails. Note that a 6¼ 1=2. Let the

binary expansion of t 2 ½0; 1�: t ¼
P1

n¼1 !n=2n be

determined by flipping the coin infinitely many

times. More precisely, !n ¼ 0 if the n-th toss is

heads and !n ¼ 1 if it is tails. We define Lebesgue’s

singular function LaðxÞ as the distribution function

of t:

LaðxÞ :¼ probft � xg; 0 � x � 1:

It is well-known that LaðxÞ is strictly increas-

ing, but the derivative is zero almost everywhere.

See Fig. 1 for the gragh of LaðxÞ. This distribution

function LaðxÞ was also defined in different ways

and studied by a number of authors: Cesaro (1906),

Faber (1910), Lomnicki and Ulam (1934), Salem

(1943), De Rham (1957) and others. For instance,

De Rham [3] studied LaðxÞ as a unique continuous

solution of the functional equation

LaðxÞ ¼
aLað2xÞ; 0 � x � 1

2
,

ð1� aÞLað2x� 1Þ þ a; 1
2
� x � 1,

(
ð1Þ

where 0 < a < 1, and a 6¼ 1=2.

From (1), it is clear that the graph of LaðxÞ is

self-affine. Because of its connection with fractals,

several applications have been found in recent years:

for instance, in physics [12,13], real analysis [5,6],

digital sum problems [7,9] and complex dynamical

systems [10]. There is even a connection with the

Collatz conjecture [2].

Reconsider the differentiability of LaðxÞ. It is

known that for any x 2 ½0; 1�, L0aðxÞ is either zero, or

þ1, or it does not exist. Then, it is natural to ask

at which points x 2 ½0; 1� exactly we have L0aðxÞ ¼ 0

or þ1.

In fact, De Rham [3] gave the following partial

answer to this question. Let the binary expansion of

x 2 ½0; 1� be x ¼
P1

k¼1 2�k"k, where "k 2 f0; 1g. For

those x 2 ½0; 1� having two binary expansions, we
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Fig. 1. Lebesgue’s singular function (a ¼ 0:3).
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choose the expansion which is eventually all zeros.

As an exception, fix "k ¼ 1 for every k if x ¼ 1.

Define

In :¼
Xn
k¼1

"k:ð2Þ

Note that In is the number of 1’s occurring in the

first n binary digits of x.

Suppose that In=n tends to a limit l as n!1,

and let

l0 :¼ log 2a

log a� logð1� aÞ
:ð3Þ

Then the derivative L0aðxÞ exists and is zero, when

ðl� l0Þða� 1=2Þ > 0. An English translation of De

Rham’s original paper is included in Edgar’s

book [4].

Unfortunately, De Rham’s paper did not con-

tain a proof. The main purpose of this note is to give

a proof of De Rham’s statement and extend his

result. The paper is organized as follows. Section 2

states and proves the main results. The key to the

proof is to use Lomnicki and Ulam’s expression

from 1934 [8]. De Rham might have had a different

proof in mind, as he did not mention Lomnicki and

Ulam’s paper. In Section 3, as an application, we

consider a question about the differentiability of the

composition of Takagi’s nowhere differentiale func-

tion and the inverse of Lebesgue’s singular function.

2. The main result. For convenience, de-

fine the right-hand and left-hand derivatives of

LaðxÞ as follows:

L0aþðxÞ :¼ lim
h!0þ

Laðxþ hÞ � LaðxÞ
h

;

L0a�ðxÞ :¼ lim
h!0�

Laðxþ hÞ � LaðxÞ
h

;

provided the limits exist.

From the self-affinity of the graph, we have

Lemma 2.1. For any x 2 ½0; 1� for which

L0aþðxÞ exists,

L0aþðxÞ ¼ L0ð1�aÞ�ð1� xÞ:

Define

D1ðxÞ :¼ lim
n!1

In

n
¼ lim

n!1

1

n

Xn
k¼1

"k;ð4Þ

provided the limit exists, and put D0ðxÞ :¼ 1�
D1ðxÞ. In other words, DiðxÞ is the density of the

digit i in the binary expansion of x, for i ¼ 0; 1.

Theorem 2.2.

(a) If x 2 ½0; 1� is dyadic, then L0aþðxÞ 6¼ L0a�ðxÞ.
(b) If x 2 ½0; 1� is not dyadic and 0 < D1ðxÞ < 1,

then

L0aðxÞ ¼
0; if aD0ðxÞð1� aÞD1ðxÞ < 1=2,

þ1; if aD0ðxÞð1� aÞD1ðxÞ > 1=2.

(

Remark 2.3. De Rham’s statement is equiv-

alent to the following. For a value of x for which

D1ðxÞ exists, L0aðxÞ ¼ 0 when aD0ðxÞð1� aÞD1ðxÞ <
1=2.

Remark 2.4. If x is a binary normal, that

is, D0ðxÞ ¼ D1ðxÞ ¼ 1=2, then Theorem 2.2 gives

L0aðxÞ ¼ 0, since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

p
< 1=2.

Proof of Theorem 2.2. First, suppose x 2
½0; 1� is a dyadic point, say x ¼ j=2N . Let 2�ðkþ1Þ �
h � 2�k where k > N. Since La is increasing, this

implies that

Laðxþ 2�ðkþ1ÞÞ � LaðxÞ
2�k

�
Laðxþ hÞ � LaðxÞ

h

� Laðxþ 2�kÞ � LaðxÞ
2�ðkþ1Þ :

ð5Þ

The key to the proof is to use the following

expression for LaðxÞ, given by Lomnicki and

Ulam [8]:

LaðxÞ ¼
a

1� a
X1
n¼1

"na
n�Inð1� aÞIn ;ð6Þ

where In is defined by (2). By (6), we have

Laðxþ 2�kÞ � LaðxÞ ¼ ak�IN ð1� aÞIN :

Since ð1� aÞ=a is a positive constant,

lim
k!1

Laðxþ 2�kÞ � LaðxÞ
2�k

¼ lim
k!1
ð2aÞk

1� a
a

� �IN

¼
0; if 0 < a < 1=2,

þ1; if 1=2 < a < 1.

(

By (5), it follows that

L0aþðxÞ ¼
0; if 0 < a < 1=2,

þ1; if 1=2 < a < 1.

�

Since 1� x is also a dyadic, the left-hand

derivative follows from Lemma 2.1:

L0a�ðxÞ ¼ L0ð1�aÞþð1� xÞ

¼
þ1; if 0 < a < 1=2,

0; if 1=2 < a < 1.

�
Therefore, L0aðxÞ does not exist if x is dyadic.
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Next, suppose x 2 ½0; 1� is not dyadic and

0 < D1ðxÞ < 1. Let pk be the address of the

k-th ‘‘0’’ in the binary expansion of x, and

2�pkþ1 � h � 2�pk . Since La is increasing, this implies

that

Laðxþ 2�pkþ1Þ � LaðxÞ
2�pk

�
Laðxþ hÞ � LaðxÞ

h

�
Laðxþ 2�pkÞ � LaðxÞ

2�pkþ1
:

ð7Þ

Using (6), we have

Laðxþ 2�pkÞ � LaðxÞ ¼ akð1� aÞpk�k

þ 1�
a

1� a

� � X1
n¼pkþ1

"na
n�Inð1� aÞIn :

ð8Þ

Let nðlÞ be the address of the l-th ‘‘1’’ appearing

after position pk in the binary expansion of x. Then

we haveX1
n¼pkþ1

"na
n�Inð1� aÞIn

¼ akð1� aÞpk�k
X1
l¼1

anðlÞ�pk�lð1� aÞl:

Since nðlÞ � pk � l � 0 and 0 < a < 1, the series

in the right hand side above converges, say to

Cðx; kÞ.
For convenience, define

C1ðx; kÞ :¼ 1þ 1�
a

1� a

� �
Cðx; kÞ:

Then we can write (8) as

Laðxþ 2�pkÞ � LaðxÞ ¼ akð1� aÞpk�kC1ðx; kÞ:ð9Þ

Since Cðx; kÞ �
P1

l¼1ð1� aÞ
l, it follows that

min 1;
1� a
a

� �
� C1ðx; kÞ � max 1;

1� a
a

� �
:ð10Þ

By (9), we have

Laðxþ 2�pkÞ � LaðxÞ
2�pkþ1

¼ 2
pkþ1

pk a
k
pk ð1� aÞ1�

k
pk

� �pk
C1ðx; kÞ;

Laðxþ 2�pkþ1Þ � LaðxÞ
2�pk

¼ 2
pk
pkþ1 a

kþ1
pkþ1 ð1� aÞ1�

kþ1
pkþ1

� �pkþ1

C1ðx; kþ 1Þ:

Since k=pk tends to a nonzero limit D0ðxÞ as

k!1, we have pkþ1=pk ! 1 as k!1. Therefore,

it follows from (7) and (10) that

L0aþðxÞ ¼
0; if aD0ðxÞð1� aÞD1ðxÞ < 1=2,

þ1; if aD0ðxÞð1� aÞD1ðxÞ > 1=2.

(

Finally, for the left-hand derivative, it follows

from Lemma 2.1 that

L0a�ðxÞ ¼ L0ð1�aÞþð1� xÞ

¼ 0; if aD0ðxÞð1� aÞD1ðxÞ < 1=2,

þ1; if aD0ðxÞð1� aÞD1ðxÞ > 1=2,

(

since DiðxÞ ¼ Djð1� xÞ when i 6¼ j. This concludes

the proof. �

Note that Theorem 2.2 left out the boundary

case; that is, those numbers x for which aD0ðxÞð1�
aÞD1ðxÞ ¼ 1=2; in other words, numbers x which have

the following densities:

D1ðxÞ ¼
log 2a

log a� logð1� aÞ ;

D0ðxÞ ¼
log 2ð1� aÞ

logð1� aÞ � log a
:

Let us define some additional notation. As a

complement of In, define On to be the number of 0’s

occurring in the first n binary digits of x:

On :¼
Xn
k¼1

ð1� "kÞ:

Let qk be the address of the k-th ‘‘1’’ in the binary

expansion of x as a complement of pk. Observe that

qk � n if and only if In � k;
pk � n if and only if On � k:

Then, it is easy to prove the following lemma

by contradiction.

Lemma 2.5. Let fðkÞ ¼ pk � k=D0ðxÞ and

gðkÞ ¼ k=D1ðxÞ � qk. If fðkÞ ! 1 as k!1, then

gðkÞ ! 1.

Theorem 2.6. Suppose x 2 ½0; 1� satisfies

aD0ðxÞð1� aÞD1ðxÞ ¼ 1=2. Let fðkÞ ¼ pk � k=D0ðxÞ
and suppose fðkþ 1Þ=fðkÞ ! 1.

(a) If fðkÞ ! 1 as k!1, then

L0aðxÞ ¼
þ1; if 0 < a < 1=2,

0; if 1=2 < a < 1.

�

(b) If fðkÞ ! �1 as k!1, then

L0aðxÞ ¼
0; if 0 < a < 1=2,

þ1; if 1=2 < a < 1.

�

Proof. We follow the same argument for non-

dyadic points x 2 ½0; 1� as in the proof of

Theorem 2.2. Since k=pk tends to a nonzero limit
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D0ðxÞ as k!1, fðkÞ is of smaller order than k.

Then, it follows from (9) that

Laðxþ 2�pkÞ � LaðxÞ
2�pk

¼ 2ð1� aÞf g
1

D0ðxÞ �
a

1� a

� �k
2ð1� aÞf gfðkÞC1ðx; kÞ

¼ 2ð1� aÞf gfðkÞC1ðx; kÞ;
because

f2ð1� aÞg
1

D0ðxÞað1� aÞ�1 ¼ 1;

when

aD0ðxÞð1� aÞD1ðxÞ ¼ 1=2:

Thus,

Laðxþ 2�pkÞ � LaðxÞ
2�pkþ1

¼ 2
fðkþ1Þ
fðkÞ ð1� aÞ

� �fðkÞ
� 2

1
D0ðxÞC1ðx; kÞ;

Laðxþ 2�pkþ1Þ � LaðxÞ
2�pk

¼ 2
fðkÞ
fðkþ1Þ ð1� aÞ

� �fðkþ1Þ
� 2

1
D0ðxÞC1ðx; kþ 1Þ:

Since fðkþ 1Þ=fðkÞ ! 1 as k!1, it follows

from (7) and (10) that if fðkÞ ! 1, then

L0aþðxÞ ¼
þ1; if 0 < a < 1=2,

0; if 1=2 < a < 1.

�

Similary, if fðkÞ ! �1 as k!1, then

L0aþðxÞ ¼
0; if 0 < a < 1=2,

þ1; if 1=2 < a < 1.

�

Next, consider the left-hand derivative. From

Lemma 2.1, we have L0a�ðxÞ ¼ L0ð1�aÞþð1� xÞ. It is

clear that 1� x also satisfies aD0ð1�xÞð1� aÞD1ð1�xÞ ¼
1=2, since DiðxÞ ¼ Djð1� xÞ for i 6¼ j. Let

gðkÞ ¼ k
D1ðxÞ � qk. Since qk ¼ pkð1� xÞ, we have

gðkþ 1Þ=gðkÞ ! 1 if fðkþ 1Þ=fðkÞ ! 1. It follows

from Lemma 2.5 that if fðkÞ ! 1 or �1, then

L0a�ðxÞ ¼ L0ð1�aÞþð1� xÞ ¼ L0aþðxÞ. This concludes

the proof. �

3. Application. We apply the main result

to the following simple question. In classical calcu-

lus, the chain rule is used to compute the derivative

of the composition of two differentiable functions.

However, what can we say, for example, about the

differentiability of the composition of a nowhere

differentiable function and a singular function? For

instance, let T be Takagi’s nowhere differentiable

function, which is defined by

T ðxÞ ¼
X1
k¼0

1

2k
j2kx� b2kxþ 1

2
cj; 0 � x � 1:

Is ðT � L�1
a Þ nowhere differentiable? See Fig. 2. If

a ¼ 0:4, the figure of the graph looks somewhat like

Takagi’s function; on the other hand, if a ¼ 0:2, the

shape of the graph is more like Lebesgue’s singular

function. Thus, we can guess that ðT � L�1
a Þ might

not be nowhere differentiable if a is close to 0.

Although T does not have a finite derivative

anywhere, it is known to have an improper infinite

derivative at many points. In fact, Allaart and

Kawamura [1] proved that the set of points where

T 0ðxÞ ¼ þ1 or �1 has Hausdorff dimension one.

Note that the inverse of Lebesgue’s singular func-

tion is also singular. Hence, if we try to (naively)

use the chain rule to compute the derivative of

ðT � L�1
a ÞðxÞ, we may run into one of the indeter-

minate products þ1 � 0 or �1 � 0.

The following theorem gives an answer to this

concrete question: ðT � L�1
a ÞðxÞ has a finite but

vanishing derivative at uncountably many points.

Theorem 3.1. Let x 2 ½0; 1�, and put y ¼
L�1
a ðxÞ. If 0 < D1ðyÞ < 1 and aD0ðyÞð1� aÞD1ðyÞ >

1=2, then

ðT � L�1
a Þ
0ðxÞ ¼ 0:ð11Þ

Fig. 2. Graphs of ðT � L�1
a ÞðxÞ for a ¼ 0:2 (top) and a ¼ 0:4

(bottom).
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Proof. Define ~hh :¼ L�1
a ðxþ hÞ � L�1

a ðxÞ. Then

we can write

T ðL�1
a ðxþ hÞÞ � T ðL�1

a ðxÞÞ
h

¼
T ðyþ ~hhÞ � T ðyÞ

~hh log2ð1=j ~hhjÞ
�

~hh log2ð1=j ~hhjÞ
h

:

ð12Þ

Allaart and Kawamura [1] proved that if D1ðxÞ
exists and 0 < D1ðxÞ < 1, then

lim
h!0

T ðxþ hÞ � T ðxÞ
h log2ð1=jhjÞ

¼ D0ðxÞ �D1ðxÞ:

Therefore, we have

�1 � lim
h!0

T ðyþ ~hhÞ � T ðyÞ
~hh log2ð1=j ~hhjÞ

� 1:

A slight modification of the proof of Theorem 2.2

yields

lim
h!0

~hh log2ð1=j ~hhjÞ
h

¼ 0;

if

aD0ðyÞð1� aÞD1ðyÞ > 1=2:

Substituting these results into (12) gives (11). �

Acknowledgments. This research was done

mainly during my visit to RIMS, Kyoto University,

and supported in part by Japanese GCOE Program

G08: ‘‘Fostering Top Leaders in Mathematics —

Broadening the Core and Exploring New Ground’’.

I am grateful to Prof. H. Okamoto for his support

and warm-hearted hospitality. Also, I would like

to thank Prof. P. Allaart for his helpful comments

and suggestions in preparing this paper.

Lastly, I would like to express my gratitude to

the late Prof. Hitoshi Shinya, who taught me a

deeper understanding of calculus.

References

[ 1 ] P. C. Allaart and K. Kawamura, Extreme values
of some continuous nowhere differentiable func-
tions, Math. Proc. Cambridge Philos. Soc. 140
(2006), no. 2, 269–295.

[ 2 ] L. Berg and M. Krüppel, De Rham’s singular
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