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Abstract: We count orientable small covers over cubes. We also get estimates for On=Rn,

where On is the number of orientable small covers and Rn is the number of all small covers over

an n-cube up to the Davis-Januszkiewicz equivalence.
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1. Introduction. A small cover, defined by

Davis and Januszkiewicz [2], is an n-dimensional

closed smooth manifold M with an effective real

torus ðS0Þnð¼: TnÞ-action such that the action is

locally isomorphic to a standard Tn-action on Rn

and the orbit space M=Tn can be identified with a

simple combinatorial polytope. For instance, RPn

with a natural Tn-action is a small cover over an n-

simplex. In general, a real toric manifold, the set of

real points of a toric manifold, provides an example

of small covers. Hence, small covers can be seen as a

topological generalization of real toric manifolds in

algebraic geometry.

A small cover over a cube is known as a real

Bott manifold which is obtained as iterated RP 1

bundles starting with a point, where each fibration

is the projectivization of a Whitney sum of two real

line bundles. These manifolds are well-studied in

numerous papers such as [3] and [4]. The author

also found a strong relation between small covers

and acyclic digraphs, and he calculated the number

of them up to several senses in [1].

In the present paper, we restrict our attention

to the case of orientable small covers over a cube.

Thankfully, Nakayama and Nishimura [5] found a

simple criterion for a small cover to be orientable.

Using this criterion, we establish the formula of

the number of orientable small covers over a cube

and show that the ratio On=Rn is approximately
1:262
2n , where On is the number of orientable small

covers and Rn is the number of small covers over

an n-cube up to the Davis-Januszkiewicz equiv-

alence.

2. Orientable small covers over cubes.

Let P be an n-dimensional simple polytope with m

facets. Two small covers M1 and M2 over P are

Davis-Januszkiewicz equivalent (or simply, D-J

equivalent) if there is a weak Tn-equivariant homeo-

morphism f :M1 ! M2 which makes the diagram

commute:

M1
f

M2

P

.

It is well-known by [2] that all small covers

over P can be distinguished by the map � from the

set of facets of P to Zn
2 ¼ f0; 1gn, called the

characteristic function, which satisfies the non-

singularity condition; f�ðFi1Þ; . . . ; �ðFinÞg is a basis

of Zn
2 whenever the intersection Fi1 \ � � � \ Fin is

non-empty, where fF1; . . . ; Fmg is the set of facets

of P . Let M1, M2 be two small covers over P

corresponding to characteristic functions �1, �2,

respectively. By [2], M1 is D-J equivalent to M2 if

and only if there is an automorphism � 2 AutðZn
2 Þ

such that �1 ¼ � � �2. Hence, the D-J equivalence

classes are independent of the choice of basis for Zn
2 .

One may assign an n�m matrix � to � by ordering

the facets and choosing a basis for Zn
2 as the follow:

� ¼ �ðF1Þ � � ��ðFmÞð Þ:

If we additionally assume that the first n facets

meet at a vertex, by the non-singularity condition,

we can choose an appropriate basis of Zn
2 such that

� ¼ ðEnj��Þ, where En is the identity matrix of size

n and �� is an n� ðm� nÞ matrix. Hence, the D-J

equivalence classes of small covers over P are

classified by ��.

doi: 10.3792/pjaa.86.97
#2010 The Japan Academy

2000 Mathematics Subject Classification. Primary 37F20,
57S10; Secondary 57N99.

No. 6] Proc. Japan Acad., 86, Ser. A (2010) 97

http://dx.doi.org/10.3792/pjaa.86.97


Now, we consider the case where P is an n-

cube. Note that P has 2n facets. We order the facets

of P satisfying Fj \ Fnþj ¼ ; for 1 � j � n. Then

the first n facets meet at a vertex. Hence, for each �,

the corresponding matrix � can be expressed as

� ¼ ðEnj��Þ, where �� is an n� n matrix. One can

check that the non-singularity condition holds if

and only if all of principal minors of �� are 1.

Therefore, there is a bijection between small covers

over cubes up to the D-J equivalence and square Z2-

matrices all of whose principal minors are 1.

Let MðnÞ be the set of square Z2-matrices of

size n all of whose principal minors are 1 and let

Gn be the set of acyclic digraphs with labelled n

vertices. By [1], we have a bijection � : Gn ! MðnÞ
by

� : G 7! AðGÞt þ En;

where AðGÞt is the transpose matrix of the vertex

adjacency matrix of G (see Fig. 1).

Remark 2.1. In the classical theory of real

Bott manifolds, the representative matrix of real

Bott manifold is the transpose matrix of its

characteristic function matrix ��. This is a reason

why we use AðGÞt instead of AðGÞ in the definition

of �.

On the other hand, we have a nice orientability

condition for small covers due to Nakayama and

Nishimura in [5].

Theorem 2.2 (Nakayama and Nishimura [5]).

Let P be an n-dimensional simple polytope with m

facets and let M be a small cover over P with �.

Then M is orientable if and only if the sum of entries

of the i-th column of � is odd for all i ¼ 1; . . . ;m.

Corollary 2.3. The number of orientable

small covers over an n-cube up to D-J equivalence

is equal to the number of acyclic digraphs with

labelled n vertices all of whose vertices have even

out-degrees.

Proof. Let G be a digraph and AðGÞ its vertex
adjacency matrix. Then the sum of entries of the

i-th row of AðGÞ means the out-degree of the i-th

vertex of G (see Appendix). Let M be an orientable

small cover over an n-cube corresponding to ��.
Since �� 2 MðnÞ, the transpose �t

� of �� is also in

MðnÞ. Note that the sum of entries of each row of

�t
� � En is even by Theorem 2.2, and hence, every

vertex of ��1ð��Þ has an even out-degree. Since the

D-J equivalence classes are classified by �� and � is

a bijection, we prove the corollary. �

3. The number of orientable small cov-

ers. Let Rn be the number of acyclic digraphs

with labelled n vertices. The following is the

recursive formula for Rn due to R. W. Robinson

in [6].

Rn ¼
Xn
k¼1

ð�1Þkþ1 n

k

� �
2kðn�kÞRn�k:

Let On � Gn be the set of acyclic digraphs all

of whose vertices have even out-degrees and let On

be the cardinality of On (we use the alphabet ‘O’

instead of ‘E’ although they have only ‘even’ out-

degree vertices, because the ‘O’ is the abbreviation

of the word ‘Orientable’).

Theorem 3.1. Let Rk be the number of

acyclic digraphs with labelled k vertices. Then,

On ¼
Xn
k¼1

ð�1Þkþ1 n

k

� �
2ðk�1Þðn�kÞRn�k:

Proof. We count matrices in MðnÞ all of whose
the sum of entries of each column are odd. Let us

denote the sum of entries of the i-th column of an

n� n matrix A by ciðAÞ. Since an acyclic digraph

always has a vertex of out-degree 0, there is at least

one i such that ciðAÞ ¼ 1 for each A 2 MðnÞ.
Assume ci1ðAÞ ¼ � � � ¼ cikðAÞ ¼ 1, where k � 1.
Since all principal minors of A are 1, the diagonal

entries of A are all 1. Thus, by a replacement of

labels, we may assume that A is of the following

form:

Ek S

0 T

� �
;ð1Þ

where Ek is the identity matrix of size k, T is an

ðn� kÞ � ðn� kÞ-matrix and S is a k� ðn� kÞ-

1 2

34
φ

1 1 0 0
0 1 0 0
0 1 1 1
1 1 0 1

Fig. 1. A bijection �.

Table I

n 1 2 3 4 5 6 7

Rn 1 3 25 543 29,281 3,781,503 1,138,779,265

On 1 1 4 43 1,156 74,581 11,226,874
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matrix. Note that A 2 MðnÞ if and only if

T 2 Mðn� kÞ. Thus we may control only one row

of S for making all ciðAÞ’s are odd. This implies the

number of A’s of the form (1) whose ciðAÞ’s are odd
for all i is 2ðk�1Þðn�kÞRn�k. To avoid counting

repeatedly, we apply the Principle of Inclusion-

Exclusion and we get the formula for On. �

We list a few values of Rn and On in Table I.

Let us consider the chromatic generating func-

tions of Rn and On, namely, we set

RðxÞ ¼
X1
n¼0

Rn
xn

n!2
n
2
ð Þ and OðxÞ ¼

X1
n¼0

On
xn

n!2
n
2
ð Þ :

Corollary 3.2. Let F ðxÞ ¼
P1

n¼0
xn

n!2
n
2ð Þ . Then

OðxÞ ¼
1� F ð�xÞ

F

�
�
x

2

� :

Proof. Let us consider chromatic generating

functions AðxÞ, BðxÞ and CðxÞ with respect

to the sequences An, Bn and Cn, respectively.

Note that if CðxÞ ¼ AðxÞBðxÞ, then Cn ¼Pn
k¼0 AkBn�k

n
k

� �
2kðn�kÞ. Thus, we have

F ð�xÞRðxÞ ¼ 1 (see [7]) and

R
x

2

� �
F ð�xÞ þOðxÞ ¼

X1
n¼0

Rn

2n
xn

n!2
n
2
ð Þ ¼ R

x

2

� �
:

Hence we have OðxÞ ¼ F � x
2

� ��1ð1� F ð�xÞÞ. �

Let GðxÞ ¼ F ðx2Þ
1�F ðxÞ. We obtain estimates for On

by analyzing the behavior of the function GðxÞ.
Since F ðxÞ has an isolated zero � 	 �1:488

(see [7, Section 2]), GðxÞ has an isolated zero 2�.

Hence, standard techniques provide the asymptotic

formula

GðxÞ 
 G0ð2�Þðx� 2�Þ:
Hence we have

OðxÞ ¼ 1

Gð�xÞ

 1

G0ð2�Þð�x� 2�Þ
:

Note that F 0ðxÞ ¼ F ðx
2
Þ. Therefore, the following

asymptotic formula

OðxÞ 
 �
1� F ð2�Þ

�F

�
�

2

� X1
n¼0

�
x

2�

� �n

immediately follows two facts 1
G0ð2�Þ ¼

2ð1�F ð2�ÞÞ
F 0ð�Þ and

1
�x�2�

¼ 1
�2�

P1
n¼0ð� x

2�
Þn.

Therefore On 
 K2
n
2ð Þn!ð� 1

2�Þ
n, where K ¼

� 1�F ð2�Þ
�F ð�2Þ

	 2:197.

Corollary 3.3. We have estimates for the

orientable small covers ratio as

On

Rn



K

C2n
;

where K
C
	 1:262.

Proof. Since RðxÞF ð�xÞ ¼ 1 and F ðxÞ has an

isolated zero �, we have RðxÞ ¼ 1
F ð�xÞ 


1
F 0ð�Þð�x��Þ ¼ 1

��F ð�2Þ
P1

n¼0ð� x
�Þ

n. Hence, we have

Rn 
 C2
n
2ð Þn!ð� 1

�Þ
n, where C ¼ � 1

�F ð�2Þ
	 1:739.

Therefore On

Rn

 K

C2n 	 1:262
2n . �

Appendix. Graph theory terminology.

We review the terminology in graph theory, follow-

ing [8]. A directed graph or digraph G is a triple
ðV ;E; ’Þ, where V ¼ fv1; . . . ; vng is a set of vertices,

E is a set of directed edges, and ’ is a map from E

to V � V . If ’ðeÞ ¼ ðu; vÞ, then e is called an edge

from u to v with the initial vertex u and the final

vertex v. If u ¼ v then e is called a loop. If ’ is

injective and has no loops, then G is said to be

simple. In this case, we denote e by ðu; vÞ for

simplicity and represent G by ðV ;EÞ. Throughout
this paper, every graph is simple. A walk of length k

from vertex u to v is a sequence v0; v1; . . . ; vk such

that v0 ¼ u and vk ¼ v, where ðvi; viþ1Þ 2 E for all

i ¼ 0; . . . ; k� 1. If all vi’s are distinct except for

vo ¼ vk, then the walk is called a cycle. G is acyclic if

there is no cycle of any length in G. The out-degree

of a vertex v is the number of edges of G with the

initial vertex v. Similarly the in-degree of v is the

number of edges of G with the final vertex v.

All digraphs can be represented by matrices.

Define an n� n matrix AðGÞ ¼ ðAijÞ by

Aij ¼
1; if ðvi; vjÞ 2 E;

0; otherwise.

�

The matrix AðGÞ is called the vertex adjacency

matrix of G. We remark that the sum of entries of

the i-th column of A is equal to the in-degree of vi
and the sum of entries of the j-th row of A is equal

to the out-degree of vj.
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