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Abstract: We consider extremal holomorphic curves for the truncated defect relation when
the number of vectors whose truncated defects are equal to 1 is large. Some applications to another
defect are given.
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1. Introduction. Let f = [f1, . . . , fn+1] be
a holomorphic curve from C into the n-dimensional
complex projective space Pn(C) with a reduced rep-
resentation

(f1, . . . , fn+1) : C → Cn+1 − {0},

where n is a positive integer. We use the notations:

||f(z)|| = (|f1(z)|2 + · · · + |fn+1(z)|2)1/2;

T (r, f) =
1
2π

∫ 2π

0

log ||f(reiθ)||dθ − log ||f(0)||.

We suppose throughout the paper that f is tran-
scendental: limr→∞ T (r, f)/ log r = ∞ and that f is
linearly non-degenerate over C; namely, f1, . . . , fn+1

are linearly independent over C.
It is well-known that f is linearly non-

degenerate over C if and only if the Wronskian
W = W (f1, . . . , fn+1) of f1, . . . , fn+1 is not iden-
tically equal to zero.

For a vector a = (a1, . . . , an+1) ∈ Cn+1 − {0},
we put

||a|| = (|a1|2 + · · · + |an+1|2)1/2;

(a, f) = a1f1 + · · · + an+1fn+1;

(a, f(z)) = a1f1(z) + · · · + an+1fn+1(z);

N(r, a, f) = N(r, 1/(a, f))

as in [6, Introduction]. We call the quantity

δ(a, f) = 1 − lim sup
r→∞

N(r, a, f)/T (r, f)

the deficiency (or defect) of a with respect to f . We
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have that 0 ≤ δ(a, f) ≤ 1.
Further, let ν(c) be the order of zero of (a, f(z))

at z = c and for a positive integer k, let

nk(r, a, f) =
∑
|c|≤r

min{ν(c), k};

Nk(r, a, f) =
∫ r

0

nk(t, a, f) − nk(0, a, f)
t

dt

+ nk(0, a, f) log r (r > 0).

We put

δk(a, f) = 1 − lim sup
r→∞

Nk(r, a, f)/T (r, f).

It is easy to see that

(1) 0 ≤ δ(a, f) ≤ δk(a, f) ≤ 1.

We denote by S(r, f) any quantity satisfying
S(r, f) = o{T (r, f)} as r → +∞, possibly outside a
set of r of finite linear measure and by e1, . . . , en+1

the standard basis of Cn+1.
Let X be a subset of Cn+1−{0} in N -subgeneral

position; that is to say, #X ≥ N + 1 and any N + 1
elements of X generate Cn+1, where N is an inte-
ger satisfying N ≥ n. We say that X is in general
position when X is in n− subgeneral position.

Cartan ([1], N = n) and Nochka ([4], N > n)
gave the following theorem:

Theorem A (truncated defect relation). For
any q elements aj (j = 1, . . . , q) of X ,

q∑
j=1

δn(aj , f) ≤ 2N − n + 1,

where 2N − n + 1 ≤ q ≤ ∞ (see [3]).
We are interested in the holomorphic curve f

extremal for the truncated defect relation:
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(2)
q∑

j=1

δn(aj , f) = 2N − n + 1.

We gave several results in [5]. The purpose of this
paper is to give some results on δn(a, f) when (2)
holds and #{a ∈ X | δn(a, f) = 1} is large. Some
applications to another defect are also given.

2. Preliminaries and lemmas. Let f =
[f1, . . . , fn+1] and X etc. be as in Section 1 and q

be an integer satisfying N + 1 < q < ∞. For a non-
empty subset P of X , we denote by V (P ) the vector
space spanned by the elements of P and by d(P ) the
dimension of V (P ).

Lemma 2.1 (see [3, (2.4.3), p. 68]). If #P ≤
N + 1, then #P − d(P ) ≤ N − n.

We put for ν = 1, . . . , n + 1

Xν(0) = {a = (a1, a2, . . . , an+1) ∈ X | aν = 0}.

Then, 0 ≤ #Xν(0) ≤ N as X is in N -subgeneral
position. By Lemma 2.1, we have the inequality

(3) #Xν(0) − d(Xν(0)) ≤ N − n.

Let X1
ν (0) be a subset of Xν(0) satisfying

(i) #X1
ν (0) = d(Xν(0));

(ii) All elements of X1
ν (0) are linearly independent,

and we put X0
ν (0) = Xν(0)−X1

ν (0). Then, from (3)
we have the inequality #X0

ν (0) ≤ N − n.
Lemma 2.2. For any q vectors a1, . . . , aq in

X − X0
ν (0), we have the following inequality for any

ν (1 ≤ ν ≤ n + 1):

(q − N − 1)T (r, f) ≤
q∑

j=1

Nn(r, aj , f)

+ (N − n)
n+1∑

j=1;j �=ν

Nn(r, ej , f) + S(r, f).

Proof. As the proof proceeds in the same way
for any ν, we prove this lemma for ν = n + 1. For
simplicity we put

W1(f1, . . . , fn+1) = W (f1, . . . , fn+1)/(f1 · · · fn+1).

We put (aj , f) = Fj (1 ≤ j ≤ q) and for any z(�= 0)
arbitrarily fixed, let

|Fj1(z)| ≤ |Fj2(z)| ≤ · · · ≤ |Fjq (z)|,

where 1 ≤ j1, . . . , jq ≤ q and j1, . . . , jq are distinct.
Then, there is a positive constant K such that

||f(z)|| ≤ K|Fjν (z)| (ν = N + 1, . . . , q)

|Fjν (z)| ≤ K||f(z)|| (ν = 1, . . . , q).

(From now on we denote by K a constant, which
may be different from each other when it appears.)

As X is in N -subgeneral position, there
are n + 1 linearly independent functions in
{Fj1 , . . . , FjN+1}. Let {G1, . . . , Gn+1} be linearly in-
dependent functions in {Fj1 , . . . , FjN+1} such that
{G1, . . . , Gn+1} ⊃ {Fj1 , . . . , FjN+1} ∩ {Fj | aj ∈
X1

n+1(0)} and put

{Gn+2, . . . , GN+1} = {Fj1 , . . . , FjN+1}
− {G1, . . . , Gn+1}.

Then, {Gn+2, . . . , GN+1}∩{Fj |aj ∈Xn+1(0)}=
φ and we have the equality

FjN+2(z) · · ·Fjq (z)

W1(G1, . . . , Gn+1)ΠN−n
k=1 W1(f1, . . . , fn, Gn+1+k)

=
Πq

j=1Fj(z)(Πn
j=1fj(z))N−n

W (G1, . . . , Gn+1)ΠN−n
k=1 W (f1, . . . , fn, Gn+1+k)

= K
Πq

j=1Fj(z)(Πn
j=1fj(z))N−n

W (f1, . . . , fn+1)N+1−n
≡ H(z)

since W (G1, . . . , Gn+1) = c0W (f1, . . . , fn+1) and
W (f1, . . . , fn, Gn+1+k) = ckW (f1, . . . , fn+1) for k =
1, . . . , N − n. (ck �= 0 (0 ≤ k ≤ N − n)).

From this equality we obtain the inequality
which holds for any z �= 0:

(q − N − 1) log ||f(z)|| ≤ log |H(z)|
+

∑
(ν1,...,νn+1)

log+ |W1(Fν1 , . . . , Fνn+1)(z)|

+
∑

{Fj |aj /∈Xn+1(0)}
log+ |W1(f1, . . . , fn, Fj)(z)|

+ log+ |K|,

where the summation
∑

(ν1,...,νn+1)
is taken over all

systems {Fν1 , . . . , Fνn+1} of n+1 functions which are
linearly independent and taken from {F1, . . . , Fq}.
By integrating both sides of this inequality with re-
spect to θ (z = reiθ), we obtain this lemma as in [1].
Here, we used the facts that

1
2π

∫ 2π

0

log |H(reiθ)|dθ ≤
q∑

j=1

Nn(r, aj , f)

+ (N − n)
n∑

j=1

Nn(r, ej , f) + O(1)

and

1
2π

∫ 2π

0

log+ |W1(Fν1 , . . . , Fνn+1)(re
iθ)|dθ

= S(r, f)
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=
1
2π

∫ 2π

0

log+ |W1(f1, . . . , fn, Fj)(reiθ)|dθ.

Corollary 2.1. For 1 ≤ ν ≤ n + 1

∑
a∈X−X0

ν(0)

δn(a, f) + (N − n)
n+1∑

j=1;j �=ν

δn(ej , f)

≤ N + 1 + (N − n)n.

Proof. From Lemma 2.2 we easily obtain this
corollary by a usual manner to obtain the defect re-
lation.

Lemma 2.3. Suppose that δn(ej , f) = 1 (1 ≤
j ≤ n + 1, j �= ν) for some ν (1 ≤ ν ≤ n + 1). Let

X0
ν (0) = {cν

1 , . . . , cν
p(ν)} (0 ≤ p(ν) ≤ N − n).

Then,
∑

a∈X δn(a, f) ≤ N + 1 +
∑p(ν)

j=1 δn(cν
j , f).

Proof. By our assumption δn(ej , f) = 1 (1 ≤
j ≤ n + 1, j �= ν) and Corollary 2.1 we have the
inequality ∑

a∈X−X0
ν(0)

δn(a, f) ≤ N + 1,

from which we obtain our inequality.
Lemma 2.4. Let a1, . . . , an+1 be n+1 linearly

independent vectors in X and let A be the (n + 1) ×
(n + 1) matrix whose j-th row is aj (1 ≤ j ≤ n + 1),
(aj , f) = Fj (1 ≤ j ≤ n + 1) and Y = {aA−1 | a ∈
X}. Then, we have the followings:

(a) A is regular and ajA
−1 = ej (j = 1, . . . , n+

1).
(b) Y is in N -subgeneral position.
(c) F1, . . . , Fn+1 are entire functions without

common zeros and linearly independent over C.
(d) T (r, F ) = T (r, f) + O(1) and so F is tran-

scendental, where F = [F1, . . . , Fn+1].
(e) δn(a, f) = δn(b, F ), where b = aA−1 (a ∈

X).
Proof. (a) and (b) are trivial. (c) As f1, . . . ,

fn+1 are entire functions without common
zeros and linearly independent over C, so are
F1, . . . , Fn+1.

(d) As c||f(z)|| ≤ ||F (z)|| ≤ C||f(z)|| for posi-
tive constants c and C, we have our relation by the
definition of the characteristic function.

(e) As (a, f) = (b, F ), we obtain our relation
by (d).

3. Theorem. Let f , X , Xν(0) etc. be as in
Section 1 or 2. We put D+

n (X, f) = {a ∈ X |

δn(a, f) > 0} and D1
n(X, f) = {a ∈ X | δn(a, f) =

1}.
Theorem 3.1. Suppose that there exist n +

1 linearly independent vectors a1, . . . , an+1 in
D1

n(X, f). Then, #D+
n (X, f) ≤ (n + 1)(N + 1 − n).

Proof. Let a be any vector in D+
n (X, f). The

vector a can be represented as a linear combination
of a1, . . . , an+1 : a = c1a1 + · · · + cn+1an+1.

Then, at least one of c1, . . . , cn+1 is equal to
0. In fact, suppose to the contrary that none of
c1, . . . , cn+1 is equal to zero. As a1, . . . , an+1, a are
in general position, from Theorem A for N = n and
q = n + 2, we obtain the inequality

n+1∑
j=1

δn(aj , f) + δn(a, f) ≤ n + 1,

which implies that δn(a, f) = 0. This is a contra-
diction. We have that at least one of c1, . . . , cn+1 is
equal to 0. Let

X ′
ν(0) = {a = c1a1 + · · · + cn+1an+1 ∈ X | cν = 0}.

Then, #X ′
ν(0) ≤ N (ν = 1, . . . , n + 1) since X is in

N -subgeneral position. From the fact that D+
n (X, f)

is a subset of ∪n+1
ν=1X ′

ν(0), we obtain the inequality

#D+
n (X, f) ≤ #

{ n+1⋃
ν=1

X ′
ν(0)

}

≤ n + 1 + (N − n)(n + 1)

= (N + 1 − n)(n + 1)

since the vector aj belongs to the set
⋃n+1

ν=1;ν �=j X ′
ν(0)

(1 ≤ j ≤ n + 1).
Theorem 3.2. Suppose that
(i) there exist n+1 linearly independent vectors

a1, . . . , an+1 in D1
n(X, f);

(ii)
∑

a∈D+
n (X,f) δn(a, f) = 2N − n + 1.

Then, we have that

D+
n (X, f) = D1

n(X, f) and #D1
n(X, f) = 2N−n+1.

Proof. Let

D+
n (X, f) = {a1, . . . , an+1, an+2, . . . , aq}.

Then, we have that q ≤ (N + 1−n)(n + 1) by Theo-
rem 3.1. Let A, F and Y be as in Lemma 2.4 and put
bj = ajA

−1 (j = 1, . . . , q). Then, by Lemma 2.4, we
have that

(α) bj = ej (j = 1, . . . , n + 1);
(β) δn(bj , F ) = δn(aj , f) (j = 1, . . . , q)

and by the assumption (i) and (β) we have that
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(γ) δn(ej , F ) = δn(aj , f) = 1 (j = 1, . . . , n+1).
We put for ν = 1, . . . , n + 1

Yν(0) = {b = (b1, b2, . . . , bn+1) ∈ Y | bν = 0}.

Then, 0 ≤ #Yν(0) ≤ N as Y is in N -subgeneral
position.

By Lemma 2.1, we have the inequality

(4) #Yν(0) − d(Yν(0)) ≤ N − n.

Let Y 1
ν (0) = {e1, . . . , en+1}−{eν} (1 ≤ ν ≤ n+

1). We have that #Y 1
ν (0) = d(Yν(0)) = n.

Next, we put Y 0
ν (0) = Yν(0) − Y 1

ν (0) (1 ≤ ν ≤
n+1). From (4) we have that #Y 0

ν (0) ≤ N −n. Let
a be any vector in {aj | n + 2 ≤ j ≤ q} and put
b = aA−1. Then, b ∈ {bj | n + 2 ≤ j ≤ q}. The
vector b can be represented as a linear combination
of e1, . . . , en+1 : b = b1e1 + · · · + bn+1en+1.

Then, at least one of b1, . . . , bn+1 is equal to 0
from Theorem A for N = n and q = n + 2 as in
the proof of Theorem 3.1. For simplicity we suppose
that bn+1 = 0. Let Y 0

n+1(0) = {bj1 , . . . , bjp}. b is
in Y 0

n+1(0). As #Y 0
n+1(0) ≤ N − n, we have that

p ≤ N − n. By applying Lemma 2.3 to this case
and by the assumption (ii) with (β), we obtain the
inequality

2N − n + 1 =
q∑

j=1

δn(bj , F )

≤ N + 1 +
p∑

k=1

δn(bjk
, F )

≤ 2N − n + 1.

This implies that p = N − n and δn(bjk
, F ) =

1 (1 ≤ k ≤ N − n). We have that δn(b, F ) = 1.
By (β), δn(a, f) = 1. This means that D+

n (X, f) =
D1

n(X, f) and we have that #D1
n(X, f) = 2N −n+1

from the assumption (ii).
Corollary 3.1. Suppose that
(i) #D1

n(X, f) ≥ N + 1;
(ii)

∑
a∈D+

n (X,f) δn(a, f) = 2N − n + 1.
Then, we have that

D+
n (X, f) = D1

n(X, f) and #D1
n(X, f) = 2N−n+1.

Proof. As X is in N -subgeneral position, there
are n + 1 linearly independent vectors in D1

n(X, f)
by the assumption (i). We have this corollary from
Theorem 3.2 immediately.

Theorem 3.3. Suppose that
(i) there exist n linearly independent vectors

a1, . . . , an in D1
n(X, f);

(ii)
∑

a∈D+
n (X,f) δn(a, f) = 2N − n + 1.

(iii) #D1
n(X, f) < 2N − n + 1.

Then, we have that #D1
n(X, f) = N .

Proof. Let

D+
n (X, f) = {a1, . . . , an, an+1, . . . , aq}.

Then, by the assumptions (ii) and (iii) we have that
q ≥ 2N−n+2 > N +1. As X is in N -subgeneral po-
sition, we can choose n+1 linearly independent vec-
tors containing a1, . . . , an from D+

n (X, f). We may
suppose without loss of generality that a1, . . . , an+1

are linearly independent. Let A, F and Y be as
in Lemma 2.4 and put bj = ajA

−1 (j = 1, . . . , q).
Then, by Lemma 2.4, we have that

(α) bj = ej (j = 1, . . . , n + 1);
(β) δn(bj , F ) = δn(aj , f) (j = 1, . . . , q)

and by the assumption (i) and (β) we have that
(γ) δn(ej , F ) = δn(aj , f) = 1 (j = 1, . . . , n).
We put

Y (0) = {b = (b1, b2, . . . , bn+1) ∈ Y | bn+1 = 0}.

Then, 0 ≤ #Y (0) ≤ N as Y is in N -subgeneral
position. By Lemma 2.1, we have the inequality

(5) #Y (0) − d(Y (0)) ≤ N − n.

Let Y 1(0) = {e1, . . . , en}. We have that
#Y 1(0) = d(Y (0)) = n.

Next, we put Y 0(0) = Y (0) − Y 1(0). From (5)
we have the inequality #Y 0(0) ≤ N − n. Let

Y 0(0) = {bj1 , . . . , bjp} (jk ≥ n + 2; k = 1, . . . , p).

As #Y 0(0) ≤ N − n, we have that p ≤ N −
n. By applying Lemma 2.3 to this case (ν = n + 1)
and by the assumption (ii) with (β), we obtain the
inequality

2N − n + 1 =
q∑

j=1

δn(bj , F )

≤ N + 1 +
p∑

k=1

δn(bjk
, F ) ≤ 2N − n + 1.

This implies that p = N − n and δn(bjk
, F ) =

1 (k = 1, . . . , N − n). This means that

D1
n(Y, F ) = {e1, . . . , en} ∪ {bj1 , . . . , bjN−n}.

We have that #D1
n(X, f) = #D1

n(Y, F ) = N .

Remark 3.1. By using the inequality (1) and
Theorem A we are able to obtain results for δ(a, f)
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corresponding to the results obtained for δn(a, f) in
this section.

4. Application to another defect. Let f ,
X etc. be as in Section 1 or 2 and a be a vector in
Cn+1 − {0}. We say that

“a has multiplicity m if (a, f(z)) has at least one
zero and all the zeros of (a, f(z)) have multiplicity
at least m, while at least one zero has multiplicity
m.”

If (a, f(z)) has no zero, we set m = ∞.
Then, as a corollary of Theorem A, Cartan ([1],

N = n) and Nochka ([4], N > n) gave the following
theorem (see [3, Theorem 3.3.15]):

Theorem B. For any a1, . . . , aq ∈ X (q <

∞), let aj have multiplicity mj. Then,
q∑

j=1

(1 − n/mj) ≤ 2N − n + 1.

As the numbers “1−n/mj” are not always non-
negative in this theorem, we define a new defect as
follows:

Definition 4.1. For a ∈ Cn+1 − {0} with
multiplicity m we put

µn(a, f) =
(
1 − n

m

)+

= 1 − n

max(m, n)
,

where a+ = max(a, 0).
We call the quantity µn(a, f) the µn-defect of a

with respect to f . Note that µn(a, f) < 1 if (a, f)
has zeros and µn(a, f) = 1 if (a, f) has no zero.

We put M+
n (X, f) = {a ∈ X | µn(a, f) > 0}

and M1
n(X, f) = {a ∈ X | µn(a, f) = 1}.

µn(a, f) has the following properties.
Proposition 4.1. (a) µn(a, f) = 1 if and

only if (a, f) has no zero.
(b) 0 ≤ µn(a, f) ≤ δn(a, f) ≤ 1.
(c) (µn-defect relation) For any a1, . . . , aq ∈

X, we have the following inequality:
q∑

j=1

µn(aj , f) ≤ 2N − n + 1.

Proof. (a) This is trivial from the definition of
µn(a, f).

(b) When (a, f) has no zero, µn(a, f) =
δn(a, f) = 1. When (a, f) has zeros, let m be the
multiplicity of a. Then, we obtain the inequality for
r ≥ 1

Nn(r, a, f) ≤ n

max(m, n)
N(r, a, f)

≤ n

max(m, n)
T (r, f) + O(1),

from which we obtain the inequality

0 ≤ µn(a, f) ≤ δn(a, f) ≤ 1.

(c) From (b) and Theorem A we obtain this re-
lation.

Theorem 4.1. #M+
n (X, f) ≤ (n + 1)(2N −

n + 1).
Proof. For any q vectors a1, . . . , aq ∈M+

n (X, f),
from Proposition 4.1 (c) we have the inequality

(6)
q∑

j=1

µn(aj , f) ≤ 2N − n + 1.

As µn(aj , f) ≥ 1 − n/(n + 1) = 1/(n + 1), we have
the inequality q/(n + 1) ≤ (2N − n + 1) from (6),
so that we have that q ≤ (n + 1)(2N − n + 1). This
means that this theorem holds.

Lemma 4.1 ([1, p. 10]). For 1 ≤ i �= j ≤ n +
1,

T (r, fi/fj) < T (r, f) + O(1).

Theorem 4.2. Suppose that there exist n +
1 linearly independent vectors a1, . . . , an+1 in
M1

n(X, f). Then, we have the followings:
(a) If there exists

a ∈ M+
n (X, f) − {a1, . . . , an+1},

then a = cjaj for some j (1 ≤ j ≤ n + 1; cj �= 0).
(b) M+

n (X, f) = M1
n(X, f).

Proof. (a) Let m be the multiplicity of a ∈
M+

n (X, f) − {a1, . . . , an+1}. Note that n < m ≤
∞. The vector a can be represented as a linear com-
bination of a1, . . . , an+1 : a = c1a1+ · · ·+cn+1an+1.

We put (aj , f) = Fj (1 ≤ j ≤ n+1) and (a, f) =
F0. Then, F0 = c1F1 + · · · + cn+1Fn+1. We prove
that all coefficients c1, . . . , cn+1 except one are equal
to zero.

First we prove that at least one of c1, . . . , cn+1

is equal to zero. In fact, suppose to the contrary
that none of c1, . . . , cn+1 is equal to zero. Then,
a1, . . . , an+1, a are in general position, and so from
Proposition 4.1 (c) for N = n, q = n + 2 we have
that µn(a, f) = 0, which is a contradiction.

Next, let

{j1, . . . , jk} = {j | cj �= 0, 1 ≤ j ≤ n + 1}.

Then, k must be equal to 1. Suppose to the contrary
that k ≥ 2. Let ϕ = [Fj1 , . . . , Fjk

].
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As Fj1 , . . . , Fjk
are entire functions without ze-

ros and the function Fj1/Fjk
is not constant, it is

transcendental. By Lemma 4.1 we obtain that ϕ is
transcendental. Note that for a′ = (cj1 , . . . , cjk

),
(a, f) = (a′, ϕ) = F0 and

0 < µn(a, f) = 1 − n

m
≤ 1 − k − 1

m
= µk−1(a′, ϕ).

We apply Proposition 4.1 (c) to f = ϕ, N = n =
k−1, q = k+1 and e1, . . . , ek, a′(∈ Ck−{0}), which
are in general position, to obtain that µk−1(a′, ϕ) =
0, which is a contradiction. This means that k must
be equal to 1. That is to say, a = cj1aj1 (cj1 �= 0).

(b) By definition, we have the relation
M1

n(X, f) ⊂ M+
n (X, f). On the other hand we ob-

tain the relation M+
n (X, f) ⊂ M1

n(X, f) from (a), so
that we have M+

n (X, f) = M1
n(X, f).

Remark 4.1. Theorem 4.2 (a) is a generaliza-
tion of Borel’s theorem (see [1, p. 19, 1o]).

Corollary 4.1. If M1
n(X, f) ≥ N + 1, then

M+
n (X, f) = M1

n(X, f).
Proposition 4.2. #M1

n(X, f) ≤ N + N/n.
Proof. Let q = #M1

n(X, f). Then, by Theo-
rem 4.1, q ≤ (2N + 1 − n)(n + 1). We have only to
prove this lemma when q ≥ N + 1. Let

M1
n(X, f) = {a1, . . . , an+1, an+2, . . . , aq},

where a1, . . . , an+1 are linearly independent. Note
that we can find n + 1 linearly independent vectors
in #M1

n(X, f) since X is in N -subgeneral position
and q ≥ N + 1.

By using Theorem 4.2 (a) or by Borel’s theorem
(see [1, p. 19, 1o]), we obtain

(7) ak = akajk
(k = 1, . . . , q; 1 ≤ jk ≤ n + 1),

(ak �= 0). Here, ak = 1, jk = k for 1 ≤ k ≤ n + 1.
When we represent ak by a1, . . . , an+1 : ak =

ak1a1 + · · · + akn+1an+1 (k = 1, . . . , q), we have by
(7) that

#{akj = 0 | k = 1, . . . , q; j = 1, . . . , n + 1} = qn.

As X is in N -subgeneral position, it must hold that
qn ≤ N(n + 1), from which we obtain that q ≤ N +
N/n.

Remark 4.2. This proposition is given in [2,
Theorem 16, p. 41] in a different situation.

Theorem 4.3. Suppose that there exist n +
1 linearly independent vectors a1, . . . , an+1 in
M1

n(X, f). Then,
∑

a∈M+
n (X,f) µn(a, f) ≤ N +N/n.

Proof. As M+
n (X, f) = M1

n(X, f) from Theo-
rem 4.2 (b), we have the equality∑

a∈M+
n (X,f)

µn(a, f) = #M1
n(X, f)

and by Proposition 4.2 we have our theorem.
Corollary 4.2. If #M1

n(X, f) ≥ N + 1, then∑
a∈M+

n (X,f) µn(a, f) ≤ N + N/n.

Remark 4.3. N +N/n ≤ 2N −n+1 and the
equality holds if and only if N = n or n = 1. This im-
plies that the µn-defect relation of f is not extremal
when N > n ≥ 2 in Theorem 4.3 or Corollary 4.2.

Theorem 4.4. Suppose that
(i) there exist n linearly independent vectors

a1, . . . , an in M1
n(X, f);

(ii)
∑

a∈M+
n (X,f) µn(a, f) = 2N − n + 1.

(iii) #M1
n(X, f) < 2N − n + 1.

Then, we have that #M1
n(X, f) = N .

Proof. As 0 ≤ µn(a, f) ≤ δn(a, f) ≤ 1 for any
a ∈ X (Proposition 4.1 (b)), from the assumption (ii)
and Theorem A we obtain that µn(a, f) = δn(a, f)
for any a in X, so that we obtain this theorem from
Theorem 3.3.
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