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Determination up to isomorphism of right-angled Coxeter systems
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Abstract: In this paper, we announce that every right-angled Coxeter group determines
its Coxeter system up to isomorphism. This implies that the Dranishnikov’s rigidity conjecture
is the case for right-angled Coxeter groups, i.e., every right-angled Coxeter group determines its
boundary up to homeomorphism.
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1. Introduction. A Coxeter group is a
group W having a presentation

〈S | (st)m(s,t) = 1 for s, t ∈ S 〉,
where S is a finite set and m : S × S → N ∪ {∞} is
a function satisfying the following conditions:

(1) m(s, t) = m(t, s) for each s, t ∈ S,
(2) m(s, s) = 1 for each s ∈ S, and
(3) m(s, t) ≥ 2 for each s, t ∈ S such that s �= t.

The pair (W,S) is called a Coxeter system. If, in
addition,

(4) m(s, t) = 2 or ∞ for each s, t ∈ S such that
s �= t,

then (W,S) is said to be right-angled . A group W

is called a right-angled Coxeter group, if there exists
a generating set S ⊂ W such that (W,S) is a right-
angled Coxeter system.

Let (W,S) and (W ′, S′) be Coxeter systems.
Two Coxeter systems (W,S) and (W ′, S′) are said
to be isomorphic, if there exists a bijection ψ : S →
S′ such that

m(s, t) = m′(ψ(s), ψ(t))

for each s, t ∈ S, where m(s, t) and m′(s′, t′) are the
orders of st in W and s′t′ in W ′, respectively.

In general, a Coxeter group does not always de-
termine its Coxeter system up to isomorphism. In-
deed there exists a counter-example.

Example ([1, p. 38 Exercise 8]). Let S =
{s, s′} and let

W = 〈S | s2 = (s′)2 = (ss′)6 = (s′s)6 = 1 〉.
Then (W,S) is a Coxeter system. On the other hand,
for S′ = {(ss′)3, s′, s′(ss′)2}, (W,S′) is a Coxeter
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system. Since |S| = 2 and |S′| = 3, these Coxeter
systems (W,S) and (W,S′) are not isomorphic.

R. Charney and M. W. Davis [4] showed that if
a Coxeter group W is capable of acting effectively,
properly and cocompactly on some contractible man-
ifold and if (W,S) and (W,S′) are Coxeter systems,
then S′ = wSw−1 for some w ∈W .

The purpose of this note is to announce the fol-
lowing theorem and to state an outline of the proof.
A detailed account will be published elsewhere [9].

Theorem 1. Every right-angled Coxeter
group determines its Coxeter system up to isomor-
phism.

This means that if a right-angled Coxeter group
W admits Coxeter systems (W,S) and (W,S′), then
these Coxeter systems are isomorphic.

From a geometric view point of investigation of
Coxeter groups, it is known that every Coxeter sys-
tem (W,S) defines a CAT(0) geodesic space Σ(W,S)
called the Davis-Vinberg complex ([6, 7, 11]). Then
the visual sphere at infinity ∂Σ(W,S) of Σ(W,S) is
called the boundary of (W,S). (Details of CAT(0)
spaces and their boundaries are found in [2] and [8].)
We already know several relation between algebraic
properties of W and topological ones of ∂Σ(W,S).
The following is an important conjecture of this di-
rection, called the Dranishnikov’s Rigidity Conjec-
ture concerning the boundary of a Coxeter system.

Rigidity conjecture (Dranishnikov [7]). Ev-
ery Coxeter group determines its boundary up to
homeomorphism. This means that for a Coxeter
group W , if (W,S) and (W,S′) are Coxeter sys-
tems, then the boundaries ∂Σ(W,S) and ∂Σ(W,S′)
are homeomorphic.

If Coxeter systems (W,S) and (W,S′) are iso-
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morphic, then the Davis-Vinberg complexes Σ(W,S)
and Σ(W,S′) are isometric, and the boundaries
∂Σ(W,S) and ∂Σ(W,S′) are homeomorphic. Thus
Theorem 1 gives a partial answer of the Dranish-
nikov’s Rigidity Conjecture.

Corollary 2. Every right-angled Coxeter
group determines its boundary up to homeomor-
phism.

In our proof, we had an important property of
right-angled Coxeter groups:

Proposition 3. The order of each element of
a right-angled Coxeter group equals either 1, 2 or ∞.

This implies that every Coxeter system of a
right-angled Coxeter group is right-angled.

2. Lemmas on Coxeter groups. In this
section, we recall some basic properties of Coxeter
groups, and we introduce some results for right-
angled Coxeter groups.

Definition. Let (W,S) be a Coxeter system.
For a subset T ⊂ S, WT is defined as the subgroup of
W generated by T , and called a parabolic subgroup.
If T is the empty set, then WT is the trivial group.

Definition. Let (W,S) be a Coxeter system
and w ∈ W . A representation w = s1 · · · sl (si ∈ S)
is said to be reduced , if �(w) = l, where �(w) is the
minimum length of word in S which represents w.

The following lemma is known.
Lemma 4 ([1, 3, 5, 10]). Let (W,S) be a Cox-

eter system.
(i) Let w ∈W and let w = s1 · · ·sl be a representa-

tion. If �(w) < l, then w = s1 · · · ŝi · · · ŝj · · ·sl
for some 1 ≤ i < j ≤ l.

(ii) For each subset T ⊂ S, (WT , T ) is a Coxeter
system.

(iii) Suppose that (W,S) is right-angled. Then W is
finite if and only if st = ts for each s, t ∈ S,
i.e., W ∼= (Z2)|S| (hence |W | = 2|S|), where |S|
is the cardinal number of S.
Remark. Lemma 4 (iii) implies that every

finite right-angled Coxeter group determines its
Coxeter system up to isomorphism.

Let W be a finite right-angled Coxeter group.
Then there exists a generating set S ⊂W such that
(W,S) is a right-angled Coxeter system. Let S′ ⊂W

such that (W,S′) is a Coxeter system. Since W ∼=
(Z2)|S| by Lemma 4 (iii), for each w ∈ W \ {1}, the
order o(w) of w equals 2. Hence o(s′t′) = 2 for each
s′, t′ ∈ S′ with s′ �= t′, i.e., (W,S′) is right-angled.
By Lemma 4 (iii), (Z2)|S| ∼= W ∼= (Z2)|S

′|. Thus

|S| = |S′|. Since o(st) = 2 = o(s′t′) for each s, t ∈ S

with s �= t and each s′, t′ ∈ S′ with s′ �= t′, (W,S)
and (W,S′) are isomorphic.

By a consequence of Tits solving the word prob-
lem ([3, p. 50]), we obtained the following lemma
which plays a key role in the proof of the main result.

Lemma 5. Let (W,S) be a right-angled Cox-
eter system, let w ∈ W , let w = s1 · · · sl be a reduced
representation and let t, t′ ∈ S. If tw = t(s1 · · ·sl) is
reduced and twt′ = w, then t = t′ and tsi = sit for
each i ∈ {1, . . . , l}.

Using this lemma, we proved Proposition 3
which implies the following corollary.

Corollary 6. If W is a right-angled Coxeter
group and if (W,S) is a Coxeter system, then (W,S)
is right-angled.

3. Outline of the proof of Theorem 1.
For Coxeter systems (W,S) and (W,S′), if W is
right-angled, then these Coxeter systems (W,S) and
(W,S′) are right-angled by Corollary 6. Thus Theo-
rem 1 follows from the following:

Theorem 7. Let (W,S) and (W ′, S′) be right-
angled Coxeter systems. If the Coxeter groups W

and W ′ are isomorphic, then these Coxeter systems
(W,S) and (W ′, S′) are isomorphic.

Let (W,S) and (W ′, S′) be right-angled Coxeter
systems such that W and W ′ are isomorphic, and let
φ : W → W ′ be an isomorphism. Let Sf := {T ⊂
S | WT is finite} and let S′f := {T ′ ⊂ S′ | W ′

T ′ is
finite}. We note that Sf and S′f are partially or-
dered sets with respect to inclusion. Then we proved
the following lemmas by Lemma 5 and some basic
properties of Coxeter groups.

Lemma 8. Let T be a maximal element of Sf
with respect to inclusion. Then there exist w′ ∈ W ′

and a unique maximal element T ′ of S′f such that
φ(WT ) = w′W ′

T ′(w′)−1.
Lemma 9. Let T1, . . . , Tk be maximal ele-

ments of Sf . By Lemma 8, for each i ∈ {1, . . . , k},
there exist w′

i ∈ W ′ and a unique maximal element
T ′
i of S′f such that φ(WTi) = w′

iW
′
T ′

i
(w′

i)
−1. Then

|T1 ∩ · · · ∩ Tk| = |T ′
1 ∩ · · · ∩ T ′

k|.
Using Lemmas 8 and 9, we can prove Theorem 7.
Proof of Theorem 7. Let φ : W → W ′ be

an isomorphism and let {T1, . . . , Tm} be the set
of maximal elements of Sf with respect to inclu-
sion. For each i ∈ {1, . . . , m}, there exist w′

i ∈ W ′

and a unique maximal element T ′
i ∈ S′f such that

φ(WTi) = w′
iW

′
T ′

i
(w′

i)
−1 by Lemma 8.
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Now we show that {T ′
1, . . . , T

′
m} is the set of

maximal elements of S′f . Let T ′ be a maximal ele-
ment of S′f . By Lemma 8, φ−1(W ′

T ′) = wWTi0
w−1

for some w ∈W and i0 ∈ {1, . . . , m}. Then

φ(w)−1W ′
T ′φ(w) = φ(WTi0

) = w′
i0W

′
T ′

i0
(w′

i0)
−1.

By uniqueness, T ′ = T ′
i0

. Thus {T ′
1, . . . , T

′
m} is the

set of maximal elements of S′f .
Let s ∈ S. Since W{s} ∼= Z2 is finite, {s} ∈ Sf .

Hence {s} ⊂ Tj0 for some j0 ∈ {1, . . . , m}, i.e., s ∈
Tj0 ⊂ T1 ∪ · · · ∪ Tm. Thus

S = T1 ∪ · · · ∪ Tm.
We also have that

S′ = T ′
1 ∪ · · · ∪ T ′

m

by the same argument. By Lemma 9,
(1) |Ti| = |T ′

i | for each i ∈ {1, . . . , m} and
(2) |⋂i∈I Ti| = |⋂i∈I T ′

i | for each subset I ⊂
{1, . . . , m}.

Hence

|S| = |T1 ∪ · · · ∪ Tm| = |T ′
1 ∪ · · · ∪ T ′

m| = |S′|.
We define a bijection ψ : S → S′ as follows: Let

S = {s1, . . . , sp}. We first define ψ(s1) as an element
of ⋂

{T ′
i | i ∈ {1, . . . , m} such that s1 ∈ Ti}

which is nonempty by (2). If ψ(s1), . . . , ψ(sk) are
defined, then we define ψ(sk+1) as an element of⋂

{T ′
i | i ∈ {1, . . . , m} such that sk+1 ∈ Ti} \

{ψ(s1), . . . , ψ(sk)}
which is nonempty. By induction, we can define a
bijection ψ : S → S′ such that

(1) ψ(Ti) = T ′
i for each i ∈ {1, . . . , m} and

(2) ψ(
⋂
i∈I Ti) =

⋂
i∈I T

′
i for each subset I ⊂

{1, . . . , m}.
Then we show that for s, t ∈ S, st = ts if and

only if ψ(s)ψ(t) = ψ(t)ψ(s). Suppose that st = ts.
Since W{s,t} ∼= Z2 × Z2 is finite, {s, t} ⊂ Ti0 for
some i0 ∈ {1, . . . , m}. Then {ψ(s), ψ(t)} ⊂ ψ(Ti0 ) =

T ′
i0

∈ S′f , i.e., W ′
{ψ(s),ψ(t)} is finite. This means

that ψ(s)ψ(t) = ψ(t)ψ(s), since (W ′, S′) is right-
angled. Conversely, if ψ(s)ψ(t) = ψ(t)ψ(s), then
{ψ(s), ψ(t)} ⊂ T ′

j0
for some j0 ∈ {1, . . . , m}, and

{s, t} ⊂ ψ−1(T ′
j0

) = Tj0 ∈ Sf , i.e., st = ts.
For each s, t ∈ S (or s, t ∈ S′), st = ts if and

only if (st)2 = 1, and st �= ts if and only if o(st) = ∞
because (W,S) and (W ′, S′) are right-angled. Hence

m(s, t) = m′(ψ(s), ψ(t))

for each s, t ∈ S. Therefore the right-angled Coxeter
systems (W,S) and (W ′, S′) are isomorphic.
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