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Abstract:
its Coxeter system up to isomorphism. This implies that the Dranishnikov’s rigidity conjecture
is the case for right-angled Coxeter groups, i.e., every right-angled Coxeter group determines its

In this paper, we announce that every right-angled Coxeter group determines

33

boundary up to homeomorphism.
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1. Introduction. A Cozxeter group is a
group W having a presentation

(S| (st)™=) =1 for s,teS),

where S is a finite set and m : S x S — N U {oo} is
a function satisfying the following conditions:

(1) m(s,t) = mf(t,s) for each s,t € S,

(2) m(s,s) =1 for each s € S, and

(3) m(s,t) > 2 for each s,t € S such that s # t.
The pair (W, S) is called a Coxeter system. If, in
addition,

(4) m(s,t) = 2 or oo for each s,¢t € S such that

s #t,

then (W, S) is said to be right-angled. A group W
is called a right-angled Coxeter group, if there exists
a generating set S C W such that (W, .S) is a right-
angled Coxeter system.

Let (W,S) and (W’,S") be Coxeter systems.
Two Coxeter systems (W, S) and (W', S’) are said
to be isomorphic, if there exists a bijection ¥ : S —
S’ such that

m(s,t) = m'(¥(s), (1))

for each s,t € S, where m(s,t) and m/(s',t’) are the
orders of st in W and s't’ in W, respectively.

In general, a Coxeter group does not always de-
termine its Coxeter system up to isomorphism. In-
deed there exists a counter-example.

Example ([1, p.38 Exercise 8]).
{s,5'} and let

W =(8]|s*=(s)=(s8) = (55)° =1).

Then (W, S) is a Coxeter system. On the other hand,
for 8" = {(s8')3,',5'(ss")?}, (W,S’) is a Coxeter
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system. Since |S| = 2 and |S’| = 3, these Coxeter
systems (W, S) and (W, S’) are not isomorphic.

R. Charney and M. W. Davis [4] showed that if
a Coxeter group W is capable of acting effectively,
properly and cocompactly on some contractible man-
ifold and if (W, S) and (W, S") are Coxeter systems,
then S’ = wSw~?! for some w € W.

The purpose of this note is to announce the fol-
lowing theorem and to state an outline of the proof.
A detailed account will be published elsewhere [9)].

Theorem 1. Every right-angled Cozxeter
group determines its Coxeter system up to isomor-
phism.

This means that if a right-angled Coxeter group
W admits Coxeter systems (W, S) and (W, S’), then
these Coxeter systems are isomorphic.

From a geometric view point of investigation of
Coxeter groups, it is known that every Coxeter sys-
tem (W, S) defines a CAT(0) geodesic space X(W, S)
called the Davis-Vinberg complex ([6, 7, 11]). Then
the visual sphere at infinity OX(W, S) of (W, S) is
called the boundary of (W,S). (Details of CAT(0)
spaces and their boundaries are found in [2] and [8].)
We already know several relation between algebraic
properties of W and topological ones of 9%(W,S).
The following is an important conjecture of this di-
rection, called the Dranishnikov’s Rigidity Conjec-
ture concerning the boundary of a Coxeter system.

Rigidity conjecture (Dranishnikov [7]). FEv-
ery Cozeter group determines its boundary up to
homeomorphism. This means that for a Cozxeter
group W, if (W,S8) and (W,S’) are Cozeter sys-
tems, then the boundaries 0N (W, S) and 05(W, S")
are homeomorphic.

If Coxeter systems (W,S) and (W, S’) are iso-
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morphic, then the Davis-Vinberg complexes (W, S)
and X(W,S’) are isometric, and the boundaries
0X(W, S) and 9X(W, S") are homeomorphic. Thus
Theorem 1 gives a partial answer of the Dranish-
nikov’s Rigidity Conjecture.

Corollary 2. Every right-angled Coxeter
group determines its boundary up to homeomor-
phism.

In our proof, we had an important property of
right-angled Coxeter groups:

Proposition 3. The order of each element of
a right-angled Cozeter group equals either 1, 2 or co.

This implies that every Coxeter system of a

right-angled Coxeter group is right-angled.
In this
section, we recall some basic properties of Coxeter
groups, and we introduce some results for right-
angled Coxeter groups.

Definition. Let (W, S) be a Coxeter system.
For a subset T' C .S, Wr is defined as the subgroup of
W generated by T, and called a parabolic subgroup.
If T is the empty set, then Wy is the trivial group.

Definition. Let (W,S) be a Coxeter system
and w € W. A representation w = s1---8; (s; € 5)
is said to be reduced, if ¢(w) = I, where {(w) is the
minimum length of word in S which represents w.

2. Lemmas on Coxeter groups.

The following lemma is known.

Lemma 4 ([1, 3, 5, 10]). Let (W, S) be a Coz-
eter system.

(i) Letw € W and let w = $1 - - -8, be a representa-
tion. If L(w) <, then w =81---§;---§j---8
for some 1 <i < j<lI.

(ii) For each subset T C S, (Wp,T) is a Coxeter
system.

(iii) Suppose that (W, S) is right-angled. Then W is
finite if and only if st = ts for each s,t € S,
i.e., W 22 (Z)l (hence [W| = 2!91), where |S|
is the cardinal number of S.

Remark. Lemma 4 (iii) implies that every
finite right-angled Coxeter group determines its
Coxeter system up to isomorphism.

Let W be a finite right-angled Coxeter group.
Then there exists a generating set S C W such that
(W, S) is a right-angled Coxeter system. Let S" C W
such that (W, S’) is a Coxeter system. Since W =
(Z2)!5! by Lemma 4 (iii), for each w € W \ {1}, the
order o(w) of w equals 2. Hence o(s't") = 2 for each
§,t' € S with ¢ # ¢/, i.e., (W,S5) is right-angled.
By Lemma 4 (iii), (Z)!5! = W = (Z,)I5'l. Thus
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|S| = |S’|. Since o(st) =2 = o(s't) for each s,t € S
with s # t and each §',¢' € S with & # ¢/, (W,S)
and (W, S") are isomorphic.

By a consequence of Tits solving the word prob-
lem ([3, p.50]), we obtained the following lemma
which plays a key role in the proof of the main result.

Lemma 5. Let (W,S) be a right-angled Coz-
eter system, letw € W, let w = s1---5s; be a reduced
representation and let t,t' € S. Iftw =t(s1---s1) is
reduced and twt' = w, then t = t' and ts; = s;t for
each i € {1,...,1}.

Using this lemma, we proved Proposition 3
which implies the following corollary.

Corollary 6. If W is a right-angled Cozeter
group and if (W, S) is a Cozxeter system, then (W, S)
is right-angled.

3. Outline of the proof of Theorem 1.
For Coxeter systems (W,S) and (W,S5), if W is
right-angled, then these Coxeter systems (W, S) and
(W, 8") are right-angled by Corollary 6. Thus Theo-
rem 1 follows from the following:

Theorem 7. Let (W,S) and (W', S") be right-
angled Cozeter systems. If the Cozeter groups W
and W' are isomorphic, then these Cozeter systems
(W, S) and (W', S") are isomorphic.

Let (W, S) and (W', S’) be right-angled Coxeter
systems such that W and W’ are isomorphic, and let
¢ : W — W' be an isomorphism. Let S/ := {T C
S | Wy is finite} and let 8 = {T" c &' | W}, is
finite}. We note that S/ and &'/ are partially or-
dered sets with respect to inclusion. Then we proved
the following lemmas by Lemma 5 and some basic
properties of Coxeter groups.

Lemma 8. Let T be a mazimal element of ST
with respect to inclusion. Then there exist w' € W'
and a unique mazimal element T' of S'0 such that
O(Wr) = w' Wi ().

Lemma 9. Let Ti,...,Tx be maximal ele-
ments of S. By Lemma 8, for each i € {1,...,k},
there exist w, € W' and a unique maximal element
T! of 8" such that ¢(Wr,) = wiWr, (w))~t. Then
TN AT =T/ N---nTL.

Using Lemmas 8 and 9, we can prove Theorem 7.

Proof of Theorem 7. Let ¢ : W — W' be
an isomorphism and let {T%,...,T,} be the set
of maximal elements of Sf with respect to inclu-
sion. For each i € {1,...,m}, there exist w;, € W’
and a unique maximal element 7] € &’ 7 such that
o(Wr,) = ng}: (w})~! by Lemma 8.
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Now we show that {77,...,T,,} is the set of
maximal elements of S’/. Let T’ be a maximal ele-
ment of &'/, By Lemma 8, ¢~ (W) = wWr, w™?
for some w € W and iy € {1,...,m}. Then

o(w) " Wi d(w) = 6(Wr,,) = wi,Wr, (wi))™".

By uniqueness, 7" = T} . Thus {77, ..
set of maximal elements of S’/ .

Let s € S. Since W,y & Zs is finite, {s} € S/.
Hence {s} C T}, for some jo € {1,...,m}, i.e, s €
T, CTyU---UT,,. Thus

T} is the

S=T1U---UT,,.
We also have that
S =T/U...uT,
by the same argument. By Lemma 9,
(1) |T;| = |T}| for each i € {1,...,m} and
(2) 1Mier Til = Mg Ti| for each subset I C
{1,...,m}.
Hence
S| =|ThU---UTy|=TTU---UT, | =5

We define a bijection 1) : S — S’ as follows: Let
S ={s1,...,sp}. Wefirst define 1)(s1) as an element
of

n{THiE {1,...,m} such that s; € T;}

which is nonempty by (2). If ¥(s1),...,%(sg) are
defined, then we define 1(sk4+1) as an element of

n{T; |i€{1,...,m} such that sgy1 € T;}\
{th(s1), -, o(sk)}

which is nonempty. By induction, we can define a
bijection ¢ : S — S” such that
(1) ¥(T;) =T/ for each i € {1,...,m} and
(2) Y¥(NierTi) = Nies Tj for each subset I C
{1,...,m}.

Then we show that for s,t € S, st = ts if and
only if ¢(s)yY(t) = ¥(t)¥(s). Suppose that st = ts.
Since Wy, sy = Zo x Zy is finite, {s,t} C Tj, for
some ig € {1,...,m}. Then {¢(s),v(#)} C (T;,) =
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T € S e, W{IW(S)AZJ(t)} is finite. This means
that ¥ (s)Y(t) = ¥(t)w(s), since (W', S’) is right-
angled. Conversely, if (s)i(t) = ¥(t)(s), then
{¥(s),v(t)} C T} for some jo € {1,...,m}, and
{s,t} co~N(T},) =Tj, € 87, i.e., st =ts.

For each s,t € S (or s,t € §'), st = ts if and
only if (st)? = 1, and st # ts if and only if o(st) = oo
because (W, S) and (W', S’) are right-angled. Hence

m(s, t) = m'(y(s), Y(t))
for each s,t € S. Therefore the right-angled Coxeter

systems (W, S) and (W', S’) are isomorphic. Ul
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