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Abstract:

Let K/k be a finite Galois extension of local fields. To each class v = [¢] in

H'(Gal(K/k),Uk), Uk being the group of units of K, we associate an index i, (K/k) = (M. : P.)
after the model of Poincaré series and study its relation to the ramification theory of K/k.
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1. Introduction. This is a continuation of
papers [1, 2] where we looked at mainly (global)
quadratic fields. In this paper, however, we will steer
toward Galois extensions of local fields.

Let K/k be a finite Galois extension of p-adic
number fields with the Galois group G = Gal(K/k).
Denote by Ok the ring of integers in K, by ‘B the
prime ideal of Ok and by Uy the group of units of
Ok. For the ground field k, we adopt notation Oy,
p and Uy, similarly.

Following Poincaré, we set, for a cocycle ¢ of G
in Uk,

(1) M. ={a € Ok; cs’a=a, s€ G},

(2) P.= {pc(a) :thta, a € OK}.

teG
One finds that |G|M. C P. C M, and that the |G-
torsion finite module M./P, depends only on the
class v = [c]. Therefore one can associate an invari-
ant to a finite Galois extension K/k of p-adic fields
by

(3) iy (K/k):=(M.:P.), ~€HY(G Ug).

In this paper, we will study some relations of
iy(K/k) with the ramification theory of K/k. We
will mention some applications to cyclotomic and
Kummer extensions.

As for basic facts on number theory, see [3].

2. Canonical class vk . Notation being
as in 1, let us fix a prime element IT in K. Then
we have

(4) MM=1z,, s€G, zs€Ugk.

The mapping s — z, is a 1-cocycle of G in Uk . Since
the change of the prime element II changes the co-
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cycle z to 2z’ cohomologous to it, IT has an ability of
bringing a canonical class yx /i = [2] in the cohomol-
ogy group HY(G,Uk).

3. HY(G,Ugk). Let v = [¢] be any class €
HY(G,Uk). Since Uk is a subgroup of K* there is,
by Hilbert theorem 90, an element a € K* such that

S

(5) cs = ;a.

Now write

(6) a=1"u, welUg, mel.
In view of (4), we have

(7) fa="°TI" *u=1"2,""*u,

and, by (5), (6), (7), we have

1, m s

cs=uzs" Tu=c~ 2" =y =g

In other words, H'(G,Uk) is a cyclic group gener-
ated by the canonical class yg/x-

Let us count the order of the group. Consider
the short exact sequence of G-groups

1l —Ux —K* —7Z—1

where the map K* — Z is the valuation vg with
the trivial action of G on Z. Passing to cohomology,
we have the exact sequence:

(8) 1 - Uy —» kX —-Z— HY(G,Ug)
— HYG,K*) = 1.
Because of the relation vk (x) = evi(z), z € k, e =

e(K/k) being the ramification index for K/k, we ob-
tain from (8)

Theorem 1. The group HY(G,Uk) is cyclic
of order e = e(K/k) generated by Vi i-
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4. i,(K/k). We shall obtain a preliminary
formula for i~ (K/k). For any v = [c] in H'(G, Uk),
by Theorem 1, there is an m € Z, 0 < m < e so
that v = vg ™ or ¢ ~ 2™. In case m = 0, we have
v =[1], and My = Oy, P = Tr Ok. Then we set

(9) Zl(K/k’)Z(Ok :TI‘OK).
In case m > 0, the condition 0 < m < e implies that
(10) O NP™ =p.

Back to (1) with v = [¢] = v/ = [2™], as-
suming still m > 0 and ¢ = 2" without loss of gen-
erality, we obtain

SHm

I fa=ae I

a€ M, & c.’a=as

o
=Hma@Hmank®aeH—im(’)K

O, NI Ok _Okm%m b

I I I
and so
p
(11) M. = o
Next we look at (2). This time, for a € Ok, we have
3 s m 3
OED SITED PR
seG seG
1 , Tr(II™a)
= H_m Z 6IIWLG/ = 71_17” .
seG
Therefore we have
Trp™
(12) Po=—m.

From (3), (11), (12), it follows that

(13) i (K/K) = (p : Trp™).

If we define an integer r, = (K /k) by the relation,

including the case v =1,
(14) Tr™ =p™,

then, from (13), we have

(15) iy (K/k) = Np /By 2,
where Np = (O, : p). As for v = 1, in view of (9),
we have
(16) i1 (K/k) = (O :p™) = Np™.
5. r,(K/k). Wewant to express the number

ry = r4(K/k) in (14), (16) in terms of other basic
invariants of K/k.

[Vol. 79(A),
First, we shall consider the case v # 1. Starting
with (14), we have
(17) TrP™ =p" = O =p~ " TrP™
= Ta(p "P") = Tep~e

where e = e(K/k) denotes the ramification index for
K /k, namely

p =P°.

Next, let © = D(K/k), the different for K/k, and
let t = t(K/k) be defined by

D =P
Since (17) means that P~ C D! we infer that
r < bt m.
e

Conversely, a similar argument starting with the re-
lation TrB™ ¢ p™*! implies that

t—i—_m <r+1.
e
Cosequently we get
(18) () = |
and, by (15),
(19) i (K/k) = (V)T 21

In case v = 1, starting with (16) we have

(20) (/i) = [£]
and, by (17),
(21) in (K /k) = Npll.

As is well-known, there is a formula for ¢ in
terms of higher ramification groups:

Vi={scG;*a=a (mod PH}, i>-1

where V_1; = G, Vy = T, the inertia group and V; =
V, the (first) ramification group. The set {V;}, i >
—1, forms a normal series of G such that V; = 1 for
i > 1. The formula is

@) t=(e-D+Y (V-1

Then we find that e — 1 <t. Furthermore, we have
(23) t=e—-1V=1&pfe

< K/k : tamely ramified.
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6. Vanishing of i, (K/k). Having obtained
formulas (19), (21) for i, (K/k), one derives from
them many results. We will here consider the ques-
tion under what conditions i~ (K /k) = 1.

(i) K/k is unramified. (e =1, ¢t = 0). In this
case, H'(G,Uk) = 1 by Theorem 1, and so m=0.
The case (19) is absent and we have i1 (K/k) =1 by
(21).

(ii) K/k is tamely ramified. (e — 1 =1t #0).
If v=1,ie.m =0, then

==

i1(K/k)=1.
On the other hand, if v # 1, i.e. m > 0, then

S e el B

and so

(24)

and so
(25) iv(K/k) =1.

(iii) K/k is wildly ramified, (0 # e — 1 < t).
If v =1, then

-«

But, then, e — 1 < t < e which is absurd.

If v # 1, then
[t—i—m] _ 1

e

Then we have e < t 4+ m < 2e. Summing up,

Theorem 2. If K/k is unramified, then
i1(K/k)=1. (v =1 is the only possibility).

If K/k is tamely ramified, then i, (K/k) =1 for
ally. If K/k is wildly ramified, then i, (K/k) =1
y#1ande <t+m < 2e.

7. Totally ramified extensions. Let K/k
be a totally ramified Galois extension of p-adic fields.
As is well-known, such an extension can be written
as K = k(II) with a prime element IT whose mini-
mal polynomial f(X) € Ok[X] is of Eisenstein type.
Then we have

t = vk (f'(IT))
Since e = (K : k) in our case, we have, from (19),
(21),

D =P

vx(f’(n))+m] .

(26) iv(K/k)=(NP)[ ’ , v #1

Poincaré sums 117

and

UK(f'(H))}

(27) (/) = VoL

Consider, in particular, a polynomial

(28) f(X)=X°—a€OX], vp(a)=1, pfe.

Let IT be aroot of f(X) = 0. Assume that k contains
all e-th roots of 1. Then K/k is a totally and tamely
ramified Galois extension. Since f/(II) = eII°~! we
have v (f'(IT)) = e—1 and one checks again the van-
ishing, for all v € H'(G, Uk), of i, (K/k) for Kum-
mer extensions.

8. p™-th cyclotomic fields. Let p be an
odd prime number, n a natural number, Q, the field
of p-adic numbers and ¢ a primitive p"™-th root of
unity taken from the algebraic closure of Q,. We set
k= Q,, K = Q,(¢) in accordance with notation in
1. One knows that II = ¢ — 1 is a prime element in
Ok. Then our canonical class vx /i, = [c] is given by
a system of cyclotomic units:

ST SC -1
Cs = ﬁ = C 1 s s € G

For each n, we have

(29) e=o(@"), t=ne(p")—p" .

In what follows, we shall restrict our attension on the
canonical class yg i, for simplicity.
Casel. n=1. Wehavee=p—1landt=p—
2. Then t = e — 1 and so K/k is tamely ramified by
(23) and hence i, (K/k) =1 for all v by Theorem 2.
Case2. n=2. Wehavee=p(p—1)andt=
p(2p — 3). Tt is easy to check that

e—1<t<2e—1, or e<t+1<2e.

So K/ is wildly ramified by (23). However, we have
(K/k) =1 by Theorem 2 with m = 1.
Case 3. n>3. From (29), it follows that

Z'YK/IC

t+1 n—1_1
n—1< + Zn—pi

e w(pm)

<n

and

(30) T,YK/kzn—l, for n > 3.

Consequently, from (15), (30), we obtain

Theorem 3. Let p be an odd prime, n a nat-
ural number, ( a primitive p™-th root of 1 and K =
Q,(¢). Then we have

n—2

=1 when n=1, =p when n > 2.

Z'YK/Qp
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