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Abstract:

In this note, we exhibit some examples of elliptic curves whose Mordell-Weil

ranks grow in lower layer of the cyclotomic Z,-extension over the rationals.
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1. Introduction. For a prime number p, let
F,.  be the cyclotomic Z,-extension of the rational
number field Q and denote by F},, its n-th layer.
When p is odd, F}, ,, is the unique cyclic extension of
degree p™ over Q unramified outside p.

By results of Kato, Rohrlich and Rubin, we
know that E(F) ) is finitely generated for any ellip-
tic curve E defined over Q. Especially, there exists
an integer ng such that

rankz E(F), ) = rankz E(F), n,)

holds for any n > ng. We denote by n, = np(E) the
smallest one of such ng.

Greenberg asked in [2] whether n,(E) is
bounded or not when E or p varies. According to
a recent result of Chinta ([1, Theorem 2]), n,(E) is
bounded as p varies for a fixed E. As for the vari-
ation of n,(FE) when E varies for a fixed p, we only
know the existence of elliptic curves such that n, =0
for all p (e.g., elliptic curves of conductor 11), and
the existence of curves with positive n,, for small p’s.
In [2, §1], Greenberg showed that an elliptic curve of
conductor 195 (resp. 34) has ny = 2 (resp. ng = 1).
He also mentioned that one can find examples of el-
liptic curves such that ny > 3, ng > 2, ns > 1 and
ny > 1, respectively, by using a result of Rohrlich [4].
In this note, we present such examples explicitly by
investigating some properties of Rohrlich’s curves as
a family of elliptic curves (§2 and §3). We also give
another proof of the main result of [4] (Corollary 5).

In §4, we will discuss a similar question for cyclo-
tomic extensions of the rational function field over a
finite field. We will prove that there exists an elliptic
curve with arbitrary large n, in this situation.
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2. Rohrlich’s construction and a family
of elliptic curves. In this section, let K be a num-
ber field of finite degree and f(z) € K[x] a monic of
degree 9. We denote by a; € K the coefficient of 2
in f and assume that ag = 0. We also set a; = 0 for
i<0. Leta; € K (i=1,...,9) be the roots of f(x).

For any elements u,v € K(t), we consider a
(projective) plane cubic curve E, , defined by the
equation

2 3
UZ Z ag_gi_gjxiyj + ’U($3 — y2) =0.

i=0 j=0

If E, , is non-singular and E, ,(K(t)) is non-empty,
we can regard E, , as an elliptic curve defined over
K(t). When u,v € K and E, ,(K) is non-empty, we
consider F, , as an elliptic curve over K.

In [4], Rohrlich treats the curve Ej p, where b =
—as—a7—ag. This curve has a rational point (1,0) €
E4 p(K). Therefore Eqp is an elliptic curve over K
if Fy p is non-singular. Rohrlich shows that, for any
finite extension L/K satisfying [L : K] <9, one can
take an f(x) so that L = K (a1) and E 3 is an elliptic
curve such that Eq (M) ® Q contains VI:/K, where
M is the Galois closure of L/ K with G = Gal(M/K)
and V/ ;- is a Q[G]-module defined later.

In this note, we treat two cubic curves F; ; and
E,1),s(t) defined over K(t), and treat also their spe-
cializations to K. Here we define a polynomial ¢(t) €
K|t] by

1 2 3
q(t) = (Z a3i+2> t?+ (Z a3i+1> t+ Z as;
=0 i=0 i=0

and set r(t) = (1 — %)/ ged(1 — t3,¢(t)) and s(t) =
q(t)/ ged(1 —t3,q(t)). We remark that ¢(t) # 0 and
deg(r(t)) is positive. The following lemmas imply
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that two cubic curves above are elliptic curves indeed
(under a condition for Fy 1).

Lemma 1.
are mon-singular.

Proof. Assume that P € E;1(K(t)) is a singu-
lar point. Since E;; is an irreducible cubic curve,
P is a unique singular point on F; ;. This implies
P e E;1(K(t)). Write P = [z(t) : y(t) : 2(t)] in
homogeneous coordinates, where x,y, z € K[t] with
ged(z,y, z) = 1. Since [2(0) : y(0) : 2(0)] should be a
singular point on a cubic curve y? = 3, we see that
2(0) = y(0) =0 and 2z(0) # 0. Then we have

Cubic curves Ey1 and Ep@y s

where ¥ = z/t and § = y/t. By the substitution ¢ =
0, we have agz(0)% = 2(0)® = 0. This is a contradic-
tion. Thus E;; is non-singular. Non-singularity of
E,(t),s(t) is similar. ]

Lemma 2. (i) Assume that a1 is contained
in K. Then Ey1(K(t)) has a rational point O =
(1/03,1/a}). (When ay =0, O is the point [0: 1 :
0] in the homogeneous coordinate.)

(1) Er@),s)(K(t)) has a rational point O =
(t,1).

Proof. Clear. 1

Thus we obtain elliptic curves Ey 1 and ;) (1)
defined over K (t) from the polynomial f(x) of degree
9. Let M be the minimal splitting field of f over K,
ie, M = K(ai,...,a9). For any element x € M, let
V. be the additive Q[G]-submodule of M generated
by x, where G = Gal(M/K). We prove the following

Theorem 3. (i) Assume that oy € K. Then
E;1(M(t)) ® Q contains a Q[G]-submodule isomor-
phic to Vi, —qa, for each i > 2.

(i) Assume that f(1) # 0. Then
Er@),s(y(M(t)) ® Q contains a Q[G]-submodule iso-
morphic to Vi, —1 for each i.

Remark. We use the assumption ag =1 (i.e.,
deg(f) = 9) only for proving Lemma 1. This theorem
holds even in the case deg(f) < 7 if our curves Ej 1,
E,(1),s(¢) are non-singular.

The idea of the proof is to consider the special-
ization to a fiber with cusp (cf. Shioda [5]).

Proof. Since both cases are proven similarly,
we treat only (ii). For each i, we have a rational
point
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P, LI E M
i = (a_%’a_f> € Erty,s(t)(M(t)).
Let W; be a Q[G]-submodule of E,. () s¢)(M (1)) ®
Q generated by P; ® 1. The substitution ¢t = 1 in-
duces a Q[G]-homomorphism W; — EJ¢,, (M) @
Q. Here E;‘(Sl)7s(1)(M ) is the non-singular points of
E,),s(1)(M) and we regard it as an abelian group
with identity element (1,1) in the usual way. Since
we have r(1) = 0 and s(1) # 0 by the assumption
f(1) #0, E1),51) is a singular cubic curve defined
by y?> = 3. Hence we have a Q[G]-isomorphism
EX.s)(M) ® Q =5 M defined by (z,9) ® a
(x/y—1)a. The imageof P,®1 € W; in M is a; — 1
and we have a surjective Q[G]-homomorphism W; —
Va,—1. Since QIG] is semisimple, W; has a Q[G]-
submodule isomorphic to Vg, _1. |

By the specialization theorem due to Silverman
(cf. [6]), we also have an infinite family of elliptic
curves over K with similar property:

Corollary 4. Assume that f(1) # 0. Then
there exists a finite set I C K such that Ey.,),s(to)
is an elliptic curve over K and Ey1.) s(t0)(M) ® Q
contains Vo,—1 for each i and any to € K \ I.

Let L be an extension of K of degree at most
9 and M the Galois closure of L/K with Galois
group G. We consider a Q[G]-module Vi, x =
Q[G] ®@qaaimy/ry) Q. (We regard Q as a Q[H]-
module by the trivial H-action for any subgroup
H C G.) Vi is decomposed as Vi = VI:/K Q.
Rohrlich’s result mentioned before is that Eq (M) ®
Q contains a Q[G]-submodule isomorphic to V] K
for a suitable f € K[z]. Our theorem gives an ellip-
tic curve whose Mordell-Weil group contains V7, k.

Corollary 5. (i) In the notation above, there
exists an elliptic curve E defined over K such that
E(M)®Q contains a Q[G]-submodule isomorphic to
VL/K-

(ii) We have rankzE(K) > 0 and

rankz F (L) > rankz F(K')

forany K C K' C L.

Proof. Let o’/ € M be a generator of a normal
basis of M/K. Then we have Try, k(a) = 0, where
a = [L: K|Tryyp(a) — Tryyi (o) € L. Let g(x)
be the minimal polynomial of o over K and f(x) =
29[ Klg(2) € K|[x]. Then a monic f(z) of degree
9 satisfies ag = 0, f(1) # 0 and f(a) = 0. For
the elliptic curve E..(;) 4 corresponding to this f,
there exists a tg € K such that E, () s(o)(M)®Q D
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Va—1. We see that dimg V,—1 = [L : K]. Hence we
have Vo1 = Vi /i and E = E, (1) s(,) Satisfies the
assertion (i). (ii) follows from the definition of V7, /.

a

3. Examples. By using Theorem 3 and its
corollaries, we can easily find an elliptic curve
Ey1),s(¢) over Q(t) such that E,. (40 s, satisfies ng >
3 (resp. ng > 2, ns > 1, ny > 1) for all but finitely
many ty € Q. However, it is difficult in general
to determine all the exceptional ty’s explicitly. We
give here a sufficient condition that [, () s, sat-
isfies the above property for a given tp € Q. In
the following, we denote by Atos the torsion sub-
group of an abelian group A. We also write Np
for the map E(F,,) — E(Fpn—1) defined by z

2 oeGal(Eyn/Fpn1) L

Lemma 6. Let E be an elliptic curve defined
over Q and assume that there is a point @ €
E(F,,) not in E(F,,—1). Then rankzE(F,,) >
rankg E(F, n—1) if one of the following conditions
holds:

(i) Q¢ E(Fp,n)tors and Np,n(Q) € E(Fp,n—l)tors-
(ﬁ) E(Fp,n)tors = E(Fp,n—l)tors and E(Fp,n)[p] =

0.

Proof. It suffices to show that R = Q7 — @
for a generator o of Gal(F,/Fp,—1) has infinite
order since this implies that kQ ¢ E(Fp,_1) for
any positive integer k. We have N, ,(Q) = pQ +
Zf:_ll iR°". If (i) holds, Zf:_ll iR°"" has infinite
order. In particular, R & E(F) )tors- If (ii) holds
and R has a finite order, R is in E(F),,—1). This
implies pQ € E(F), ,,—1) and so pR = pQ? — pQ = 0.
This contradicts to E(F),,)[p] = 0 since R # 0 by
assumption. O

In the following examples, we denote by (,, a
primitive m-th root of unity for each m > 1.

Example 1. Let p = 2 and f(z) = x(a® —
826 4+ 202% — 1622 4+ 2). Then a = (32 + (35" satisfies
f(a) = 0 and we have F» 3 = Q(«). By Theorem 3,
Er),s(t)(F2,3(t)) ® Q contains a Q[Gal(F33/Q)]-
submodule isomorphic to V,_1, where r(t) = 1 — 3
and s(t) = 20t — 6t — 15. Consider the curve Ei 15
obtained by the substitution ¢ = 0. This curve has
a minimal Weierstrass model E : y?> = 2% — 22 + 1.
The conductor of E is 40 and we have E(Q) = Z/4Z.
Moreover, we have E(F» 3)iors = F(Q). Indeed, for
a prime [ = 31 (resp. 97, 127), the prime-to-l part
of E(F 3)tors maps injectively to E(F;) since [ splits
completely in F 3/Q. The order of E(F;) is 40 (resp.
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112, 140), and this implies the order of E(F% 3)tors
divides 4. A rational point

p_ 208 — 6 ab —8at+ 15a% —1
\ad3-3a-1" (a3 —3a—1)2

corresponding to (1/@2,1/a3) € Eq,_15(Fp3) is
not in E(Q). Hence P has infinite order.
Since Ny 3(P) = (1,0) has order 2, we have
rankzg E(F5 3) > rankzE(Fy2), i.e., na(E) > 3 by
Lemma 6.

Example 2. Let p =3 and f(z) = 2° — 92" +
2725 — 302% + 9z + 1. We have F3; = Q(a) and
f(a) =0, where a = (a7 + C2_71. Consider the curve
E 28, which is obtained from E;_;s 9g_o7:2 by the

> € E(Fy3)

substitution ¢ = 0, corresponding to this f. Ej s
has a minimal Weierstrass model E : y> +y = 23 —
182 + 28. The conductor of E is 9495 and F(Q) =
Z?. By considering the reduction of E at 19 and 37,
we see that E(F3 2)tors = E(F3,1)tors = 0. Therefore,
rankz E(F3 2) > rankzE(F31) by Lemma 6. Espe-
cially we have ng(E) > 2.

Example 3. Let p=>5and g(z) = 2°—1023+
52% 4+ 10z + 1. Then Fs; is generated over Q by
a root a of g(x). For f(z) = xg(x), the curve
Er),s(t) = E1—¢3,10¢2—9¢+6 1s non-singular. By The-
orem 3, E,q) ) (F5,1) ® Q contains V1 (see the
remark after Theorem 3). If we take t = 0, Eq ¢ has
a minimal Weierstrass model 3?> = z® — 992 + 379
of conductor 7704. We see that E;4(Q) = Z and
FE1,6(F5,1)tors = 0. Hence we have ns(E16) > 1 by
Lemma 6. Another construction of elliptic curves
with ns > 1 will be found in [3]. For example, we
see that the elliptic curve defined by ? = 23 — 7z
(conductor 3136) satisfies ns > 1.

Example 4. Let p=T7and f(r) = 2" —702°—
21214+912%+632%+14z+1. We have F; 1 = Q(a) for
atoot a of f. The curve E, (g s(0) = E1,92 has a mini-
mal Weierstrass model y?+xy = 23 —22—4912+4315
of conductor 714362. We see that Eq 92(Q) = 72 and
FE1,92(F7.1)tors = 0. Hence we have n7(Eq 92) > 1.

4. Function field case. In the preceding
sections, we discussed about the behavior of the
Mordell-Weil rank of elliptic curves in the cyclo-
tomic Z,-extension over Q. We consider an analo-
gous question for elliptic curves over a function field
F;(t). For a prime p # [, let F, o be the unique
Z,-extension of F;(t) contained in F;(t). The n-th
layer of this Z,-extension is F,» (t). For any elliptic
curve A defined over Fy(t), we know that A(F, o)
is finitely generated (modulo torsion when A is de-
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fined over F;), so the rank of A(F,~(t)) is bounded
as n varies. We denote by n,(A) the smallest
non-negative integer n satisfying rankz A(F ,» (t)) =
rankz A(Fp ), similarly to the number field case.
We prove the existence of elliptic curves with arbi-
trary large n, in this function field situation.

Proposition 7. For any non-negative integer
n, there exists an elliptic curve A over Fi(t) with
ny(A) =n.

This proposition is easily deduced from the fol-
lowing result of Ulmer ([7]). For a positive integer d,
let A4 be an elliptic curve over F;(t) defined by the
equation Ay : % + xy = 2® — t.

Theorem 8 (Ulmer). Assume that d divides
+ 1 for some m. Then we have

rankz Aq(Fy: (t)) = Y [(Z/eZ)* : (I')] + €(d, 1)
eld
ef6

lm

for each i > 1. Here €(d, i) is a non-negative integer
less than 4.

Proof of Proposition 7. We have rankz Ay (F;(t))
= 0 and so n,(A1) = 0 for any p # I. Assume that
n > 0 in the following. When d is a prime number
greater than 3 and "™ = —1 (mod d) for some m, we
have €(d,i) = 0 and rankz A4(F;i (t)) = [(Z/dZ)* :
(IY)] for any i > 1 by Theorem 8. Hence we have
ny(Aqg) = n for a prime d > 3 such that og(l) is
even and p"||oq(l), where o4(l) is the order of [ in
(Z/dZ)*. Let K be an extension of Q({p») of de-
gree p contained in L = Q(Cpn+1,\/i, /1), neither
Q(¢pn+1) nor Q(Gpn, {/1).  Applying Chebotarev’s
density theorem to a Galois extension L/Q, we can
take a prime d > 3 such that a Frobenius element
o at d in Gal(L/Q) is a generator of Gal(L/K).
Since the restriction of ¢ to Q(\/Z) is non-trivial,
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[ is not quadratic residue modulo d, i.e., o4(l) is
even. Similarly, [ is p-th power free in (Z/dZ)* since
the restriction of o to Q((p, V1) is a generator of

Gal(Q(&p, ¥1)/Q(¢))- Hence (d — 1)/04(1) is prime

to p. The restriction of o to Q((,n+1) is a generator
of Gal(Q((pn+1)/Q((pr)) and this implies p™||(d—1).
Hence we have p™||ogq(l) as desired. Ul
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