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Existence of bounded solutions for semilinear degenerate
elliptic equations with absorption term
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1. Introduction. Let N > 1 and 0 > 1. Let
F be a compact set and ,Q be a bounded open set
of R satisfying F.Q Ru. We also set
32’-\oF, where 0F= F\. and / denotes
the interior of F. Define

(1.1) P- div(A(x) 17 .),
where A (x) C (Y2’) is positive in ,Q\F and
vanishes in /. First we shall consider removable
singularities of solutions for degenerate semi-
linear elliptic equations. Assume that u C o

(Q’) 71 C2 (Q \ F) satisfies
(1.2) Pu
for f/B L(). Here Q(u) is a nonlinear term
defined in the section 2. Then we shall show the
existence of a bounded solution in Q which coin-
cides with u in Q’= Q\ OF. This resul was
established by H. Brezis and L. Veron in [2],
under the assumptions that F consists of finite
points, Q(t) Itl-t and A(x), B(x), C(x)
are positive constants. (see also [5]). In this paper
we generalize their results for an arbitrary com-
pact set F in place of finite set and for a wider
class of (degenerate) elliptic operators P.

Secondly as an application, we shall consider
the Dirichlet boundary problem for genuinely de-
generate semilinear elliptic operators’

Pu
(1 3) [ u O, on 0Q.

Then we shall establish the existence and unique-
ness of bounded solutions u for this problem.
When P is uniformly elliptic on Q, this problem
has been treated by many authors. But the de-
velopment of the theory seems to be rather limit-
ted in the study of genuinely degenerate oper-
ators.
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2. Main results and applications. Let N _>
1. Let F and be a compact set and bounded
open subset of RN

respectively, satisfying F c
Q, and set ’= \0F. Here OF is defined as
OF F\ fi’. In the next we define a modified dis-
tance to OF.

Definition 1. Let d(x) C (Q’) be a non-
negative function satisfying

d(x)
(2.1) C- K

dist(x, OF)
K C,

[rd(x)l < C(’)dist(x, 8F) -I1 x
where C and C (7")are positive numbers inde-
pendent of each point x.

We suppose the following four assumptions’

[H- 1] (Coefficients).

A(x) C (9’) Llo
(2.2) A(x) 0 in/ F\ OF,

A(x) >0ing\F,
B(x) Llo(2’) f L]o(D),
B(x) >0inD’=
C(x) e Lloc(99 f Lioc (9),
C(x) > 0 in Y2.

[H- 2] (Nonlinear term).
j Q(t) is monotone increasing and continuous on P,

(2 3) [ such thai Q(0) 0 and Q(t)t > 0 for any R \ {0}.
Definition 2. Let us set for x /2’= /2\

(2.4) A(x) =A(x) +d(x)[lTA(x)l,
ft(y)

q(x) ess-supl_xl<@ B( y.)"
[H-3]. There is a positive number 80 > 0 such
that

ItlX+Oo(2.5) sup IQ(t)l < + c, Super-linearlity.
tR\0

and

(2.6) lim inf A(x)
o a<x><, d(x)

dx
+1 d(x <
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[H-4I. C(x)
(2.7) sup B() < +

xQ

Now we are able to state our main results.
Theorem 1. Assume that [H-11, [H-21, [H-31

and [H-41. Assume that u Lo (D’ satisfies
Pu Llo (Q’) in the distribution sense. Moreover
we assume that for almost all x
u(x) _> 0},
(2.8) Pu + B( x Q( u <- C( x ).

Then we have u/ Loc (), where u+
max (u, 0).
The following is a direct consequence of this

theorem. (The proof is omitted).
Corollary 1. Assume that [H-l], [H-2] and

[H- 3]. Instead of [H-4], assume that f x) Lo
(Y2’) VI Lo (2) satisfies for some positive ,number

c
(2.9) If(z)] g C’B(x),foralmostallx
Assume that u Lloc(2’) satisfies
(2.10) Pu + B(x)Q(u) f, in D’(9’).
Then there exists a function v Lo () such that

Pv + B(x)Q(v) f, in D’(9),
(2.11) rio, u.

As an application we consider the Dirichlet
boundary value problem for degenerate semi-

linear elliptic equation"
Pu + B(x)Q(u) f in

(2 12) [u_O on .
Then we have.

Theorem 2. Assume that [H-l], [H-2] and

[H-3]. Instead of[H-4] assume that f( x)
satisfies for some positive number C
(2.13) If(x)l <- C’B(x),foralmostallx
Moreover we assume that A (x), B (x) CO ([2).
Then there exists a unique function
(2.14) u L(9) Hlloc(,.O \ F)
which satisfies (2.12) in the distribution sense and

satisfies

fo [A(x)lu[ + B(x)Q(u)u] dx <_(2.15)

2+80Here , =. 1 + 8o
and C is a positive number inde-

pendent of each function f.
In the rest of this subsection we shall show

that in certain respects Theorem 1 gives best
possible results. Let F be either the origin 0 or
an m-dimensional C compact submanifolds in
RN

with 0 < m <-- N- 1. We put d (x) dist
(x, F) which is smooth near F.

(2.16) L,u div(d(x)"gu) and Q(u) -lul-Assume that real numbers if, f and 7 satisfy the
following four conditions which correspond to

[H-1I--[H-4I in {}2.
N--

(h-l) /9 > 2
Define

and 7>
g-m

1-a+fl
if a </9 q- 1,

(2.17) p*= 1+2N+2a-2-m’
1, ifa_>fl+l.

f p:>_p*,
ifa<fl+ 1,

(h-2)
> p* 1, if a > fl + 1,

>_N--m--2
2

(h-3) fl <-- 7.
Then we immediately have

Theorem 3. Let F and La be as above.

Assume that (h-l), (h-2) and (h-3). Assume that u

Lo (D’) satisfies Lu Loc (D’) in the dis-

tribution sense. Moreover we assume that for almost

allx (x 9; u(x) >_ 0}
(2.18) Lu + b(x)d(x)2Zup ,<- c(x)d(x) 2r,

for some positive smooth functions b (x) and c( x ).
+Then we have u Lloc(D).

Proof of Theorem 3. Since Q (u)
we can put 60 P,-- 1 to obtain (2.5). To apply
Theorem 1, it suffices to show that the condition
(2.6) in [H-3] is satisfied. But a direct calculation
leads us to
(2.19)

7 <e(x)<s d(x) Oo /1 d(x dx=

N+2a-m-2 (t)- N+2B-m 2a+N-m-2)C’ diam(F)" s - V+,-,n- + S <
Next we show the sharpness of the condition

(h-2). We consider U(x) d(x) -M for M > 0
in a small neighborhood of F. Then we shall
solve
(2.20) LU(x) / b(x)d(x)2eU(x) 0, near F.
Here we remark that
(2.21) 1lTd(x)l 1 (near F)and

lim d(x) Ad(x) N- m 1.
X--,F

Hence if we choose a, fl, p, M and b(x) so that

p- 1 + 2(1 a+fl)
M

(2.22) M(d(x) Ad(x) + 2a- l M) + b(x) O,
M>N-m-2+2a,

then U clearly satisfies (2.20), but unbounded
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near F.
3. Lemmas. We will state some prelimin-

ary facts that will be useful in the sequel.
Lemma 3.1 (Kato’s inequality). Assume that

U Lloc(,(2’) and Pu Lloc(Q’). Then we have
(3.1) Pu+ <_ (Pu) sgn+u,

1,,for u > O,
in D’ (2’), where sgn+u-- 1/2, foru 0,

0, foru < 0.
Lemma 3.2 (Extension). Assume that [H-l],

[H- 21 and [H-3I. f L}loc (9) and B (x)" Q (u)
Lloc(,Q), and assume that

(3.2) Pu <- f, in D’(9").
Then we have
(3.3) Pu K f, in D’(9).

Lemma 3.3 (Pointwise estimate). Assume
that u Lloc ($2’) satisfies Pu Llo (9’) ,in the.
distribution sense. Assume that [H-l] [H-4],
Moreover we assume that for almost all x { x
9 u(x) >--0}
(3.4) Pu 4-B(x)Q(u) <- C(x).
Then we have, for some positive numbers C and so,

(3.5) u(x) <-- C[ q(x)d(x)- 4- 1],
for x with O < d( x) N So"

Lemma 3.4 (Integrability). Assume that
[H-1]--[H-3]. Assume that u Llo (9’) satisfies
Pu Llo ($2’) in the distribution sense.. Moreover
we assume hat for almost all x { x D u( x
>_0}
(3.6) Pu 4- B(x)Q(u) <_ C(x).
Then we have
(3.7) B(x) Q(u+) Lloc(X2).

4. A sketch of the proof of Theorem 1.
From lemmas in the previous section we have for
a sufficiently large/2 > 0,
(4.1) P(u --/2)+ 4- B(x)sgn+(u- /2)(Q(u)
V(/2)) -< 0, in D’ (/2).
Now we assume that without loss of generality
{x d(x) < 1 } c and/2 > supl/2<d(z<l u(x),
Moreover we assume that’ (u-/2)+ is smooth,

because we can apDroximate it by a sequence of
smooth functions in a standard way. Then we in-
tegrate (4.1) to obtain u (x)<_ /2, for d (x)
< 1/2. This proves the assertion.

5. A sketch of the proof of Theorem 2. We
assume that N > 1 for simplicity. Since the un-

iqueness of solutions in L () N Hlloc ($\F)
follows easily from the monotonicity of the oper-
ator, we will show the existence of solutions. Let
(Ps}s>o be the s-regulatization of P, namely

div[(s 4- A(x)) I7 "]. We consider the Dirich-
let problem (2.12) with P replaced by Ps. Then
we can show that there is a unique solution u

Ho($2). For the detailed argument, see [1] for ex-
ample. From Young’s inequality we can also

establish the estimate (2.15) for u uniformly in

> 0. Next by the method of a priori estimate and

compactness, we derive a subsequence (usj)y=
from (us)s>0 which converges weakly to some ele-
ment Hloc (,0\F). Since satisfies (2.12) in
$2 \ F in the sense of distribution, it follows from
Theorem 1 and its corollary that there is a uni-
que bounded function u satisfying (2.12) in
This proves the asserti
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