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1. Introduction. Let N =1 and p > 1. Let
F be a compact set and £ be a bounded open set
of R satisfying FC Q C R". We also set
2 = 2\ 0F, where 0F = F\ F and F denotes
the interior of F. Define
(1.1) P=—divA(x) V),
where A(z) € C'(R’) is positive in 2\ F and
vanishes in F. First we shall consider removable
singularities of solutions for degenerate semi-
linear elliptic equations. Assume that # € c’
(R) N C*R\F) satisfies
(1.2) Pu + B(x)Qu) = f(x), in 27,
for f/B € L”(8). Here Q(u) is a nonlinear term
defined in the section 2. Then we shall show the
existence of a bounded solution in £ which coin-
cides with # in 2 = 2\ 0F. This result was
established by H. Brezis and L. Veron in [2],
under the assumptions that F consists of finite
points, Q (¢) = ¢/’ 't and A(z), B(z), C(z)
are positive constants. (see also [5]). In this paper
we generalize their results for an arbitrary com-
pact set F in place of finite set and for a wider
class of (degenerate) elliptic operators P.
Secondly as an application, we shall consider
the Dirichlet boundary problem for genuinely de-
generate semilinear elliptic operators:
(1.3) {Pu+B(x)Q(u) = f(x), in 2,

' u =0, on 0.
Then we shall establish the existence and unique-
ness of bounded solutions # for this problem.
When P is uniformly elliptic on £, this problem
has been treated by many authors. But the de-
velopment of the theory seems to be rather limit-
ted in the study of genuinely degenerate oper-
ators.
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2. Main results and applications. Let N =
1. Let F and £ be a compact set and bounded
open subset of R" respectively, satisfying F C
2, and set Q' = 2\ OF. Here OF is defined as
oF = F\ﬁ In the next we define a modified dis-
tance to OF.
Definition 1. Let d(x) € C”(£2’) be a non-
negative function satisfying
-1 d(x)
@1 €< Fitz, op = €
07d(2)| < C(dist(x, oF)' ™", z € @',
where C and C (7) are positive numbers inde-
pendent of each point x.
We suppose the following four assumptions :
[H-1] (Coefficients).

A(z) € C'(Q) N L, (2),
(2.2) [A(x) =0in F = F\oF,
A(z) >0in Q\F,
B(zx) € L3.(Q) N L,,.(2),
B(x) > 0in 2 = Q\0F,
Clz) € L3.(2) N L, .(),
C(x) =20in L.
[H-2] (Nonlinear term).
(2.3) { Q1) is monotone increasing and continuous on R
' such that @(0) =0 and Q(#)¢ > 0 for any t €R\ {0}.
Definition 2. Let us set for x € 2’ = 2\
oF
(2.4) A(x) = A(z) + d(x)|VA(2)],
A
O(x) = €SS-SUP |,y <4 —Bgz;
[H-3]. There is a positive number d, > 0 such
that

143,
(2.5) sup T0COT < + oo, Super-linearlity.
ter\{0} Q1)
and )
.1 - D(x) \3
(2.6) llrenltnf z j;<d(x)<sA(x)[(d(x)2>
+1 ]——dzii) < + oo,
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[H-4].

2.7 C(x)

SUP——B(J:) < +4 oo

ZEQ

Now we are able to state our main results.

Theorem 1. Assume that [H-1], [H-2], [H-3]
and [H-4]. Assume that u € L, (') satisfies
Pu € L), (2') in the distribution sense. Moreover
we assume that for almost all x € {x € Q';
u(x) = 0},

(2.8) Pu+ B(x)Q(u) < C(x).

Then we have u, € Ly, (), where u, =
max(u, 0).

The following is a direct consequence of this
theorem. (The proof is omitted).

Corollary 1. Assume that [H-1], [H-2] and
[H-3]. Instead of [H-4], assume that f(x) € L,
(2°) N L, () satisfies for some positive nuwmber
C
(2.9) |f(x)| £ C-B(x), for almost all x € £.
Assume that u € L, (') satisfies
(2.10) Pu+ B(x)Qw) = f, in D' ().
Then there exists a function v € L}, () such that
2.11) {Pv -l_-—B(x)Q(v) =f inD(Q)),
vlg = u.

As an application we consider the Dirichlet
boundary value problem for degenerate semi-
linear elliptic equation :

Pu+ B(z)Quw) = f
ez {700
Then we have.

Theorem 2. Assume that [H-1], [H-2] and
[H-3]. Instead of [H-4] assume that f(x) € L™ (Q)
satisfies for some positive number C
(2.13) |f(x)| < C-B(x), for almost all x € Q.
Moreover we assume that A(x), B(x) € C°(Q).
Then there exists a unique function
(2.14) u€ L”(Q) N H (2\F)
which satisfies (2.12) in the distribution sense and
satisfies

(2.15) fg [A(2)|Vul* + B(2)Quud dz < C|f/BIL.
+ 4,

2
1F 5, vd C is a positive number inde-
0

in 2,

Heve A =

pendent of each function f.

In the rest of this subsection we shall show
that in certain respects Theorem 1 gives best
possible results. Let F be either the origin O or
an m-dimensional C” compact submanifolds in
R" with 0 <m < N— 1. We put d(x) = dist
(z, F) which is smooth near F.
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(2.16) Lyu= — div(d(x)**Vu) and Q(u) = |u’u.
Assume that real numbers «, B and 7 satisfy the

following four conditions which correspond to
[H-1]—[H-4] in §2.

N — N —
(h-1) B> — =5 and 7 > — 5.
Define
l1—a+B )
2.17) pk = 1+2N+2a—2—m'1fa<'8+1‘
1, ifa=f+ 1
p = by, ifa<pB+1,
p>ps=1, ifa=>p+1,
(h-2) > _ N—m—2
o — 5
(h-3) B=7.
Then we immediately have
Theorem 3. Let F and L, be as above.

Assume that (h-1), (h-2) and (h-3). Assume that u
€ L. (') satisfies Lyu € L), (') in the dis-
tribution sense. Moreover we assume that for almost
alz€e {x€ Q;ulx) =20}

(2.18) Lou+ b(zx)d(x)*u’ < c(2)d(z)?,
for some positive smooth functions b(x) and c(x).
Then we have u” € L, (2).

Proof of Theorem 3. Since Q (u) = |u|" 'u,
we can put §, = p — 1 to obtain (2.5). To apply
Theorem 1, it suffices to show that the condition
(2.6) in [H-3] is satisfied. But a direct calculation
leads us to

(2.19)
% 0<d)<e (d(x)_m}aoﬂ + 1>d(x)2a—1dr:

N+28-m

N+2a-m-2
taammd (,_ N+2-m +EZa+N—m-2) <o

C diam (P4
Next we show the sharpness of the condition
(h-2). We consider U(z) = d(x)™ for M > 0
in a small neighborhood of F. Then we shall
solve
(2.20) L,U(x) + b(z)d(z)?U(z)’ = 0, near F.
Here we remark that

(2.21) |Vd(x)| =1 (near F) and
limd(x) Ad(x) = N—m— 1.
x—F
Hence if we choose a, 8, p, M and b(x) so that
_ 20—a+p)
p=1 +——M——'
(2.22)

M@d(zx) Ad(z) +2a—1—M) + b(x) =0,
M>N-—-m—2+ 2¢q,
then U clearly satisfies (2.20), but unbounded
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near F.
3. Lemmas. We will state some prelimin-
ary facts that will be useful in the sequel.
Lemma 3.1 (Kato’s inequality). Assume that
u € L, () and Pu € L}, .(2'). Then we have
(3.1) Pu" < (Pu)sgn'u,
1, foru > 0,
1/2, foru = 0,
0, foru < 0.
Lemma 3.2 (Extension). Assume that [H-1],
[H-2] and [H-3]. f€ Li,. (2) and B(z)- Q (u)
€ L., . (), and assume that

in D'(RQ7), where sgn*u =

(3.2) Pu < ¥, in D'(Q).
Then we have
(3.3) Pu < f, in D'(9Q).

Lemma 3.3 (Pointwise estimate). Assume
that u € L5, (2') satisfies Pu € Ly, (') in the
distribution sense. Assume that [H-1] — [H-4],
Moreover we asswme that for almost all x € {x €
2;u(x) =20}

(3.4) Pu + B(x)Quw) < C(x).

Then we have, for some positive numbers C and &,

(3.5 u(z) < CLO(x)%d(x) 7% + 11,
forx with 0 < d(x) < &,
Lemma 3.4 (Integrability). Assume that
[H-1] —[H-3]. Assume that u € L}, (') satisfies
Pu< L, (') in the distribution sense. Moreover

we assume that for almost all x € {x € Q; ul(x)
>0}

(3.6) Pu+ B(x)Qu) < C(x).
Then we have
(3.7) B(x)Qw™) € L},.(9Q).

4. A sketch of the proof of Theorem 1.
From lemmas in the previous section we have for
a sufficiently large ¢ > 0,

(4.1) Pu—p), + B(x)sgn" (u— 1) (Qu) —
Q(w) <0, in D' (£).

Now we assume that without loss of generality
{x:d(x) <1} C Qand ¢ = supypcim< #(2).
Moreover we assume that (# — p), is smooth,
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because we can approximate it by a sequence of
smooth functions in a standard way. Then we in-
tegrate (4.1) to obtain # (x) <y, for d (x)
< 1/2. This proves the assertion.

5. A sketch of the proof of Theorem 2. We
assume that N > 1 for simplicity. Since the un-
iqueness of solutions in L™ (2) N H, (2\F)
follows easily from the monotonicity of the oper-
ator, we will show the existence of solutions. Let
{P_} .., be the e-regulatization of P, namely P, =
— div[(e + A(x)) V -1. We consider the Dirich-
let problem (2.12) with P replaced by P,. Then
we can show that there is a unique solution #, €
H,(2). For the detailed argument, see [1] for ex-
ample. From Young's inequality we can also
establish the estimate (2.15) for #, uniformly in e
> 0. Next by the method of a priori estimate and
compactness, we derive a subsequence {u,};_,
from {u.},,, which converges weakly to some ele-
ment % € Hy (2\ F). Since @ satisfies (2.12) in
R\ F in the sense of distribution, it follows from
Theorem 1 and its corollary that there is a uni-
que bounded function # satisfying (2.12) in £.
This proves the asserti
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