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On an Algebra of a Certain Class of Operators
in a Slab Domain in R2
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Department of Mathematics, Osaka University
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Abstract: In this paper a Dirichlet problem for the Laplacian in a domain with a corner
in R2

is treated and a new method of construction of a local parametrix for that Dirichlet
problem at a corner point is given. In order to construct a parametrix a certain class of
operators in a slab domain is introduced and it is shown that that operator class is an algeb-
ra.
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1. Introduction. Let .Q be a domain with a

corner in given by
2 {(t cos 0, tsin 0) t R+, (t)

< 0< o.(t)),
where 01(t), c.(t) are C functions on/+ and 0
<_ l(t) < (t) < 2z, t R+, and c?(0) --0,
c72(0) a and any derivative of 0(eX), j 1,2,
is bounded on R. Let

F { (t cos 0(t), t sin 0(t)) t R+}, j 1,2.
We consider the following Dirichlet problem:

Au=finD,
(D) u 0 on/,

u 0 onF,
where f is a given function.

We consider (D) in polar coordinates and we
map Q into + (0, c) by an appropriate coor-
dinate transformation. Moreover, by the change
of variable t e, we map + (0, c)into

(0, c0. Then we have the following Dirichlet
problem ():

Lw=ginR (0,
() w-- 0 on R x {0},

w 0 on R
where L is a strongly elliptic operator of second
order in [0, a] and coefficients of L are
real valued C functions in R [0, a] whose
derivatives of any order are bounded in R [0,
ff] and the principal part of L is written in the
form

Lo- f + 2a(x, 0)co + a.(x, 0)io.
Since L is a strongly elliptic operator in R

[0, c] and coefficients of Lo are real valued
functions in [0, c], there exists a constant

( > 0 such that
(1.1) a. (x 0) a (x 0) >_ 6

xR,O [O,a].
The purpose of this paper is to construct a

global parametrix for the problem (). For con-
structing a parametrix, we shall introduce a class
of operators expressed by a sum of two integrals
in two parameters in [0, cr] of pseudo-
differential operators on R. This class of oper-
ators is closed under taking products of oper-
ators and taking formal adjoints. Those prop-
erties play a crucial role in the construction of a

parametrix. Since we use only the condition (1.1)
for constructing a parametrix, our method is ap-
plicable to general operators which have strong
ellipticity instead of the Laplacian. Our paramet-
rix is concerned with the Mellin transform and
solutions of Dirichlet problems for the Laplacian
in wedges in R, cf. [1] and[7].

All the lemmas and theorems are stated
without proofs.

2. A class of operators and its algebra. We
shall use the following notations:

(R) denotes the set of all rapidly decreas-
ing functions on R. For w (R) denotes the
Fourier transform of w. For R we write

(1 + I lb We say that a(x, )
S,o(m R) when a(x, ) C (R) and for
any , 7e 0 there exists a constant Cr,,r > 0
such that- x,R.x (x, )l c,,()-We set $1,o= US,. For a(x, ) $1,o we de-
fine a pseudo-differential operator a(X, Dx)
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with symbol a(x, ) by

(a(X, Dx)w(.))(x) e a(x,

()(2zr)-ld, w (R).
Op $1,o denotes the set of all pseudo-differential
operators with symbols in $1,o. For a(x,
S,o with a parameter , a(X, Dx, )denotes a
pseudo-differential operator with symbol a(x,
v) S,o with a parameter v.

First we introduce symbol classes
R, 2 0, j= 1,2.

For a>0 we set K: {(0,);00
a,OO}, K= {(0,);00a, 0

m,
Definition 2.1. (i) For 2 > 0, Ma, is the

set of all a(x, , O,g) C(R x K) such
that for any , Tz, a, T4 0 and any 0 <
there exists a constant Cr,rz,ra,r, 0 such that

rlr2rar4x (x, , 0, )1
x ()-++’e--<>;x, R, (0, ) K.

m,O
(ii) For 2 0, Ma, is the set of all a(x,, O, ) C(R K) such that for any T,

Te, T3, T4 0 there exists a constant Cr,r,ra,r
0 such that

A symbol a(x, , O, ) a, may be re-
garded as a symbol in $1, with parameters 0,

Next we introduce operator classes corres-
ponding the above symbol classes.

Definition 2.2. A linear operator A C([0,
a] ;()) C([0, a] ;()) is said to be-
long to the class Op’ if there exist a(x
0, ) ,, j 1,2, such that

(.1 Aw(., O) a(X, D, O, )w(., )d

+ a(X, , O, w (., .
For an operator A Op’ given in the form
(2.1), we shall write A OP(a, a).

We set Op’ U Op ’, Op

For A OpN’ its formal adjoint operator
A* should be defined by

(Aw(’, 0), v(’, O)

(w(’, 0), A’v(’, O)),dO
w(’, 0), v(’, O) C([0, ] A (R)).

Now we state fundamental properties of Op

Theorem 2.3. The class Op’ is an algeb-
ra in the following sense:

(i) If 2 > 0 and A Op ’, j- 1,2, then
there exist B, Op 1+--1,, k _> O, such that

AA - +.-,o=oB Opd l N.
_m,o(ii) If A Op ,j= 1,2, then AA

.1+2,0

(iii) If A Op d’, then there exist Cg Op
l--1-’ k >0, such that A* =o C Op

m-l,O,IN.
Lemma 2.4. Let > 0, OP(al, ae) Op

C’ and c(x ) be a function in R [0 ]
whose derivative of any order is bounded in R
[0,]. Then for any w(’, ) C([0, ] ;(R))
we have

(OP(a, a)c)w(., 0) (OP(aic(x, ),
ac(x, 0)) + A + A)w(., 0),

where A Op -’ and A Op -,o
Theorem 2.3 and Lemma 2.4 suggest that

calculus of OpM:’ can be carried out by a simi-
lar way to the one of pseudo-differential oper-
ators.

In the proof of Theorem 2.3 we use Dirich-
let’s formula (cf. [5], p. 244).

3. Construction of a parametrix. First we

construct a principal part of a global parametrix
for the problem (D).

We set
a(x, 0)

(x 0) a (x 0)

(x 0) a(x 0) a (x 0)
a (x, 0)

Since (1.1) and a(x, 0), j 1,2, are real valued
C functions in R x [0, ] whose derivatives of
any order are bounded in R x [0, ], inf (e(x,
O);xR, [0,]} >0 and (x,O),2(x,0)

1
and z(x, 0) are real valued C functions in R

[0, a] whose derivatives of any order are
bounded in R x [0, ].

We set
a=inf(2(x, 0);xR, 0 [0, a]},

ai(x, , , )
(O-a)(x,O)

e(x,o e
sinh(a (x, 0) ) (0,

a(x, , 0, a)
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+ (O-o)z(x,O)
_z(x,O)e sinh(c2.(x, 0)) b(),

a3+/-(x, , 0,
+O.(x,O)

(_a (x,O e
e sinh(a2(x, 0)) ()’

a (x, , 0, a)
0(x,0)

-(-a)(x,O) e
e sinh(a (x, 0) ) ()’

where () is a cut off function at the origin.
Lemma 3.1. We have

a, (x, , , ), a(x, , , a) Z:’.:,
0,ffa (x, , 0, ), a(x, , 0, z) Z,..

We set
ql(x, , 0,) e

sinh (0
sinh((x, 0) ) sinh

1
X a(x, O)(x, ) ()

i(O-)2(x,O)q(x, , 0, ) e
sinh(0(x, 0)

x sinh(( a)(x, 0) ) sinh(a (x, 0)
1x a(x, O)(x, ) ()

where ()is a cut off function at the origin.
--1,ff

Then q(x, , 0, p) M, j 1,2, are shown
by using Lemma 3.1.

We define an operator Qo a by Qo
OP(ql, qe). Then we get the following:
Lemma 3.2. (i) For any w(’, O) C([0, ]

(R)) we have Qow( O) O, Qow( ) O,
Qow( ", O) Ce([0, ];(R)) and

(LVo)w(’, 0)- ((Dx) --R1)w(’, 0),
where R Op Mo,

(ii) For any w(" O) C([0, ] ;(R))
with w(’, O) 0 and w(’, ) 0 we have

(Dx)( VoL) w( 0) (I 1
a(X, 0)

a(X’, 0) R- R)w(., 0),

where R Op M’ and R Op Ml.O.
Lemma 3.2 suggests that the operator Qo

plays a role of a principal part of a global para-
metrix for the problem (D). In the proof of (ii) of
Lemma 3.2 we use Lemma 2.4.

We shall now construct a parametrix on the
base of Lemma 3.2-First note that an analogous

theorem to H6rmander’s one (cf. [2], Chapter 2,
oo,0Lemma 3.2) holds over M,, j--1,2. Moreover,

by using (i) and (ii) of Theorem 2.3 we have

R1k, (R2 4- Ra) k Op /+1,o, k N.
From two results stated above, it follows

that there exists E OpM’a such that E
k=oR1 (modulo Op M,o) and there exists E.

Op /a’ such that E. ,=o(Re 4- Ra) (mod-
ulo Op /,o). Therefore we obtain a parametrix
as follows:

Theorem 3.3. (i) There exist E OpM’and K Op ,o such that for any w(’, O)
C([0, 0] ;(R)) we have

(LQoE1- I)w(’, 0) Kw(’, 0).
(ii) There exist Ez Op Mo,o and k

Op M,o such that for any w(’, O) C2([0, ]
(R)) with w(" O) --0 and w(" c) 0 we

have
(EQoL I)w(’, O) Kw(’, 0).
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