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Determination of All Quaternion Octic CM-fields
with Ideal Class Groups of Exponents 2

Abridged Version

By StOphane LOUBOUTIN*) and Ryotaro OKAZAKI* *)

(Communicated by Shokiehi IYANAGA, M. J. A., Feb. 14, 1994)

In [9] the authors set to determine the non-abelian normal CM-fields
with class number one. Since they have even relative class numbers, they got
rid of quaternion octic CM-fields. Here, a quaternion octic field is a normal
number fields of degree 8 whose Galois group is the quaternion group --2 o2 k{+__ 1, + i, +j, 4- k} with ij= k, jk= i, ki=j and =j 1.
Then, in [8] the first author determined the only quaternion octic CM-fields
with class number 2. Here, we delineate the proof of the following result
proved in [10] that generalizes this previous result:

Theorem. There are exactly 2 quaternion octic CM-fields with ideals class
groups of exponents 2. Namely, the following two pure quaternion number fields"

Q(v/- (2 4- v)(3 4- (-))
with discriminant 2436 and class number 2, and

Q(v/- (5 + v)(5 + 2-)(21 + lvT0))
with discriminant 36576 and class number 8.

1. Analytic lower bounds for relative class numbers and maximal real
subfields of quaternion oetie CM-fields with ideal class groups of exponents 2.
Here we show that under the assumption of a suitable hypothesis (H) we can
set lower bounds on relative class numbers of quaternion octic CM-fields.
Let us remind the reader that a number field N is called a CM-field if it is a
totally imaginary number field that is a quadratic extension of a totally real
subfield K. In that situation, one can prove that the class number h of K di-
vides that hN o N, and the relative class number hv of N is defined by
means of hv hg/h (see [11, Theorem 4.10]). Note hv divides hg.

Proposition 1. (a). (See [5, Theorems i and 2(a)]) Let N be a quaternion
octic CM-field such that the Dedekind zeta function of its real bicyclic biquadra-
tic subfield K satisfies

2
(H) / (1- log(DN))--< 0.

Then, we have the following lower bound for the relative class number hofN"

( 87re1/4) 1 1 /DN/D
(1) hvk 1 -N 4eTr Res=(g) log(DN)"
Moreover, the hypothesis (H) is satisfied provided that we have
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1
(2/ hT <- ig7
(b). (See [61) Set c 2 + 7"- log(4rr), where )"- 0.577215 is the Euler’s
constant, so that we have 3c <-- 0.14. Then,

1
(3) Res=() _< 216 (log(D)+ 3c) 3.

In order to show that the hypothesis (H) is satisfied whenever N is a
quaternion octic CM-field with ideal class group of exponent 2, we would
like to show that hv is not too large, i.e. is such that (2) is satisfied. Hence,
we would like to be able to compute the 2-rank of the ideal class group of
N. It is not hard to see that the ambiguous class number formula (see [1] or

[3]) provides us with the determination of the 2-rank of the ideal class group
of any CM-field N such that its maximal totally real subfield K has odd
class number. Hence, we would like to prove that the real bicyclic biquadrat-
ic subfield K of any quaternion CM-field with ideal class group of exponent
2 has odd number.

This task is accomplished by use of Fr6hlich’s description [2] of qua-
ternion octic fields and delicate examination of ideal characters Of quadratic
subfields paying respect to difficulty coming from unit groups:

Lemma A. Let k be a real quadratic field, + the totally positive

fundamental unit and N/k a cyclic quartic extension. Assume that prime num-
bers p, pe,. ,pt remain inert in k/Q and completely ramify in N/k. Then the

+4-rank of the class group of N is non-zero if > 3 or is norm-residue at
(p) in N/k with l 2.

In fact, we determine possible (necessary) forms of quaternion octic CM-fields
whose class group have no elements of order 4:

Theorem 2. Let N be a quaternion octic CM-field and suppose that the
4-rank of the ideal class group of N is equal to zero. Let K be the real bicyclic hi-
quadratic subfield of N. Let k, 1 i 3 be the three real quadratic subfields
of K. Let T be the number of ramified prime numbers in K and let t/o be the
number of prime ideals of K that are ramified in K/ Q. Finally, let Q be the
unit index (U" UUUa), so that we have the following class numbers rela-
tion"

Vh= 4 h,hh.
Then, K is one of the following eight forms"
1. K Q(, ) with q 3 (mod 8). Then, t/o T 2 and Q 4.
2. K- Q(, ) with q r 3 (mod 8). Then, t/o 4, T 3 and

O= 2.
3. K Q(, ) with p 5 (mod 8), r 3 (mod 8) and (p /r) 1.

Then, t/o 4, T 3 and Q 2.
4. K Q(, ) withp i (mod 4), q r 3 (mod 4) and

(p /q) (p /r) 1. Then, t/o 4, T= 3 and Q= 2.
5. K Q(, ) with q 7 (mod 8), r 3 (mod 8) and

(r/q) 1. Then, t/o T 3 and Qg 4.
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6. K= Q(/ /r) with p=-- q---- r---- 3 (mod4) and (q/p) (r/q)
(p / r) 1. Then, tK/Q-- T-- 3 and QK-- 4.

7. K- Q(/ f) with q--- 1 (mod 8) and (2/q)4(q/2) 4 1. Then,

t/Q’- 4, T-- 2 and Q= 2.
8. K- Q(-, /) with p-= q-- 1 (mod 4), (p/q) i and

(P /q)4(q /P)4-- 1. Then, tg/Q-- 4, T-- 2 and Q- 2.
In each of these eight cases, the class number of K is odd. Let UK and U

be the group of units of K and the group of totally positive units of K. Them in
each of these eight cases we have (U" U) 2. Hence, (U f NN/c(N+)
U) 2 is equal to 1 or 2. Moreover, except possibly in cases 5 and 6, we have
p O. Hence, in each of these eight cases we get tc/Q -t- p <_ 4.

2. Scheme of the proof of the theorem. Now our strategy is as follows.
First, using the ambiguous class number formula, we show in Lemmas B

and C that if a quaternion octic CM-field has an ideal class group of expo-
nent 2 then (2) is satisfied, except for a finite number of K’s for which we

use in Lemma D a trick that shows that the hypothesis (H) is satisfied.
Second, using (1) and (3) we get the upper bound D < 25" 106 on the

discriminants of real bicyclic biquadratic subfields of quaternion octic
CM-fields with ideal class groups of exponents 2. Then, we give a short list
of real bicyclic biquadratic number fields K that can be subfields of quatern-
ion octic CM-fields with ideal class groups of exponents 2 (see Lemma E).
Then, for each possible K we get a finite list of possible values for discrimi-
nants of quaternion octic CM-fields with ideal class groups of exponent 2
containing this number field K (see Lemma F).

Third, using the method developed in [7], we compute the relative class
numbers of the quaternion octic CM-fields of discriminants belonging to this
list.

For any quaternion octic number field N with bicyclic biquadratic sub-
field K, we can find a pure quaternion octic number field No and a discrimi-
nant A of a quadratic number field such that N No(-). The discriminant

DN of N is then equal to DNoA4 and the discriminant Dgo of go is Dgo-
16D if 2 has ramification index equal to 2 in K/Q, and Dgo- D other-
wise.

Lemma B. If N is a quaternion octic CM-field with ideal class group of ex-
ponent 2, then hc 1 and h <- 24m+a where m is the number of distinct prime
divisors of A. More precisely, the 2-rank of the ideal class group of N is tN/ 1
+ p where tN/ is the number of prime ideals of K that ramify in the quadratic
extension N/K, and p {0, 1} as in Theorem 2.

For m --> 0, set Ao 1 and A l"" lm, 3 11 < 4 1 < 5 1
< <lm where the /’s, i--> 3 is the increasing sequence of odd primes

3 4
greater than 3. Hence, with m being as in Lemma B, we have DN >_ DcA,n.

Lemma C. If the ideal class group of a quaternion octic CM-field N is of
exponent 2, then the hypothesis (H) of Proposition 1 is satisfied provided that we
have D >- 382617.

Proof Noticing that hv <- 8" 4m (see Lemma B) and DN/D >- Am
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v/Dr, it suffices to show that (2) is satisfied, hence it suffices to show that
we have

(A,2= ( 12 _)2> 128e
(4)

\4m/ 4 v/Dr"
Since the left hand side of (4) is greater than or equal to (3/4) then (4) is
satisfied if Dr _> 382617.

Using the fact that the Dedekind zeta function of a bicyclic biquadratic
number field is the product of the Riemann zeta function and of the three
L-functions associated to the three characters of the three quadratic sub-
fields of K, we have the following result that will enable us to show that the
hypothesis (H) is satisfied when we have Dr <- 382616.

Lemma D. Let k be a real quadratic field of conductor f and quadratic
character Z. Then, the Dedekind zeta function of k is negative on ]0,1[ provided
that S(n) na= b=l Z (n) S(n) satisfies > 0, 1 _< n _< f

3. Upper bounds on the discriminants of the bicyclic biquadratic real sub-
fields of quaternion octic CM-fields with ideal class groups of exponents 2.
Let us assume that K is a quartic subfieid of a quaternion octic CM-field N
with ideal class group of exponent 2 such that the hypothesis (H) is satisfied.
Then, since DN D A4 and hv < 24m+3 (1) and (3) we have:

DA16 <a 27"(5) f(m) 1 ---- (log (D) ;log(DA)
Now, one can easily see that we have fr(m) >--fr(2), m _> 0. Hence (5) im-
plies

( 87re
1/4

) D 64eTr4

2430og(D ) +
<

One can easily check that (6) implies

D _< 25.10
Moreover, instead of using (3), for a fixed K that satisfies hypothesis (H) let
us use (1). We get a more restrictive inequality than (6), namely:

(7) (1 87rel/4 ) Dr < 512eTr4

r)3/8
-r log(124D3) 9 Res_1

This inequality (7) will enable us to get rid of most of the number fields K
that satisfy (6).

Moreover, if we assume that 2 has ramification index 2 in K, or if 2 is
totally ramified in K, then we can state much more satisfactory inequalities.

4. Upper bounds on the discriminants of the quaternion octic CM-fields
with ideal class groups of exponents 2. Now, for each field K we use (5) to
put an upper bound mnax on m, and then we use (6) with hv 24mnax+3 to
put an upper bound on DN. Finally, using this upper bound on DN, for each
K and each DN we compute the exact value of tN/r and use the upper bound

hv _< 2t/r-1 in (1), i.e. we use

8e
1/4

(8) (1- \ v/D/D
--1/8] log(Dg) -< 2ezr42t’+Ress--1 (r)

\ (DN)
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to get rid of many number fields N.
5. Full proof for ease 4 of Theorem 2. We explain on one of the eight

possible forms for K how we get upper bounds on discriminants of quatern-
ion octic CM-fields with ideal class groups of exponents 2. Hence, we
assume that N be a quaternion octic CM-field that is a quadratic extension
of the real bicyclic biquadratic field Kp,qr> Q(-, q), with p =- 1 (rood 4)

and q r 3 (mod 4) three distinct primes such that 1.

Then, p 0 and K(p,qr) has odd class number, so that the 2-rank of the ideal
class group of N is tN/K<p,,r)- 1. Moreover, D&p,,r,- (pqr) 2 and DN
(pqf’)6A4 where A _> 1 is prime to pqr and is a square-free or four times a

square-free positive integer. Moreover, we have
pqr= 5" 3"7= 105

5.3.23 345
17.3.7 357
17"3"11 561

or pqr >_ 5" 3" 43 645 which implies D<,,,, -> 382617. Using Lemma D
for the four previous values of pqr, we thus get that the hypothesis (H) is
satisfied whenever K(,qr) is a quartic subfield of a quaternion octic CM-field
with ideal class group of exponent 2. Now, we lower our previous upper
bound on Dr. Indeed, for the 65 number fields K<,,r)’s such that D<,m N

25" 106, we use (7) instead of (6). We thus get that only 8 out of these 65
quartic number fields could be quartic subfields of quaternion CM-fields
with ideal class groups of exponents 2, i.e., we have proved:

Lemma E. If K(,r is the quartic subfield of a quaternion octic CM-field
with ideal class group of exponent 2, then (p, q, r) {(5,3,7); (5,3,23);
(17,3,7), (17,3,11); (5,3,47);(5,7,23); (41,3,7); (41,3,11)}.

We point out that these eight real quartic fields K(,r)’S have class num-
ber one. Let us point out that here we have p 0. Now, using (8), we get:

Lemma F. If N is a quaternion octic CM-field with ideal class group of ex-

ponent 2 that is a quadratic extension of some K(p,qr), then we have"
(p,qr) DN 2-rank of the class group of N

(5,21) (5" 3" 7) , (5" 3" 7) 644, (5" 3" 7)84} 3,5,5

(5,69) (5.3.23)} 3

(17,33) {(17"3"11) , (17"3"11)44, (17.3"11)84} 3,7,7.
Now, using [7] we compute the relative class numbers of the 9 possible

CM-fields N whose discriminants are given in Lemma F. We get the follow-
ing table"

N-- N(5,a.r,1) O(/- 2

N--N(5,3.7,4)-- Q(/-4
\V

5
(21 + 2lgYO-)

5 +2vl ) hv = 2a

s+d )2 (21 + 2 lVT0-) hv- 25. 32
5 + 5 + (i-) hTv 2 52 (21 + 2 4105) 2
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2 (483 + 26 3-)

h(v, 2" 5

hv 23"3

N N,,3.,, Q(v/- (17 + 4 lfi) (2937 + 124 v6-]-)(23 + 4(3-) )
hv 23. 32

N- N(17,3.11,4>-- Q(v/- 4(17 -t- 4 v7)(2937 + 124 /561)) hv- 29"32
N-- N7,3.,8)= Q(v/- 8(17 + 4 1() (2937 -+- 124 v/5--6) (23 -+- 4 3(-))

hv 2" 13

N’- N(’7,3.,8 Q(- 8(17 + 4 1(i-)(2937 + 124 5(1-)) hv,- 29"72.
Since the real bicyclic biquadratic number field K(,21)= Q(/-, 2/-)has
class number one, we have proved that there exists exactly one quaternion
CM-field N containing some K<p,qr) that has an ideal class group of exponent
2, namely the pure quaternion field

2 2 (21 +2/i05)

Its ideal class group is isomorphic to (Z/2Z) 3.
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