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1o In our recent work [7], we studied the structure of the ideal class
group of the p-class fields of quadratic number fields. As we indicated
there, our methods may be applicable to wider varieties of number fields
than that of quadratic fields. Here we treat some cases of Abelian cubic
fields and of relative quadratic extensions where we find a little more
complicated structures than in quadratic number fields.

2. We fix an odd prime p. Let k be an algebraic number field of
finite degree, / the Hilbert p-class field of k and/ that of ], i.e. the second
p-class field of/c. We denote the p-primary parts of the ideal class groups
of k and of ] by Cl((k) and by CI()(/), respectively. We suppose that the
p-rank of Cl()(k)is larger than 1 because Cl() (k) would be trivial if other-
wise.

For simplicity, we put C" =Cl(’)(k) and G" =Gal(k/k) throughout this.
paper. Denote the alternative product of C by itself by CAC, and the
lower central series of G by

G=GG2=[G, G]G=[G, G].
Then C/C may be identified with the Schur multiplier of C (cf. e.g.
Karpilovsky [3], 2.6.7 Theorem). The quotient group G/G is a central
extension of G/G=Gal(k/k) by the kernel G2/G which lies in both of the
commutator subgroup, and the center of GIGs. Since G/G2 is isomorphic
to C by the Artin map. of class field theory, there is a canonical surjective
homomorphism of CC onto G/G (cf. e.g. [4], Theorem 4).

Let be an automorphism of G=Gal(/]) and <> the cyclic group
generated by it. Then (> acts not only on the abelian groups G=[G, G]
and G/G but also on C through the Artin map.. Define an action of
on C/C by (a/ b)" =a/b for a, b C.

Proposition 1. For an algebraic number field lc of finite degree,
there exists a surjective (9}-homomorphism of C/C onto G2/G3.

Proof. For c, e G, the commutator [a, ] mod G depends only upon
the cosets a. G2 and ft. G; therefore, by assigning [a, fl] mod G to the pair
of a.G2 and .G2, we have a well defined surjective homomorphism from
the alternative product (G/G)/(G/G) onto G2/G, since [, ] [, ],
the proposition is clear.

We shall need the following fact (cf. e.g. [5], 2, Proposition 4).
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Proposition 2. Let H be a subgroup of G which contains G, and
Ve.," G--+H/[H,H] the transfer of G to H. If H is stable under , then
the induced homomorphism from Ve,,

Ve," G/G -+ HI[H, H],
is compatible with the actions of on G/G and on H/[H,H].

Now suppose that the order of is a divisor of p-1. The group ring

Q[(o)] over the field of p-adic rational numbers Q is decomposed into a
direct product of Q-simple algebras each of which corresponds to a prim-
itive idenpotent of Q[()]. By assumption, each of them corresponds to
an absolutely irreducible representation (a linear character) of () because
Q contains all the (p-1)-th roots of 1. Moreover, all of the primitive
idenpotents belong to the group, ring Z[()] over the ring of p-adic ra-
tional integers because the order I()1 is relatively prime to p. Therefore,
a finite Z[()]-module is decomposed into a direct product of eigen-modules

of.
In this paper, we only study the cases of either I()I-2 or 3 mainly

because of simplicity.
:. Abelian cubic fields. In this section, we assume that p-----1 mod 3,

and suppose that k is an abelian cubic extension of Q.
:.1. Let p be one of non-trivial automorphisms of k. Since is

normal over Q, the 3-Sylow group, of Gal(/Q) is of or.der 3 and generated
by a lift of p. We fix such a lift and denote it again by p. It defines an
inner automorphism and naturally induces automorphisms of G of order
3 and of GIGs. The action of on the last does not depend upon the
choice of the lift of . It is well known that the action of on C induced
by the Artin map. for k coincides with the natural one of p on C. By
assumption, Z contains a primitive third root of 1. Hence C is decom-
posed into a direct product of eigen-submodules of ("

C=C(1) C(O C(),
C()’= {c e C lc c}, n=O, 1, 2.

Proposition :. The notation being as above, we have C(1)--{1}, and
hence C--C(O

Proof. For c e C, we see c--c’++"--1 because CI()(Q)=I. Hence
we have c=l because p is relatively prime to 3. Q.E.D.

We may assume that C(04= 1 by replacing with i necessary.
The alternative product CAC is decomposed into a direct product,

CAC=C(0AC() xC()AC() x C(0AC(0
these three factors are the eigen-submodules corresponding respectively to
the eigen-values, 1,

Suppose that the abelian group. C({) is of type
(6(1),...,6(s)), /t(i)--p, i---1,...,s, l<_d,<..._ <_d,,

and that the invariants of C({) are
(e(1),...,e(t)), (j)-p% j=l,...,t, l_e,_...e,.

Fix bases, a, (a()=l), i=l,..., s, of C(O, and 5, (5.()=1), j=l,..., t, of
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C(). We may suppose s_ t. Let D be a metabelian p-group defined by
D=(a, b, c,ii--1, ...,s,/’--1, ...,
a() b(; :cmin[(i),(j)} 1 [a, b]=c,,i,j

[a, a] [b, b] [a, c, n] b, C,] 1,
(i, m--l,...,s; ], n=l,...,t).

Then D/[D,D] is isomorphic to C, and [D,D] to C(O/kC(); hence D
may be considered a non-splitting central extension of C with the kernel
C(O/kC(). It is easy to see that the actions of determine an automor-
phism of D of order 3 by

a=a, b=b, c,j=ci,j, (i= l, s ]= l, t),
because these elements, a, b, c,, of D form a set of generators which
satisfy the same relations as a, b and c, do. There will be no confusion
if we denote this automorphism again by . Let E be the semi-direct
product of D and (); since [D, D] is in the center of it, E is a central
extension of El[D, D]. It is apparent from Proposition 3 that El[D, D] is
isomorphic to Gal(//Q). Hence by the same way as we did for Theorem
1 in [7], we can prove the following theorem by utilizing Theorem 1 of
Nomura [8].

Theorem 1. Let k be an Abelian cubic field, and the notation and the
assumptions be as above. Then there exists an unramified central exten-
sion K of f/k whose group Gal(K/k) is isomorphic to D. Hence there is a

natural sur]ection from G/G3 onto D. In particular, we have
ICI()(fc)[[C(O/kC(5)I.IGI=IGI. min {/t(i), (j)},

i,j

and p-rank (Cl()(k))_p-rank (C(0). p-rank (C()).
3.2. Now we suppose that t=p-rank (C()) is either 0 or 1; then we

are able to show a simple and good estimate of IGI.
Theorem 2. Let k be an Abelian cubic field and the notation be as

above. Suppose that p-rank(C)_2, C=CI(p)(k), and that p-rank(C(2)) is
either 0 or 1. Let K/k be the maximal unramified cyclic extension which
corresponds to the subgroup

<a,, ..., a_ ,, a , ..., ,) xC()
of C, and j," C-+CI()(K) be the capitulation homomorphism, for i=1,
..,s. Then we have

(1) [G31_ [C(O" C(O’:]/IC(OKerj,/[;
i=1

( 2 ) p-rank(Cl(P)())_p-rank(C(OAC(2))+p-rank(G);

( 3 ) p-rank (G)_ p-rank (j,/(C(O)),

where +--1--5 and C([) (a, ., a, a.
We can give a proof to the theorem by modifying the proofs of Theorem 3
and of Proposition 5 of [7]. Here we give an outline of it.

Since C([)AC([)= (1} in our present case, we have
CAC=C(OAC(’) x C(OAC(O

hence in particular, we see
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:.2.1. The eigen-submodule of G/G for the eigen-value of is
trivial.

We choose a set of generators of G,
() (1) eG2 [G,G], (i 1, s),G=<,flli=l, ,s>, a

such that two sets of cosets {a. Gli=l, ., s} and {. G} form bases of
the submodules of G/G corresponding to C() <a i= 1, ., s} and C(2)
=(}, respectively, by the Artin map.. We understand /=1 and (1)=1
if p-rank (C())=0. Put H "=Gal(/k) apparently we have

H=<, fl]l_m_s, m=i}.G2, i=l, ...,s.
The quotient group. G/H is a cyclic group of order (i) and generated by
the coset of a. For simplicity, we denote the transfer of G to H by
V’=Vz, and the intersection of all of the commutator subgroups
[H, H], i= 1, ., s, by H, i.e.

H ( [H, g]=gal(f/. fi),
i=l

where K is the Hilbert p-class field of K. Let V" G/G-H/[H,H] be
the homomorphism naturally induced from V; this corresponds to the
capitulation homomorphism ]x/ by the Artin map.s of k and of K (cf.
e.g. [5]). Since H is stable under , we see by Proposition 2

3.2.2. V is a <}-homomorphism.
Put H" <a 1_i_s}. G2 and

,(+)/() (s)/(). V2M =(a, , i+1

or i=1,...,s; the quotient groups HIGh. and M/G. are isomorphic to
C() and to C(), respectively, by the Artin map.

We see (1)and (2) of the next proposition by a similar way to what
we did or Proposition 3 in [7]; the last assertion follows from 3.2.1 and
3.2.2 at once.

Proposition 4. Let the notation be as above. Then for each i=l, ...,
s, we have

( l ) V(H) G2/[H, H]=V(M) and H KerVM
(2) [H" M]=[V(H)" V(M)]--IC()(I
(3) V(M)G..[H,H]/[H,H].

We modify the notation in Blackburn [1]" or x, y e G, define
r(x, y)’=[x, y], r(x, y).=[r_(x, y), y], n=2,3,4,...,

inductively. Define s subgroups X, i=l, ..., s, of the abelian group. G by
X "=@(a, a), ’(/, a)i lm_s, m=i, n--2,3,4,...}.

By the same way as we did or Lemma 1 and Proposition 2 in [7], we ob-
tain following lemma and proposition"

Lemma 1. (1) G.[H,H]--X.[H,H] for i--1, .,s
( 2 ) If i:/:m, then Xc[H, H] and X (XcH
3 ) X f [H, H] --X (H and X. [H, H]/[H, H]-X/X fH for

i=1, ...,s.
Proposition 5. Let the notation be as above and denote the natural

projection of G onto. G/H by . Then s subgroups u(X), i= 1, ..., s, form
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a direct product in the abelian group u(G)=G.H/H.
It is now easy to show our Theorem 2 by Propositions 4 and 5 together

with Lemma 1 in a similar way to that in [7]. Here we do not go into the
details any arther.

Remark. In case of p-rank (C())=0, i.e. C()= {1}, we do not obtain
any information on Gz/G by our Theorem 1. If we know by any means,
however, that ],/(C()) is not trivial for any i, then we conclude by The-
orem 2 that G is not trivial, and hence that G/G is not either.

Remark. Theorem 2 also holds for a cyclic cubic extension k of an
algebraic number field k0 of finite degree if the class number Cl(k0)l is
relatively prime to p (cf. Section 4).

4. Relative quadratic extensions. In this section, let p be an odd
prime, and k be a quadratic extension of an algebraic number field k0 of
finite degree. We assume that the class number C1 (k0)l of k0 is not divi-
sible by/9.

When k0 is neither Q nor an imaginary quadratic field, we cannot
directly utilize the results of Nomura [8] anymore. We are able, however,
to analize G by capitulation homomorphisms as we did in the preceding
section. We need the assumption on the class number of k0 to set our base
on the following fact (cf. [5], Proposition 2).

Proposition 6. Let the notation and the assumptions be as above,
and denote the non-trivial automorphism of k/ko by p. Then for every
element c of C=CI((k), we have c=c-.

Since is a Galois extension of k0, the 2-Sylow group of Gal (/ko) is
of order 2. Fix an element of Gal (k/ko) of order 2, and denote it again by

p for simplicity. Through the inner automorp.hism of Gal (f/ko) by p, we
have an automorphism of G=Gal(f/k) of order 2. By Proposition 6 we
see that the whole o G/G is an eigen-module of for the eigen-value --1;
hence we also see that G/G is that for 1 because it is a surjective image
of CAC.

Suppose that r’=p-rnk (C) is at least equal to 2 and that the invari-
ants of C is

(e(1), ., (r)), e(i)--pe, i= 1, ., r, l_e
_

_e.
Fix a basis, a,..., a, of C which corresponds to these.

It is now easy to extract and assemble necessary parts of the proof of
the ollowing theorem from those of Theorem 3 and Proposition 5 of [7];
hence here it is omitted.

Theorem 3. Let k be a quadratic extension of an algebraic number

field ko of finite degree, and the notation and the assumptions be as above.
Let Ki/k be the maximal unramified cyclic extension which corresponds to
the subgroup

of C, and j,/" C--CI(p)(K) be the capitulation homomorphism, for i=1,
..,r. Thenwehave



84 K. MIYAKE [Vol. 68 (A),

(1)

(2)

where
Remark.

IG]>_ [C C’:]/IKer ],/l
i=l

p-rank (G-) _> p-rank (j/(C)),
i=1

In their paper [2], Heider and Schmithals give us five real
quadratic fields k whose 3-ideal class groups are of type (3, 3) together
with a lis of capitulation kernels, Ker]/, for all maximal unramified
cyclic extensions, K/k. The discriminants d of them are 32009, 42817,
62501, 72329, and 94636. In case of d =62501, all of the kernels coincide
with the whole C. In each of the others, however, there exists one
with Ker ]/ =/=C. It is possible to choose a basis of C so that this K ap-
pears as one of K of Theorem 3. We see, therefore, p-rank (G-) >_ 1, and
hence, [G G]--3 and IC1)(/)1>_9 because ICACI--3. As for the structure
of GIGs, nevertheless, we have a precise resul of Theorem 1 of [7] for
these quadratic number fields including the case of d--62501.

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

References

N. Blackburn" On Prime-power groups with two. generators. Proc. Cambridge
Phil. Soc., 54, 327-337 (1958).

F.-P. Heider und B. Schmithals: Zur Kapitulation der Idealklassen in unverz-
weigten primzyklischen Erweiterungen. J. reine angew. Math., 336, 1-25 (1982).

G. Karpilo.vsky: The Schur Multiplier. Claredon Press, Oxford (1987).
K. Miyake: Central extensions and Schur’s multiplicators of Galois groups. Na-
goya Math. J., 90, 137-144 (1983).

Algebraic investigations of Hilbert’s theorem 94, the principal ideal theo-
rem and the capitulation problem. Expo. Math., 7, 289-346 (1989).

Some p-groups with two generators which satisfy certain conditions arising
from arithmetic in imaginary quadratic fields (Preprint Series 1991, no. 13,
Coll. Gen. Educ., Nagoya Univ., p. 41) (to appear in TShoku Math. J.).

--: On the ideal class groups of the p-class fields of quadratic number fields.
Proc. Japan Acad., 68A, 62-67 (1992) (Preprint Series 1992, no. 2, Coll. Gem
Educ., Nagoya Univ.).

A. Nomura: On the existence, of unramified p-extensions. Osaka J. Math., 28,
55-62 (1991).


