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39. Askey-Wilson Polynomials and the Quantum Group SU,(2)

By Masatoshi NouMIi* and Katsuhisa MIMACHI**®

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1990)

The Askey-Wilson polynomials are a 4-parameter family of g-orthogonal
polynomials expressed by the basic hypergeometric series ,p,. As special
cases, it provides various types of g-Jacobi polynomials such as little, big
and continuous g-Jacobi polynomials. In this note, we report that a (par-
tially discrete) 4-parameter family of Askey-Wilson polynomials is realized
as “doubly associated spherical functions” on the quantum group SU(2).

In [2], Koornwinder realized a 2-parameter subfamily of Askey-Wilson
polynomials as zonal spherical functions on SU,(2) in an infinitesimal sense.
Generalizing his arguments to non-zonal cases, we obtain a 4-parameter
family of Askey-Wilson polynomials that are connected to these polynomials
as Jacobi polynomials are to Legendre polynomials in the SU(2) case. From
thig interpretation, we also derive an addition formula for Koornwinder’s
2-parameter extension of the continuous ¢-Legendre polynomials. Details
will be given elsewhere.

1. Throughout this note, we fix a real number ¢ with 0<¢<1. The
algebra of functions A(G) on the quantum group G=_SU (2) is the C-algebra
generated by x, u, v, ¥y with fundamental relations
(11) {qxu:ux, qrv=0%, QUY=Yu, qQUY=Yv,

UV=PVU, LY —q ' UV=Yr—qou=1,
and the *-structure determined by x*=y and v*=-—gqu. The quantized
universal enveloping algebra U, (sw(2)) is the C-algebra generated by %, k-*,
e, f with relations

1.2) {kk“=k"k=1, kek'=qe, kfk'=q'f,

ef —fe=(K—k*[(@—q™),
and the *-structure with k*=Fk and e*=f. As for the Hopf algebra struc-
ture, we take the coproduct determined by

AEk)=kQk, d()=k'Qe+eRk, A(f)=k'Qf+ fQk.
The algebra of functions A(G) has a natural structure of two-sided U,(su(2))-
module. For each je (1/2)N, there exists a unique 2j+1 dimensional irre-
ducible representation of G of highest weight ¢’ with respect to k € U (su(2)).
By V, we denote the corresponding right A(G)-comodule with coaction R:
V—V,QA(G). We fix a C-basis (v})nes, for V,, with I,={j,7—-1, ---, —3},
such that the differential representation takes the form

*  Department of Mathematics, College of Arts and Sciences, University of Tokyo.
*¥)  Department of Mathematics, Nagoya University.



No. 6] Askey-Wilson Polynomials 147

k. vi=viq™,
(1.3) e. v}, =0, ., ([ —mllj +14+m]"?,
S vh=v}_ ([ +mllj +1—m])"?,
where [m]=(¢™—q™)/(¢—q*). This representation is unitary with respect
to the Hermitian form (, ) on V, such that (v}, vi>=6,, (m, n e I,) and the
*-operation of U, (su(2)). See also [3].
2. For each matrix

@.1) g=[;‘ g] e GL2; C),

we define the twisted primitive element 6(g) € U, (su(2)) by
2.2) 0(9) = — g+ (s + fr)(k— k) (¢ —q~) + 739"
When ¢—1, the element 6(g) corresponds to a generator of the Lie algebra
of the subgroup K(g) :=9Kg~*! of SU(2), where K is the diagonal subgroup
of SU2).

Theorem 1. Let g be a motriz of the form (2.1) and assume that

d— g™ pr %0 forall ke Z.
For each me (1/2)Z, set

(2.8) 2a(@)=(q"ad—q " Br)(g" —q™ ™)/ (g—q7).
Then the element k6(g) is diagonalizable on each left U (su(2))-module
V, (G e@/2)N). Its eigenvalues are given by 2,(9) (m=j5,7—1, - -+, —7).

We remark that Theorem 1 is also valid when ¢ is a nonzero complex
number as long as ¢ is not a root of unity. It is essentially the same as
Theorem 8.5 of Koornwinder [2].

Hereafter, we assume that the parameter of (2.1) satisfies the condition
a=24, 7= —pso that (k6(9))*=Fk6(g). Then we see that there exists a family

of orthogonal bases (vj,(9))nes, for V,, depending polynomially on («, g, 7, ),
such that

2.9 k6(9). v1(9)=v5(9)2,.(9) for all mel,,
and
(2.5) <v3(9), vi(9))=0,.D35(9) for m, nel,
where

Di(9)= 11 (cxd — @™ B).

— =MLk j—m, ks —-2m

We fix such a family of orthogonal bases (v},(9))mes, for V, under a suitable
normalization, although we do not give here its precise description. The
connection coefficients between the bases (v)ucr, and (v}(9))ner, can be
written explicitly by Stanton’s ¢-Krawtchouk polynomials (see also [2]).

3. We now introduce the matrix elements of V, relative to the two
bases (vL(9)).. and (v1,(9:).. Let (9,, 9.) be a couple of elements in GL2; C)
such that

3.1 — [“i P
3.1) 9 r, o,
We define the matrix element ¢7,(g,, 92) € A(G) (m,nel)) of V, by

(3.2) ©hal91 92) 1=<{V}(91), B(Vi(g2))).

] €GLEZ;C);  @=d;, Bi=—T, (=1, 2).
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We also set i,(9:1, 95) :=¢ha(9:, 92)-k by using the right action of ke
U, (su(2)).

Proposition 2. a) The element »=i,(9,, 9:) has the relative invariance
3.3) kE0(9a). v =02,(92) and . 60(g)k=2,(9)V.

b) The elements i.(9:,,9.) (G @A/2)N, m,nel,) form an orthogonal
basis for A(G) under the Hermition form {, >, defined by the Haar measure.
The square length of V1..(g9:, 92) 18 given by

— 2
(3.4) Al @ss 95 Pl 90Y1= 0" — 2L Di(g.)Di(gy).
1 — q @J+1)

¢) Forany g, one has
(3.5) A(phn(915 9)) = ; Di(9) 03915 DR0ln(9, 92)-

In view of the relative invariance (8.3), we say that the elements
V1,091, 9;) are doubly associated spherical functions on G.

4. For eachm,neiZ, we set

enn(G1s 92) 1 ="Vha(91, 92)  With j=max{m|,|n]}.

This element is a basic relative invariant in the sense that it appears with
smallest j among all relative invariants + satisfying (3.8). These e,,(g;, 95)
are expressed as products of linear combinations of the generators x, u, v,y
for A(G).

The general matrix elements +%,(g,, g.) are expressed by the Askey-
Wilson polynomials [1]:

q-", abedq™t, az, az™?
ab, ac, ad
where x=(z+27")/2. To describe the matrix elements, we introduce the
following 2-parameter extension of the continuous g-Jacobi polynomials:

4.1) peP(x;s,t: q):=p,.(x; b, S 1

P.(x; a,b,¢,d|@Q)=a""(ab,ac,ad; q), 4%( 3 Q, q),

TS— q1/2’ ; qe+e, _g (]"2,, —-stqﬂ”/z| q),

where s and ¢ are continuous parameters. If («, 5)=(0,0), then formula
(4.1) gives Koornwinder’s 2-parameter extension of the continuous g-
Legendre polynomials in [2]. If (s, t)=(1,1), (4.1) is Rahman’s parametri-
zation of continuous ¢-Jacobi polynomials.

For a couple (g,, g2) of (3.1), we define the zonal element X =X(g,, 9;) by

(4~2) 2 I ol 10 s | X= *q—_:é*:r (‘lf'tl)o(gu gz) - (“151 + .3171)(05252 + .Bsz)),

assuming that «, %0, 1,20 (i=1,2). Note that X=X(g,, ¢.) satisfies
k0(9,).X=0, X.0(gDk=0, X*=X.
Theorem 3. The doubly associated spherical functions 1,(9:, 9:) are
represented by the Askey-Wilson polynomials (4.1) in X.
Case I. m+4+n=>0, m<n:
q E G ot 0l [P (X e Tal, [ [T1] 2 @D)ema(9ss 905
Case II. m+n>0, m>n:
q‘-k(k+ﬂ+2”cpvkIalrla272lk (X5 |“1/r1" |0‘2/72|: @915 99,
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Case III. m+4+n<0, m>n:
q 700 ol iaals DY (X5 [Ty |71 o] @D €nn(9s, 92),
Case IV. m+n<0, m<n:
q7*EOC a0l [fDE (X5 1 ey [T2] e] s @D gss 99)-
Here p=|m—n|, y=|m+n|, k=min{j+m,j—m,j+n,j—n} and C,,, stands

for
C’lwk=( @D s g, >1/2'
(¢ ¢*#*D, @**V 5 ),

Theorem 3 is a generalization of Theorem 8.3 of Koornwinder [2] to
non-zonal cases. The expressions in Theorem 3 make sense even when some
of the ay, 75, oy, 7, are zero. We also remark that the orthogonality in
Proposition 2 is interpreted as the orthogonality relation for the Askey-
Wilson polynomials.

By the above interpretation, we obtain an addition formula for

©O(x;s,t:q). In fact, property (3.5) is translated into an addition for-
mula for them.

Theorem 4. The polynomials p*"(x; s, t: @) (n e N) have the following
addition formula involving an extra parameter u:

4.3) g™ (q; Q.Y (x(zw) ;8,2 Q)
1

= ; = PO (2) 5 %y 81 QP (@(w) 3 u, t: Q)
(—u'q, —uq; Q)

L (@5 9,0 +u2q”°)z"‘w"°(%z, —usz, 2w, —utw ;q)k

+
g—i @5 Dnx A+ (=% 5 Qnai(—U2Q5 Qnoie

X PR (@(2); u, 81 QPED(@(w) ; u, t: q)

(@5 D@ +u'2q2")z"‘w"‘(—3—z, —-iz, -t_w, —iw; q)

+Z”: u us U ut k

k=1 @5 DnkA+UD(—%q 5 Dn-t( %7205 Dnsr

xpi,’ﬁﬁ’(w(z); l‘, 1. q) ,‘,’f:’,i’(x(w); i, 1. q),

U s u t

where z and w are independent variables and x(z)=(q~*z4 ¢z~ /2.

We remark that Rahman and Verma [4] have obtained an addition for-
mula for Rogers’ g¢-ultraspherical polynomials p{»*(x; 1,1: ¢) by analytic
methods. Their work suggests that Theorem 4 may be extended to an addi-
tion formula containing one more parameter.
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