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Introduction. T, isocompact wM spaces behave well like T, paracom-
pact M spaces. For example, if f: X—Y is a closed, continuous map of a
T, isocompact wM space X onto Y, then Y=U,.,Y,, where, for each n>1,
Y, is discrete in Y and f-'(y) is compact for each y ¢ Y,. As such, we in-
vestigate some interesting properties of such spaces and their images under
nice maps. Refer [5], [1], [4], [2] and [3] respectively, for the notions of
q, point countable and countable type, wM, isocompactness, and quasi-G,
diagonal.

Main section. Theorem 1. (i) A T, space X of point countable type
is a q space. (ii) A regular isocompact q space X is point countable type.

Proof of (i).. Let x e X and K be a compact subset of X of countable
character with x ¢ K. Let {U,|n>1} be a decreasing local base at K. To
claim that {U,}, is a q sequence at x, let z, ¢ U, for each n. Suppose {z,},
does not cluster. Then, D={z,|n>1} is closed. Assume KND=@. Then,
X —D is an open nhd of K. Since, U,ZX —D for each n, we have a con-
tradiction.

Proof of (ii). Let e X and {U,}, be a q sequence at x with U,,,cU,
for each n. Let C(x)=N,U,. It follows that C(x) is of countable charac-
ter and « € C(x). Therefore X is of point countable type. Q.E.D.

Theorem 2. If a regular space X with quasi-G; diagonal is a q space
or a space of point countable type, then the space is first countable.

Proof. By the Theorem 1 (i), X is a ¢ space in either case. Let {U,},
be a quasi-G; diagonal sequence. Let z ¢ X, {G,}, be a g sequence at z and
{n}; be the strictly increasing sequence of natural numbers with ze
St(x, U,)=U{U € U,|x e U}, iff n=n, for some k<n. By induction, we
can obtain a sequence {H,},, of open sets with ¢ H,,,,CcH, ., CcH,NG,..N
U.,., for each m, where x ¢ U, e U,,. It follows that {H, |m>1} is alocal
base at x. Q.E.D.

Corollary 2.1. If a T, wM space with quasi-G, diagonal is a quotient
image of a locally compact, separable and metrizable space, then the space
18 locally compact, separable and metrizable.

Proof. Apply the Theorem 2 and a result of A. H. Stone [7]. Q.E.D.

Theorem 3. A T, isocompact wM space X is countable type.

Proof. Let{U,}, be a decreasing wM sequence and K C X be compact.
Let 99, be a finite subcollection of U, with KcW,=U9)/,. Let 9/, be an
open collection with K< U9¥; such that IW;={W|W e 9’5} refines I, AU,
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={WNU{We9, and U e U,}. Let 9, be a finite subcollection of 9/; with
KcW,=U9, Continuing this way, we can obtain a sequence {9//,}, of
finite open collections with KcW,=U9), and W, ., refines 9W,AU,,, for
eachn. Let D=N,W,. Then KcD and D is a compact set of countable
character. Q.E.D.

Corollary 3.1. A T, isocompact wM space is a k space.

By a result of J. E. Vaughan [8], a Tychonoff isocompact wM space is
a generalized G, set in its compactification and equivalently, its complement
in its compactification is Lindelof.

By a result of H. H. Wicke [9], a T, space is point countable type, iff
it is an open, continuous image of a T, isocompact wM space; a T, regular
isocompact space is a q space, iff it is an open, continuous image of a T,
isocompact wM space (in fact, a T, paracompact p space).

Theorem 4. A quotient image of a regular tsocompact q space is a k
space.

Proof. Let f: X—Y bea quotient map of a regular isocompact g space
X onto Y. Let FCY be such that FNC is closed in C for every compact
CcY. Toclaim that F is closed in Y, we prove that f~'(F) is closed in X.
Suppose z € f(F)—f'(F). Let {U,}, be a q sequence at z with U,,,cU,
for each » and C(x)=N,U,. Then, C(x) is compact. Let f(x)=y.

(I) Supposeze C(x)N f-'(F). For any open nhd W of y, f~*(W)N C(x)
N f-'(F)+0. Therefore y e f(C))NF. Since z¢ f-'(F), we have z ¢ C(z)
N(X — f-'(F)), which implies y € f(C(@)N(Y—F). Therefore f(C(x)NF
is not closed in f(C(x)), which is a contradiction to the definition of F'.

(ID) Suppose 2 & C(x)N f'(F). Thereis an open nhd U of  with UN
Cx)Nf'(F)=@. Let V,=UNU, for each n, and x, e V,N f~'(F) for each
n. Let x, be a cluster point of the sequence {z,},. Then z,e C(®)NU. Let
K={x,|n>1}]. Then K is compact, and x,e KN f'(F). Let y,= f(x,). Now
2, cK,2,e Clx)NTand UNC(x)N f-'(F)=0 imply that z, ¢ KN (X — f~'(F)).
Therefore ¥, ¢ f(K)N(Y —F). If W is an open nhd of y,, then f~'(W)NKN
f7'(F)+#0, which implies that WN f(K)NF+@. Therefore y,¢ f(K)NF,
which implies that f(K)NF is not closed in f(X), which contradicts the
definition of F. Therefore f~'(F)=f~'(F). Q.E.D.

Corollary 4.1. A regular isocompact q space is a k space.

By a result of J. Nagata [6], we have the following corollaries.

Corollary 4.2. A T, space is o k space, iff it is a quotient image of a
T, isocompact wM space.

Corollary 4.3. A T, regular isocompact q space is a quotient image
of a T, paracompact M space.

Theorem 5. Let f: X—Y be a closed, continuous map of a T; iso-
compact wM space X onto Y. Then the following are equivalent.

(i) Y isaregular q space.

(ii) Y is a regular space of point countadble type.
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(iii) The boundary of ' (y) of f'(y) is compact for each ye Y.

(iv) Y isa T, isocompact wM space.

Proof. By the Theorems 1 and 3, we have (iv)—(ii)—(@{). E. Michael
has shown that (i)—(iii), [6]. We need to show, now, that (iii)—»(@{v): For
each yc 7, let

L(y)= {af"(y) it af () +0;
S7'@)—{p,}, where, p, e (), if af'(y=0.
Let X,;=X—L, where L= U{L(y)|y € Y}. Then X, is closed in X, and X,
is a T, isocompact wM space. Let h: X,—X be defined by h(x)=2x for each
xe X, Then g=fohisa perpect map of X, onto Y. Therefore Y isa T,
isocompact (see [2]) and wM (see [4]) space. [Note that a space being a T,
isocompact wM space is a perpect property.] Q.E.D.
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