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Any partially ordered set (poset for short) to be considered is finite.
The cardinality of a finite set X is denoted by #(X). Let N be the set of
non-negative integers and Z the set of integers.

Introduction. Let P be a poset with elements x,, 2,, - - -, 2, labeled so
that if #;<<x; in P then ¢+<j in Z. Given an integer 4, 0<{<p, write w,=

@ Gy e - ap> such that (a) if z,,

<,, in P, then r<s (i.e., = is a linear extension of P) and (b) #{r;a,>a,.},
the number of descents of x, is equal to 7. Let s=max {i; w,£0}. Wesay
that the vector w(P)=(w,, w, - - -, w,) is the w-vector of P.

On the other hand, for any n e N we write 2(P,n) for the number of
maps ¢ from P to N such that (a) if 2, <z, in P then o(x,) >0(x,) and (b)
max {o(x,); 1<i<p}<n. It is known that Q(P,n) is a polynomial, called
the order polynomial of P, for n sufficiently large and the degree of this
polynomial is p. A fundamental relation between 2(P,n) and w(P) is the
equality

w,(P) for the number of permutations 7r=<

(1— )P+ fjo QP, W)™ =W, WA+ - - - + w2

Consult [5, Chapter 4, Section 5] for further information.

A big open question in enumerative combinatorics is to characterize the

w-vectors of posets. Recently, Stanley obtained the linear inequalities

Wo+ Wi+ -+ - + W, <W,+ W+ -+ - +W,_yy 0<i<[s/2]

for the w-vector w(P)=(w,, w,, - - -, w,) of an arbitrary poset P. We can go
on to ask, what more can be said about the w-vector of a poset? In what
follows, after summarizing notation and terminology, we give new ine-
qualities for the w-vector of a poset which satisfies a certain chain condi-
tion. Systematic study of w-vectors, including detailed proofs of our results,
will be found in [2].

Notation and terminology. A chain is a poset in which any two ele-
ments are comparable. The length of a chain C is defined by 4(C) : =#(C)—1.
The rank of a poset P, denoted by rank(P), is the supremum of lengths of
chains contained in P. If «<pin P, then we write 4(«, § for the rank of
the subposet P% :={x e P;a<a<p} of P. A poset P is called pure if every
maximal chain of P has the same length. We say that P satisfies the 6™-
chain condition, n € N, if (a) for any & € P, the subposet P, :={yeP;y>&}
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of P is pure and (b) rank(P)—min {4(C); C is a maximal chain of P}=n.
Thus P satisfies the 6-chain condition if and only if P is pure.

Given a poset P, we write P* for the poset obtained by adjoining a new
pair of elements, 0" and 1%, to P such that 0" <x<1" for any xeP. A
sequence o7 =(ay, Py @15 Bis * * *» &1y Br), Which consists of elements of P, is
called rhythmical if (a) a;=0", g,=1", (b) a;<B; for and i, 0<i<¢t, (¢) a;,,
< B, for any i, 0<i<t and (d) a;,, < B; for any ¢, 0<i<t—2. Let 4(&) :=
D oci<e Loty B — D 0<ici1 8laiiy, B).  We say that P satisfies the 4-chain con-
dition if 4(«/)<rank(P") for any rhythmical sequence .« of P*. We easily
see that, for any n € N, the 6™-chain condition implies the 4-chain condition.

Results. First, we state non-linear inequalities for the w-vector of a
poset which satisfies the 4-chain condition.

Theorem. Assume that o poset P with w(P)=(w,, w,, - - -, w,) satisfies
the d-chain condition. If i and j are non-negative integers with i+7<s,
then w,<w,w;,;.

Secondly, if a poset P satisfies the 6™-chain condition, then certain
linear inequalities hold for the w-vector w(P), that is to say,

Theorem. Let w(P)=(w, w, ---,w,) be the w-vector of a poset P
satisfying the 6™ -chain condition. Then we have the inequality

W+ W1+ W KW+ Wi+ - - - Wi+ - - Wy,
for any i, 0<i<[(s—mn)/2].

Our technique [2], which originated in [1], is heavily based on com-
mutative algebra, especially the theory of canonical modules [4] of invariant
subrings of tori [3].

The author would like to thank Prof. Richard P. Stanley for helpful
discussions relevant to this work.
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