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A. Kaneko has studied continuation problem of real analytic solutions
of linear partial differential equations systematically by using the theory
of non-characteristic boundary value problem for hyperfunctions (see, e.g.
expository papers [3] and [4]). As for equations with analytic coefficients,
he has proved fundamental results for solutions having singularities (i.e.
points where the solution is not defined) contained in a real analytic
hypersurface which is non-characteristic for the equation ([2]). Here we
extend results in [2] to the case where the equation is of Fuchsian type
with respect to the hypersurface. Our main tool is the theory of micro-
hyperbolic boundary value problems developed in Oaku [81, [9].

Let M be an open subset of R* and N be a real analytic hypersurface
in M. Since the problems considered in this paper are of local character,
we may assume that N={x=(z,, ') e M; x,=0} with the notation 2’'=
@y - -+, 2,). We use the notation D’'=(D,, ---, D,) with D,=3/ox;. We
put M, ={xreM; +x,>0} and set By,,r, =(¢.)*(c.) ' By |y, where ¢, : M. —»M
are the embeddings and B, is the sheaf of hyperfunctions on M. Hence
sections of By, are hyperfunctions on the intersection of M, and of a
neighborhood of a point of N.

We assume that a linear partial differential operator P with real
analytic coefficients is a Fuchsian operator of weight m —k with respect
to N in the sense of Baouendi-Goulaouic [1] : P is written in the form

P=a(x)(@D7+ Az, D)2} 'DF'+ - - - + Ay(w, D)D"+ - - - + A, (x, D) ;
here a(x) is a non-vanishing real analytic function, ¥ and m are integers
with 0<k<m, A,(x, D’) is an operator of order <j for 1<j<m, and
A0, o', D’) is of order 0, i.e. equals a real analytic function a,(x’), for 1<
§<k. The roots 2=0,1, --.,m—k—1, 4,(z'), - - -, 2,(«’) of the equation

2A—-1).--Q@—m+1D+a,(x)2(A—-1)- - - (A—m+2)
+ o, @)2@A-1)- - - A—m+k+1)=0
are called the characteristic exponents of P. For a point £=(0,%") of N,
we define a condition C(%) by
C): 2, ez, 2,(&)—2,3") e Z\{0} for any 1<1, j<k.

We set H=Dy/DP, where 9, denotes the sheaf of linear partial differ-
ential operators with holomorphic coefficients on a complex neighborhood
X of M. Then Jlomg, (M Byx,) is the sheaf of By, -solutions of .

Proposition 1. Assume C(&) for any e N. Then there exists an
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injective homomorphism

T4 Homg, (M, ~@N|M+)—‘_>(-@N)m-
7, is decomposed in the form 7, (U)= (7, .og(), 7 sing()) With 7, o(u) € (By)™*
and 7, gng(W) € (By)* for u € Homg, (Hy Buy.)-

Sketch of the proof. For a By, -solution u of H, put v="~u, uy, - - -,
Un-1) With wy=u, w;=Dyu, - -, Up_ =D Uy Up_gs1=(@, D)D"y - +; Up
=(x,D,)*'Dr-*y. Using Theorem 1.3.6 of Tahara [10], we can show that
there exists an invertible matrix R of ©,9 (cf.[7]) such that w=R-w

satisfies an equation
2Daw=("5 )
here I,,_, is the identity matrix of degree m—k, A”(x’) is a kX k matrix
of analytic functions on N which does not have any integer as an eigen-
value. Hence w is written in the form
W=(xflf'(x’) )
227 f(a)

with e (By)™* and f”e(By*. We put f/'=7,,(w) and [f"=T, ., ().
The injectivity of 7, is proved in the same way as the proof of Theorem 2
of [7].

We denote by B%,,, the subsheaf of By, consisting of F-mild hyper-
functions from the positive side of N (cf. [5] and [7]).

Proposition 2. Under the same assumptions as Proposition 1, let u
be a By .y -solution of M. Then u is F-mild if and only if 7, yne(u)=0.

Changing the sign of z,, we get an injective homomorphism

T_: ﬂ[om_ch (ﬂ/l, QNIM_)’H(-@N)M

With 7_=(_,ee 7_une) under the same assumptions as in Proposition 1.

Proposition 3. Under the condition C(%) for any % e N, let u, be
By u ,~solutions of M. Then there exists a hyperfunction solution u of
M on a netghborhood of N (i.e. a section of Homg, (M, By)|y) such that
Wy, =, if and only if 7, og(u,)=7_,((u_). Moreover such uis unique. If
7 reing(s) =7 _ong(u_)=0 in addition to the above assumption, then u has x,
as a real analytic parameter.

We remark that the last assertion of Proposition 3 follows from
Proposition 2.

We define closed subsets Vi ,(P) (A-boundary characteristic points of
P) of StY=4/—18S*N as follows:

Definition. A point z*=(#’, v — 1£’c0) of ¥ —18*N with &’ € R*~! and
& e S"-? is not contained in Vi «(P) if and only if there exists ¢>0 such
that o(P)(x, &, ¥ — 1&")0 for any x € R* with 0< +,<¢, |2/ — 4’| <e, for any
& e R with [&—&|<e, and for any { e C with +Re(,<0; here o(P)
denotes the principal symbol of P. We put

Vi, sP)=V3 (PYU V5 «(P).

This is a generalization of the definition by Kaneko [2] in the non-charac-
teristic case. By Theorem 1 and Lemma of [8], we get
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Proposition 4. Under the same assumption as in Proposition 1, let
u, be a real analytic solution of M on M.. Then the singular spectrum
of 7.(u,) is contained in Vi, (P).

Now we can generalize Theorem 3.1 of [2] :

Theorem 1. Let & be a point of N and let ¢ be a real valued C* func-
tton on N such that o(&)=0 and dp(£)+0. Let K be a closed subset of N
such that ¢<0 on K. Assume C(&) and that Vy, ,(P) does not contain both
of the points (&, ++—1dp(&)) € V—1S*N. Then any real analytic solution
u of M defined on U\K, where U is a neighborhood of & in M, is uniquely
continued as a hyperfunction solution @ of M to a neighborhood of & in M.
Moreover i has x, as a real analytic parameter on a neighborhood of %.

This theorem follows from Propositions 3 and 4 by the same argument
as in [2].

Under some additional conditions, we can continue « as a real analytic
function; we can generalize Theorem I of Kaneko [3]:

Theorem 2. Let P be a Fuchsian operator of weight m—k with
respect to N and & be a point of N. Assume C(%) and

(i) For xeM and &€ R" the principal symbol of P is written in the
form a(P)(x, &)=1xtp(x, &) with a real valued real analytic function p (then
P is a polynomial of degree m in &,).

(ii) grad,p=0 at (&, §) if p(&, £)=0 and §+£0;

(iil) There exists & € R** such that the equation p(&, L, &)=0 in {,
has m distinct real roots.

Under these assumptions, for any open neighborhood U of & in M, any
real analytic solution of Pu=0 on U\{%} is uniquely continued to U as a
real analytic solution.

To prove this theorem, we first continue % as a hyperfunction solution
% on U by using Theorem 1. Since # has x, as a real analytic parameter,
we can show that micro-analyticity propagates from outside of %.

For example, Theorem 2 applies to the operator

P=a,Di+ -+ D= D= -+ = D)+ 0,@D,+b@),

where 1<k<n, a, are real analytic with a,(¢) ¢ Z. Detailed arguments of
these results will appear elsewhere.
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