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69. First Hitting Time for Bessel Processes
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By a Bessel process with index « (¢>0), we mean a conservative
diffusion process on the half line [0, ) determined by the generator
A=..1.< d? +a—1 i)
2\ da? xz dx
In the case 0<a<{2, an appropriate boundary condition must be imposed
at the origin. In this note we restrict ourselves to the reflecting barrier
case.

The following theorem for the d-dimensional Brownian motion is
well known. Let o, denote the first exit time from the ball B, with
center 0 and radius . Suppose ||z||<7, where | x| denotes the Euclidean
norm of x. Then the expect time spent in B, by Brownian motion
starting at x is given by

2 2
E.(o, _ =l .
() i

The object of this note is to extend this result to the Bessel pro-
cesses with reflecting barrier, replacing d by general «. Further we will

derive explicitly the second moment of the first passage time to the point
r.
Let T, denote the first hitting time of the point » by the Bessel process
X(®), that is,
T.,=inf{t>0: X(t)=r}.
Proposition 1. Consider points a<x<b. Then we have
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Pa:(Ta<Tb)=
log b—log x i 9
logb—loga I a=a.

Proof. Let S(x) be a scale function for a regular diffusion on an
interval I of the line. Therefore S is a strictly increasing function such
that if a<<x<<b and a, b eI° (here I° is the interior of I), and the pro-
bability for the process reaching a before b is

_S(®)—S®)
P(T.<T,)= S()—S@)
We may take S(x)=logzx if «a=2, S(x)=Q—a) '2*>* if @2 and so the
desired formula is obtained.

By the standard argument in Markov process (K. Ito [2], F. B.
Knight [4]), we obtain
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Corollary. (i) When a>2, the Bessel process is transient and
P {lim X(t)=o0}=1.
t—o0

(ii) When 0<a<2, the reflecting Bessel process is recurrent. If I is
any interval, then for every N, P {X(t) eI for some t>N}=1.

Theorem 1. Suppose a>0 and x<r. Then the expect time for reach-
ing at the point r is as follows

Ez(Tr)= r—at .
o

Proof. We adapt the proof by Karlin-Taylor [3] for the Brownian
motion. Recall that the domain of the infinitesimal generator A includes
at least those functions f having continuous second derivatives for which
f and Af converge to zero as x—oco. Then

L@y a1 dr)
(1) Af—2<dx2+ x dx/
Now set u(x)=r*—2a? for x<r and extended to x>r to be twice continu-
ously differentiable and to vanish at infinity. Apply (1) to » noting by
continuity of paths that X(7T,)=r and so w(X(T,))=0. Further, for t<T,,
w(X@)=r*—(X(t))* and at these times Au(X(#))=—«. We do not know
a priori that F,(T,)<oo, hence we cannot directly utilize Dynkin formula

(2) E[j Au (X(t))dt]=Ex[u(X(a))]—u(x),

where ¢ is a stopping time with finite expectation and u is in 9D(A4).

We define a sequence of approximating stopping times. For each
positive integer N, let T, =T, AN=min (T,, N). Obviously T, is bounded
and F (Ty)SN<oo. With Corollary in mind we see that every sample
path escapes the interval [0, ] with probability one regardless of transient
or recurrence. Therefore T, increases to T, as N—co. In virtue of the
Dynkin formula to T and the function « defined above, we have

EIuX ()] —u@)=E. [j:”Au(X(t))dt] — —aB,IT,.

Therefore E,[T,]1<(2/n)||u|. By monotone convergence, T, increases and
we obtain that F,[T,1<(2/n)|«||. Now we can apply (2) with T, as ¢ and
since u(X(T,))=0, the Dynkin formula yields u(x)=«aFE,[T,] and then our
Theorem 1 ensues.

To prove Theorem 2 we need the following extension of Dynkin
formula.

Proposition 2. Let f, Af, A ¢ D(A) and f(X()), Af(X({®)), A*f(X (D))
be right continuous in t. Let ¢ be a stopping time such that E [r]<oo.
Then

(3) B (X (@) =f@) + EJcAf(X()]—E, [ j ; sAzf(X(s))dS]
[K. B. Athreya-T. G. Kurtz [11].

Theorem 2. Suppose a>0 and x<r. Then the second moment of the
expected time for hitting the point r is given by
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Ew(Ti)= 4r2(7.2_x2) + (7.2_%2)2 )
2+ a)’ a(2+a)

Proof. A fully rigorous proof requires truncating T, by Ty=T,AN
and operating in terms of T, as we did in the analysis of Theorem 1.
We omit this technical point and proceed as if E,[T2]<co.

We apply Proposition 2 to the function

_[(r*—2?) if x<r
f(w)_{very smooth  if a>r
with f(x) vanishing rapidly as xz—oo. Recall the formula (1) for the
generator, then we have
Af(x)= —20a(r*— x*) + 4a? for x<r

and
Arf(x)=(a+4)a for x<r.
The generalization (3) of Dynkin formula gives
2
(4) 0=(r*—a%+ E,[4r°T,]— E, [(4-{—20()0( 2 ]

We substitute r—at for E,[T,] in (4) to get the desired result.
[44
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