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1o Introduction. The primary purpose of this paper is to show
that Theorems 1 and 2 in our previous work [3] can be extended to a
much wider class of p-genera o capitulation than of regular ones, as
was mentioned there in Remark 3. But we shall be concerned here
thoroughly with finite nilpotent groups.

As far as transfers o a p-group G to its normal subgroups are
concerned, it was confirmed in [2] that we have

VN(g)= gE.’N. [N, N]
or every g e G and every normal subgroup N of G i G is regular.
Here VN is the transfer of G to N and [N, N] denotes the commutator
subgroup of N. In this paper, we show that this phenomenon on
transers appears in the nilpotent groups of a wider family than that
of regular groups. In fact, this new amily is closed under the opera-
tion of taking direct products though the direct product o two
regular p-groups is not necessarily regular in general (e.g. Weichsel
[4]). It is also closed under the operation of taking quotient groups.
But it should be noted that it is not closed under taking (normal)sub-
groups. We shall give a method of constructing members o the new
amily rom a special type of p-groups which do not belong to the
amily, and see that there are a lot of irregular p-groups in the family
even i p=2.

2. The property TNP of finite nilpotent groups. Let G be
finite nilpotent group.

Definition. G has the property TNP, or is a TNP-group if the
transfer o G to every normal subgroup N of G coincides with the
[G" N]-th power map modulo [N, N], or in other words, if we have

V(g)=g:N. [N, N] or Vg e G
for every normal subgroup N o G.

Proposition 1o A quotient group of a TNP-group is a TNP-group.
Proof. Let G be a TNP-group, and M be a normal subgroup

G. Put G=G/M. Then every normal subgroup N of G corresponds
to a normal subgroup N of G containing M. Then N\G and N\G are
canonically isomorphic. Therefore, by the definition of transfers,
we have the commutative diagram,
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G VN>N/[N, N]

G= G/M >N/[N, N]
VG-*N

where is the natural projection and ’ is the homomorphism induced
from z. The proposition is clear from the diagram.

Theorem 1. Every regular p-group has the property TNP.
Proof. Let G be a regular p-group and N be an arbitrary normal

subgroup o G. Then [N, N] is normal in G. Put M--[N, N] and let
us use the commutative diagram in the proof of Proposition 1. Then

’ is the identity of N=N/[N, N]. Since G--G/M is also a regular
p-group, we can apply Theorem 4 of [2, I-l] to G and its normal abelian
subgroup N, and obtain the theorem at once.

3. The construction of TNP.groups. We show a method of
constructing a TNP-group using not only TNP-groups but als groups
without the property TNP. First, we show

Proposition 2. Let G be a finite nilpotent group, and M and X
be its normal subgroups. Suppose that G/M has the property TNP.
Then for each g e G, we have

Vx(g)--g:x. [X, X] mod Vxx(M [G, XM]). [X, M].

Proof. For ge G, take t e G so that V_x(g)=t.[XM, XM].
Then Vc.x(g)-- Vxx(t) by Huppert [1, Ch. IV, 1.6]. Put y=g-:x, t.
This is an element of M. [XM, XM]-- M. [X, X] because G/M is a TNP-
group by the assumption. It is clear by [1, Ch. IV, 1.7] that y belongs
to [G, XM]. Therefore we have y e M.[X, X] [G, XM]=(M [G, XM])
[X,X]. Replacing t by t.u with ue [X,X] if necessary, we may
assume that Vx(g)--t.[XM, XM] and y=g-:x.teM[G, XM].
Then we have

V,(g) V.(t) V.(g":’). V,(y)
(g::)x:x. Vx(y) mod [XM, X]
g..x. Vxx(y) mod [XM, X].

Since [XM, X]=[X, M].[X, X], we have the desired result.
Corollary. Let G be a p-group, and KI(G)=GDK.(G)D...

K(G). be the lower central series of G. Let X be a normal sub-
group of G. Then for each g e G, we have
Vx(g)=__g:x. [X, X] mod Vx()x(K(G) [G, X]K/I(G)). [X, K,(G)].

Proof. Since the class of G/K(G) is less than p, it is a regular
p-group (see Huppert [1, Ch. III, 10.2 a)]). The corollary ollows rom
Theorem 1 and Proposition 2 at once if we take M--K(G).

Theorem 2. Let G and H be finite nilpotent groups, and M and
N be normal subgroups of G and H, respectively. Suppose that G/M
and H/N have the property TNP. Then the quotient group (G H)/D
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of the direct product of G and H is a TNP-group if the normal sub-
group D satisfies the following conditions (1) and (2)"

(1) M[G, G]D.[H,H]; (2) N[H,H]cD.[G, G].
Here G and H are considered naturally embedded in G H.

Proof. Put S= G H and S=S/D, and let " S-S be the natural
projection. Every normal subgroup U o S corresponds to a normal
subgroup U o S containing D by . Let V=Vz and V=V be
the transfers. As is in the proo o Proposition I in 2, we have Vo
=’o V where " U/[U, U]-U/[U, U] is the homomorphism induced
rom . Therefore, it is sufficient to show that
( V(a)--a".[U, U] mod D-[U, U] or Va e S.
It is enough to show(.)oreachgeG and or each hell. In act,
i it be done, then or a= g. h e S with g e G and h e H, we have

V(a)-- V(gh)= V(g). V(h)-- gEz:. h:. [U, U] mod D. [U, U].
Since g and h commute with each other, we have

gS:. hE: (gh): a:.
Now, we show (.) for a-geG. Put T=U.H and X=GT.

Then T and X are normal in S. Since a set of representatives or
X\ G is also that o T\S, we see Vr(g)--Vex(g).[T, T] by the defini-
tion. Since G/M is a TNP-group, we can find, by Proposition 2, an
element u o M [G, G] such that Vex(g) g:x, u. [X, X]. (Note that
Vxx(M[G, XM]).[X,M]cM[G, G] because X and M are normal
in G.) Then by Huppert [1, Ch. IV, 1.6], we have

V(g) V(g:)-V(u).
Put x- g:x. It commutes with every element of H. Since T= U.H,
we can chocse a set o representatives U\T rm H. Then it is
easy to see that each (x}-orbit in U\T consists of [(x}U’U] cosets,
and that Vr(x)=xr:.[U, U] by [1, Ch. IV, 1.7]. Since [G’X]-
[S" T], we have Vr(g:x)=(g"x)r:.[U, U]=g".[U, U]. As or
Vr(u), we can find d e D and e e [H, H] such that u= d. e by the as-
sumption (1). Since T=UH, e belongs to [T, T]. Therefore Vr(u)
=Vr(d). Because D is normal in T, we have V(d)e D.[U, U]/
[U, U] by [1, Ch. IV, 1.7]. Thus we have shown (.) or a=g e G. For
a=h e H, we can similarly show (.) replacing the roles o G and H in
the above argument by each other and the condition (1) by (2). Then
the proo o the theorem is completed.

As the special case where M--N=D--1, we have

Corollary 1. The direct product of two TNP-grops is also a
TNP-group.

Corollary 2. Let G be a finite nilpotent group, and M be a
normal subgroup of G. Suppose that G/M is a TNP-group, and that
M[G, G] lies in the center Z(G) of G. Let Inn (G) be the group of
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all the inner automorphisms of G. Then the semi-direct product
Inn (G). G has the property TNP.

Proof. Take a copy H of G and fix an isomorphism " G-H.
Put S=GH and D=((g, (g))lg Z(G)}. Then D is a normal sub-
group oi S. We consider G and H embedded in S. Therefore, ior
example, (g, (g))=g.(g). It is easy to see that the conditions (1) and
(2) o Theorem 2 are satisfied if we take N=(M). Therefore S=S/D
is a TNP-group. Put G={g.(g) lg e G}. Since g e G and (g’)eH
commute each other in S, G is a subgroup of S and contains D as
its center Z(G). Furthermore, S is the semi-direct product of G
and G where G acts on G through inner automorphisms of S. It is
now clear that S=S/D (G/D). G is isomorphic to the semi-direct
product Inn (G). G. Hence this is a TNP-group by Theorem 2. Q.E.D.

Corollary 3. Let G be a finite nilpotent group. If either one of
the following conditions (a) and (b) is satisfied, then Inn (G).G is a
TNP-group

(a) G/Z(G) is a TNP-group
(b) G is a p-group, the class of which is less than or equal to p.

Proof. On either case, we can take M=Z(G) to apply Corollary
2 because a p-group o class less than p is regular and a TNP-group.

Remark. For each prime p, there is a p-group G of class p which
does not have the property TNP. (Cf. [1, Ch. III, 10.15] and [2, II-
3, 6].) But Inn (G).G is a TNP-group by Corollary 3. This shows
that the amily of TNP-groups is not closed under the operation of
taking (normal) subgroups. It seems very interesting o find a p-group
which cannot be a (normal) subgroup of any TNP-groups.

Finally, we state an immediate consequence of Proposition 1 and
Corollary 1 to Theorem 2.

Theorem 3. A finite nilpotent group has the property TNP if
and only if every Sylow subgroup is a TNP-group.
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