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1. Introduction and the main result. Let k be a fixed algebraic
number field of finite degree, and K be an unramified abelian exten-
sion of k. We denote the absolute ideal class groups of k and K by
Cg(/c) and by C(K), respectively. Let 2/" Cg(k)-+C(K) be the
homomorphism defined naturally by lifting ideals of/c to the ones of
K, and put P(K)--Ker(2/). Then this is the subgroup of C(k)
consisting of those classes the ideals of which become principal in K.
Let S(K)be. the unramified abelian extension of k corresponding to
P(K) by class field theory. Among the family of unramified abelian
extensions of k, the members of the form S(K) are very special. Our
concern in this note is to characterize these members.

Since K and S(K) are abelian over k, they are expressed as the
compositions of the maximal p-subextensions K and S(K), respec-
tively, for a prime p running over the prime divisors of C(k)l. Since
we can show S(K)--S(K) (Proposition 1), we may restrict our-
selves to p-extensions of k for a fixed prime p.

Let --(:(k) be the family of all unramified abelian p-exten-
sions of k. For K , the maximal unramified abelian p-extension
of K is denoted by K. Then K is the genus field of the relative abelian
extension folK in the sense of Furuta [2]. Put -(k)
-{KIK ). For our purpose, it is natural to classify the mem-
bers of using Jf. The. subfamily of determined by
L e J{:() as g()= g()(k)--{K Y/() l//--- L} will be called a p-genus of
capitulation over k, or simply, a p-cap.-genus. A p-cap. -genus
will be called regular if the p-group Gal(L/k) is regular. (See
Hall [3, 4] or Huppert [4, Ch. III, 10].)

The main result of this note is

Theorem 1. Suppose that the p-cap.-genus ()(k) with L e
is regular. Then for K e ()(k), S()(K) is determined by L and the
degree [K" k] more precisely, we have

Gal (L/S()(K))= {a e Gal (L/k) a:-- 1}.
An immediate consequence of the theorem is
Theorem 2. Let K and K be unramified abelian p-extensions of
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k. If K1 and K2 belong to the same regular p-genus of capitulation,
then S(P)(KI) contains S(P)(K2) if and only if [K k]=[K k].

Remark 1. A p-group G is regular if one of the following con-
ditions (1)(5) is satisfied"

(1) The class of G is less than p;
(2) The order o G is less than or equal to p’;
(3) The commutator subgroup [G, G] of G is cyclic, and p2;
(4) The. exponent G is equal to p;
(5) The. index o the. subgroup (ala G} o: G is less than or

equal to p’-.
(See. Huppert [4, Ch. III, 10.2 and 10.13].)

In the. final section, two types of examples are shown. An irregu-
lar case or p=3 is actually contained. (See Remark 2.)

2. Thep.part o Sk(K). Let p be. the fixed prime number dividing
Cg(k). For an unramified abelian extension K of k, let K(), S()(K)
and S()(K)) be the maximal p-subextensions of K, S(K) and S(K()),
respectively, over k. We prove

Proposition 1. S()(K)-S()(K()).
Proof. Let C(p)(k) be the p-Sylow group of Cg(k), and

be the product o all Sylow groups o C(k)other than Cg()(k). Then
Cg(k) is a direct product of Cg()(k) and C()’(k). Therefore

Gal (S(P)(K)/k)"Cg(k)/P,(K) Cg()’(k)-Cg()(k)/P(K) C()(k).
Let c be an element o C(’)(k). Then we. have 2/(c)= :/:,,(2:,,/(c))
and NK/p,(/(C))=Kcp,/(C):’, where iN/Kcp," C(K)-+Cg(K()) is

the norm homomorphism. Since the degree [K" K()] is relatively
prime, to the order of 2(,/(c) which is a power of p, we easily see that

2/(c) 1@=2(,/(c)-- 1.
This shows that P(K) C()(k)=P(K()) C()(k). Therefore we
have IGal (S() (K) / k) I= Gal (S() (K() / k) and [S()(K) k] [S(P) (K() k].
It is clear by the definition that S(K)cS(K()) since KK(). There-
ore we have S()(K)cS()(K(’)). Hence we conclude that S()(K)
=S()(K(p)) by comparing their degrees over k. Q.E.D.

:). The proof of Theorem 1. Let the notation and the assump-
tions be as in the theorem. Put G=Gal(L/k) and A=Gal(L/K).
Then A is a normal abelian subgroup of G, and contains the com-
mutator subgroup [G, G] of G. We have [G, G]=Gal (L/k) because k
is the maximal abelian extension of k in L. Let C()(k) be the
p-Sylow group of Cg(k) and C()’(k) be as in the preceding section.
Since k is the maximal unramified abelian p-extension of k, it is the
class field o k corresponding to the subgroup C()’(k) of Cg(k).
Therefore C(k)/C()’(k) is canonically isomorphic to Gal (//k)

G/[G, G]. Define Cg(’)(K) and C()’(K) similarly for K in place of
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k. Because L=K, we. have. Cg()’(K)=N/(C(L)) where N/ is the
norm homomorphism, and also, a canonical isomorphism o Cg(K)
/C(>’(K) onto A= Gal (L/K). Let " C(k)/C()’(k)-C(K)/C<’)’(K)
be the homomorphism induced rom /, and V" G--A be the trans-
er of G to A. The latter induces a homomorphism V" G/[G, G]-A
since A is abelian. By Artin [1], we have the ollowing commutative
diagram"

C(K)/C()’(K) A=Gal (L/K)

Cg(k)/Cg()’(k) G/[G, G] Gal(k/k)
Now, C(k) is a direct product of C()(k) and C()’(k). Since the
p-group 2/(C()(k)) has only 1 in common with C()’(K), we have
Ker (2)=P(K). C()’(k)/C()’(k). As or the kernel of V, we can use
Theorem 4 of [5, I-1], because G is a regular p-group by the assump-
tion, and obtain V(a)=a:=a: or every z e G. Therefore we
have Ker(V)={ae G[a:=I}/[G, G]. Hence the class field S()(K) o
k corresponding to the subgroup P(K). C()’(/) o C(k) is the subfield
o L corresponding to the subgroup Ker (V)= {a e Gal (L/k)]a:- 1}
.o G=Gal(L/k). The proo is completed.

4. txamples. Let/ be the maximal unramified abelian p-exten-
sion of/, and put G=Gal (/k). For a subgroup H o G, we denote
the subfield o corresponding to H by H*. Hence we have
H=Gal(f/H*), and [G, G]*=/ or example. We consider the two
cases where G is isomorphic to either one of the ollowing G and G
for p5"

(1) G= (a, b, c}" a=b= c-- 1, a-’b-ab= c, a-c-ac b,
b-c-bc= 1

(2) G=(a, b, c}" a=b=c=l, a-b-ab=a, a-c-ac=b,
b-c-bc=l.

Both groups are of order p, and their commutator subgroups are
abelian and of type (p, p). G/[G, G] is of type (p, p), but G./[G, G]
is o type (p, p, p).

(1) Subgroups of G containing [G, G]" H0=G.
H,,0= (a, b, c}, H,= (ab, b, c} (m= 1, 2, ..., p).
H.,o= <a, b, c}, H,= <ba, c} (m= 1, 2, ..., p).

H= G, G] (c, b }.
Commutators" H= (b, c}, H,= (b} (m= 1, 2, ., p),
and H’= [H, H]=I or every other H on the list.

(2) Subgroups of G. containing [G, G.]" Ho=G.
H,o---(a, b, c}, H,,= (ab, c, b } (m= 1, 2, ..., p).
H,o,n,n--(ac, bcn} (m, n= 1, 2, ..., p).
H,,,n= (abcn, a, b} where (g, m, n)=(0, 0, 1), (0, 1, n)
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with n=l, 2,...,p, or (1, re, n) with m,n=l, 2,.-.,p.

H3-- [G2, G2]= (a’, bP}.
Commutators" H= (ap, b" },
(m, n= 1, 2, ..., p), and H’= 1 or every other H on the list.

Case 1. G=G1. In this case, only three among (p+3) inter-
mediate fields of // appear in

J() {[G1, G1]*= 1, (b}* (= L, say), 1"= }.
={k}. ={H (m=l 2, ..., p)}.

()={Ho H (m=0,1 2,... p) H
> As for > thereFor K e we have [K" k]=p, and S)(K)=Ho.

are two S)(K)’s S)(k)=.q()t*)=S)(Ho) Hok 2,m

Case 2. G=G. In this case, all o the intermediate fields o
/} appear in (), i.e. ()-{LI }L}.

)={}. For L=<b}*, &={H, (m--,2...,)}, and Z’)(K)

=H0 or VKe). For L=<abn>* (lnp), )={H0,,(m
1, 2, ., )}, and SP)(K)H, or VK ). (){H0, all o
H% ,, H=}}, and S)(})=()* ) S(H*,o=H,o,o,.*k k 2,g,

Remark 2. If p=3, G is regular, and the above results o Case
2 hold. But G, is not regular, and Theorem 4 of [5, I-1] is not

applicable to A H,,0. In act, we have VG(b)-bc-()(b)ff)(b)+(D
which is not equal to b if p=3. But we have Ker(V_)=H,0, too,
and all o the above results o Case or 3.

Remark . A direct product o regular p-groups is no longer
regular in general (c.. Huppert [4, Ch. III, 10.3c)]). But it is not
hard to see that the transfer homomorphism o a direct product G o
regular p-groups to a normal abelian subgroup A is always equal to
the [G" A]-th power map. Therefore Theorems 1 and 2 hold or a
much wider class o2 p-cap.-genera than or the class o regular ones.
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