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Introduction. Let X be a real Banach space with the dual space
X*. Let F be the duality map on X to X* for every x e X

F(x)-- {f e X* (x,
A multi-valued operator A in X is said to be accretive if

(M) for any [x, x’], [y, y’] e A, there exists f e F(x-y)
such that (x’-- y’, f)_O,

or equivalently if
(A) for any [x, x’], [y, y’] e A and

(x y)+ t(x’- y’) >-11 x-y
where [x, x’] e A means that x e D(A) and x’ e Ax.

The following lemma, which was first proved by T. Kato [3], im-
plies the equivalence of two definitions.

Lemma (Kato [3]). Let x and y be elements of X. Then
(M)’ there exists f e F(x) such that (y, f)O, if and only if
(A)’ ]]x/tyll>_llxll for any

The purpose of this note is to give a new proof of the "if" part
of this lemma. We use only the Hahn-Banach separation theorem,
while the proof in [3] is based on the Banach-Alaoglu theorem.

1. Proof of Kato’s Lemma.
Lemma 1.1. Let x be an element of X and let K be a convex

subset in X which contains O. Then the fo.llowing two assertions are
equivalent"
(1.1) there exists f e F(x) such that

(y, f)_0 for all y e K,
(1.2) IIx q-yIl_[[x[[ for all y e K.
If in addition K is a linear subspace then (1.2) holds if and only if
(1.3) there exists f e F(x) such that

(y, f)--0 for all y e K.
Proof. If x=0 then there is nothing to prove, so we may assume

that x=/=0. Let f e F(x) be as in (1.1). Then for every y e K, we have
x +yll2- xll_2(x+y- x, f) _0,

which implies (1.2).
Conversely, let us assume that (1.2) holds. Let B be the open ball

about 0 with the radius Ilxll. Then K+x and B are mutually disjoint
convex subsets of X. By Hahn-Banach separation theorem (see e.g.
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[5], p. 29, Proposition 5) there exist a non-zero f e X* and a real num-
ber r such that

a) Ilfll--II x
b) (z, f)_r for all z e B;
c) (x + y, f)_r for all y e K.

Since 0 e K, we have

rom b) and c). This together with a) implies f e F(x) and
(y, f)_r--(x, f)--O or all y e K,

which completes the proof of Lemma 1.1.
Kato’s lemma is nothing but Lemma 1.1 in which K is a half-line

with the end-point 0 and the direction y.
Lemma 1.1 was first noticed by M. G. Crandall and A. Pazy [1],

however they assumed the uniform convexity of X*. When K is a
linear subspace, it was proved by R. C. James [2]. His proof was
based on the Hahn-Banach extension theorem.

Definition 1.2. The directional derivative G/(y, x) of norm at x
in the direction of y is defined by

G/(y, x) lim [[[ x + tyl[-[[ x[I]/t =inf [[Ix + ty[I-IIx[I]/t.
t>0

The latter equality is a consequence o.f the convexity of ]lx+tyll with
respect to t.

Corollary 1.3. Let x and y be elements in X. Then
(1.4) Ilxll’G/(y, x)-max {(y, f): fe r(x)).

Proof. If x--O then the equality is trivial. We consider the case
o.f x=/=0. Let f be an arbitrary element in F(x). Then for any t>0,

Ilxll.llx+tyll-l]xl]_(x+ty-x, f)=t(y, f).
This implies the left hand side o (1.4) is greater than (y, f)or all

fe F(x). On the other hand, rom the definition of G/,

for any tO, where fl=G/(y,x)/]lx]]. By Lemma 1.1 there exists

g e F(x) such that (y--fix, g)_O. Then we have
x ]]. G (y, x)

_
(y, g).

This completes the proof.
Definition 1.4. Let K be a subset of X. Then the metric projec-

tion P of K is a multi-valued map from X to K defined by
P(x)= {y e K ]]x- y]l=d(x, K)}

or every x e X, where d(x, K)=inf {]]x--z]] z e K}.
Corollary 1.5. Let K be a closed convex subset of X and let x be

an element in X. Then the following assertions are equivalent:
(1.5) y e P(x),
(1.6) y e K and there is f e F(y-x) such that

(z--y, f)_O for all z e K,
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(1.7) y e K and there is f e F(y--x) such that
(z--y’, f)_O for all z e K and y’ e P(x).

Proof. It is an immediate consequence of Lemma 1.1 that (1.5)
implies (1.6) and (1.7) implies (1.5). It suffices to show that (1.6) im-
plies (1.7). Let y’ be an element i-n P(x) and let f e F(y--x) be as in
(1.6). Then we have

O z--xlt--I y--x _(y’--x--y---x, f)_O.
Therefore

(z--y’, f)--(z--y, f)-}-(y--y’, f)_O
or any z e K. This completes the proof.

If X is a Hilbert space, this corollary is already known (see [4],
p. 9, Theorem 2.3).

2. 1,complemented subspace in Banach space.

Definition 2.1. A closed linear subspace E of a Banach space X
is said to be 1-complemented if there exists a norm-one projection P
(i.e.. continuous linear operator with the property P--P) on X to E.
In this case, X is the direct sum of E and the null space N(P) of P.

Let A be a multi-valued operator from X to Y and let E be a
subset in D(A), where X and Y are. normed spaces. Then a map S
from E to. Y is called a selection of A on E if S(x) e A(x) for any x e E.

Proposition 2.2. Let E be a closed subspace of X and let F be
the duality map on X to X*. Then the following assertions are
equivalent"
(2.1) E is a 1-complemented subspace of X,
(2.2) E+S(E)’--X for some selection S of F on E,
(2.3) there exists a dense subspace G of E such that G+T(G)+/- is

dense in X for some selection T of F on G,
where M+/---(f e X* :(x, f)---O for any x e M} for arbitrary subset M of
X.

Proof. We see rom Lemma 1.1 that (2.1) implies (2.2). Since
the, implication of (2.2) to (2.3) is trivial, it remains to show that (2.3)
implies (2.1). Suppose that (2.3) holds. Then we, have

1) Ily+z I_IlYll for all y eE and z e T(G)+/-.

In fact, let y e E. Then there exists a sequence {yn} in G which con-
verges to y. We. have lYn+Z IlYnll Jor any n e N from Lemma 1.1.
Going to limit n+c, we. obtain 1).

Let x e X. Then there exists a sequence {Xn} which converges to
x. By assumption we, can write x=y+Zn for some. {Yn} in G and
{zn} in T(G)+/-. Noting that Yn--Y e E and Zn--Z e T(G)+/-, it follows
from 1)

lXn--Xm I---] (Y--Y)--(z--z)II_ lY--Y]I
2or all n and m in N. Since {x} is a Cauchy sequence, so are, {y} and
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{Zn}. Then {Yn} and {zn} converge to some y in E and z in T(G)+/-,
respectively. Thus for every x e X, there exist y e E and z e T(G)+/-

such that x=y+z. It is easily obtained from 1) that this representa-
tion is unique. Setting Px=y, we obtain a projection P on X to E.
It follows from 1) that IIPII=I. This completes the proof.
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