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52. Index, Localization and Classification of Characteristic
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By Sunao OucHI
Department of Mathematics, Sofia University, Tokyo

(Communicated by Kosaku YoSipA, M. J. A., June 12, 1984)

Let P(z,d) be a linear partial differential operator of order m with
holomorphic coefficients in 2 C**!, and K be a connected nonsingular
hypersurface in £. Characteristic indices and the localization on K
of P(z,0) are defined by means of a special coordinate in [6]. In the
present paper we give another definition of them, new notions and a
classification of characteristic surfaces of P(z,9).

§1. Definitions. 2z2=(2, 2y, ---,2,)=(2,,2") denotes a point in
C+', 8=y, 0y, - - -,0,)=(0y, ?), 3,=03/3,,, For a domain UcC"*!, O(U)
is the set of all holomorphic functions in U and _£(U) is the set of all
holomorphic vector fields in U. For a multi-index a=(ay, aty, - - -, ) =
(yy @)y ;€ Z,=NU{0}, |e|=a,+||=a,2+a,+ - - - +a, and for X=(X,,
Xy - X=Xy, X)) e LO), Xo=(X)*(X )" - - (X)) =(Xp)*(X)".

For a point p € K, there is a neighbourhood U of p suchthat KN U
={z € U; ¢(2) =0} with ¢(2) € O(U) and do(2)x0 on K. For f(z) e O),
|fl=7€Z, U{+ oo} means that f(z)=0¢(2)'g(z) with ¢g()=0 on K. If
F@=0, | f]=+oco.

We can find X =X, X,, ---,X,) e L), by shrinking U if
necessary, such that
(1.1) <{de¢, X;»=0 on K and {dp, X,>=0 on K for 1<i<n,

(1.2) {X.} (0<i<n) are linearly independent at each point in U,
where {, > means the product of cotangent and tangent vectors.

Hence we can write P(z,0) in U, by using {X,}, as follows:

1.3 P@0)=3 (¥ A@X)= kf:o (I|Z=]k .,(2)e(2) “(X,)*(X")),

k=0 lal=k
where A4,()=0a,()¢()* and j,=|A,]. Put
1.4) dy=min {j,+|'|; |a|=k}, J,=min{j,;|a|=k, j.+|o|=d.},

’ {Lk=dk-J e
We can define quantities {¢,} and {s, ;} by the same way as in [6]. Let
A={(k,d,) e R*; d, >+ o0, 0<k<m} and 4 be the convex hull of A. If
A={(m, d,)}, we put 6,=1. Otherwise the lower convex part of the
boundary oA of A consists of segments (7)) 1<i<]) (see Fig.1). Let
A, ={k,; d.,); 0<i<ly, m=k, >k, > - >k, >0, be the set of vertices of
Ui 2:G).  Put
1.5) og,=max {(d,,_,—d.,)/ (k,_,— k), 1}.
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Then there is a p € N such that ¢,>0,>--->0,=1. Put

(1.6) CW={ae Z; |al=k,, |« |=Ly, j.=J.},
a.mn Py(z,0)=2uccw @aNX) 0<i<p-1).
(Kor di,)

(kzv dk,)

(Fig. 1) (Fig. 2)

Let us also consider B={(k,J,)eR*; d,,_,—d,=k,.,—k, 0<k
<k,.} to define {s, ;}. If B={(k,.,,J, )}, we put ¢,,=1. Otherwise
the lower convex part of the boundary 8B of the convex hull B of B
consists of segments 3,(7) A<t <) (see Fig. 2). Let B,={(r,,J,,); 0<1
<, k,y=r,>7r,>--->r,.>0. Put

1.8) o, =max{(/J,,_,—J,.)/(r,..,—r), 1}

Hence there is a ¢ € N such that ¢, ,>0,,> - >0,,=1. Put
1.9) Cp, ) ={ae Z2; |al=r, |&|=L,, j.=7,},
(1.10) P2 ) =T coim s @@DEX)  (A<i<q—1).

Definition 1.1. We call ¢; 1 <i<p) the i-th characteristic index
of K and ¢,,; A1<i<q) the (p, ©)-characteristic index of K for P(z,d).

We may restrict P,(z, d) 0<i<p—1) and Pp,i(z, 29 I<i<qg—1) on
K, have operators on K and denote them by P, x . and P x, ;o Ye-
spectively.

Definition 1.2. We call P, x ; the i-th localization on K of P(z, )
and Py «, .5 the (p, 9)-localization on K of P(z, d).

Remark 1.3. In [6] we call ¢, the i-th subcharacteristic index
and only Py, x, is defined and called the localization.

The characteristic indices and the localizations are defined by ¢(z)
and {X,} (0<i<n). Let () e O(V) be another function defining K
and Y=, Y, --,Y,)e _L(V)"*'be vector fields with properties (1.1)-
(1.2) for y(2) and {Y,} (0<i<n) in a neighbourhood V of p. Then we
havein UNYV,
a.1n) (p(z)=X(z)\Ir(z), X,= o a; ()Y, 0<i<n),
where 2(2), a,,z)eOUNYV), x2)x0 and det(a,; ;)0 in UNV.
From (1.1)-(1.2), we have
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Lemma 1.1. The following holds in (1.11):

1.12) oo xnoarx0 and ;0@ xapar=0 for 1<i<n.

We denote by o,(y, Y) A<i<p’) and o, (¥, Y) 1<i<q’) charac-

teristic indices, and by P,y x, (¥, Y) and Py ¢, v, (P, Y) localizations of
P(z,9) defined by ¥(2) and Y. Let Q(z,9) be an operator homogeneous.
in X with degree k,
1.13) Qz, a)=Z|al=k Ba(z)Xar‘Zla[:k Ba(z){n:ILO (Z;Lo ai,j(z)Yj)ai}'
In the sequel P.S.L means the principal symbol of an operator L.
We have from Lemma 1.1,

Lemma 1.2. The followings hold for Q(z,9):

(1.14) 01(50, X)=0'1,1(§0a X)=0'1(‘!/" Y)=0'1,1(‘!’" Y)=1,
(1,15) P.S.Quee, x.,0 (@, X)=h(s) P.8.Qioc, k0 (I, Y),
where h(s) sc KNUNYV) is a holomorphic function on KNUNV and
h(s) does not vanish on KNUNYV.
Consequently we have from Lemma 1.2,

Theorem 1.3. The characteristic indices {s,} A1<i<p) and {s, ;}
A<i<q) don't depend on ¢(z) defining K and vector fields {X;} (0<7
<n) satisfying (1.1)-(1.2).

For the localization we have

Theorem 1.4. There are holomorphic functions h,(s) (0<i<p
—1) and h, ;(s) A<i<qg—1) on KNUNYV such that

(i) h(8)x0andh, (8)x00n KNUNYV,

(1)-@) P.8.Pro (@, X)=hi(s) P.S.Prop s (4, V),

"(b) P'S°Ploc,Ky(p,j) (90’ X)=hp,j(s) P-S-Ploc,K,(Pyl) (‘!"’ Y)'

Finally we give a classification of characteristic surfaces.

Definition 1.4. Suppose that K is characteristic for P(z, 9).

(a) If ¢,>1, then K is called irregular.

(b) If ¢,=1 and ¢,,>1, then K is called weakly irregular.

(¢) If g,=0,,=1, then K is called regular.

§2. Remarks. (i) Let P(z,d) be an operator with decompos-
able principal part, namely said to have constant multiple character-
istics (see [2],[4]), and K be its characteristic surface. Let ¢ be the
irregularity of characteristic elements defined in [4]. Then ¢,<g.
For P(z,d)=0)"+20, and K={2,=0}, we have ¢,=1, but 6=2. If
P(z, 0) satisfies the Levi’s condition, namely =1, we have ¢,=0,,=1.

(ii) Let P(z, ) be an operator treated in [1], [3], where charac-
teristic initial value problems were considered. We have ¢,=0,,=1
for their initial characteristic surface.

(ili) If K is generically noncharacteristic, that is, P.S.P(z,
B)iex emap X0, then o,=0,,=1. If P(z,0) is an ordinary differential
operator, then ¢, ,=1.

We give some examples. Let K={z2,=0}.
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P(z, a)=(ao)m—l(a1)l+Zlﬂlsm,ﬁ#aaﬁ(z)aﬂ’ a:(m—l, l’ 0’ Tty O)’
2.1) Ja;(x)=0(z)) (@=max(B,—m+!,0)) for|f|=m and B=xa,
Ploc,K,0=(al)l+Zlﬂ'l=l,ﬁ=¥a a(m-l,ﬁ')(oy 2")(@)" .
P(z,0)=(20)"(0)"(0)" + (0,)* + (26)*(3,)* + (3, (B,),
2.2) 0,=2, 0,=1, 0'2,1=2, 0'2,2=1; Ploc,K,0=(al)4y Ploc,K,lzI’
Ploc,K,(z,1)=al-
@) (PEI=CIOIIL@+abEh+ @0+ dE)
=1, 0,,=2, 0,=1, Ploc,K,0=au Ploc,K,(l,1)=(al)2-
Operators of the form (2.1) were treated in [7]. K is weakly irregular
in (2.3) and irregular in (2.2).

In [6], some theorems concerning with existence of solutions with
singularity on K for P(z,d)u(z) =f(2) are stated, where g,, ¢,, and
P x,0 are used. It follows from Theorem 1.3 and 1.4 that the condi-
tions in [6] are invariant by coordinate transformations. Not only o,
and P, ., but also other ¢, and P, are used in [5], where the
relation between genuine solutions and solutions of formal power
series for characteristic Cauchy problems is studied.
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